一阶逻辑基本概念
一阶逻辑基本概念

问:(司能否将Q)符号化为
Vx(M(x) AF(x)) ?
常项或变项之间数量关系的词。称表示个体常项或变项之间数量关系的词为 量词。量词可分两种:
(1)全称*i司 日常生活和数学中所用的〃一切的〃,〃所有的〃,〃每一个〃,"任意 的",〃凡〃,〃都〃等词可统称为全称量词,将它们符号化为7'。并用 Vx , Vy等表示个体域里斤有个依,而用VxF(x) , VyG(y)等分别表示个体 域里所有 个体都有性质F和都有性质G。
S P
H
用d
KI
3 、 茹
7 a1 3回 A国 m今
Tt
R鄂
由例4.2可知,命题(1) , (2)在不同的个体域D]和D2中符号化的形式不
I 一样。主要区别在于,在使用个体域D2时,要将人与其他事物区分开来。
\ 为此引进了谓词M(x),像这样的谓词称为特性谓词。在命题符号化时一定 荽
正确使用特性谓词。
域可以是有穷集合,例如,{:1,2,3}, {a , b , c , d}, {a , b , c,…,x , y ,
z};也可以是无穷集合,例如,自然数 集合N={0,1,2 ,…},实数集合R={x|x是实数}。有一个特殊的个体域, 它是由宇宙间一切事物组成的,称它为全总个
体域。本书在论述或推理中如没有指明 所采用的个体域,都是使用全总个体域。
( ()
赣 炀
m
s e
S 般
m 畏、、
、 ^ 任、
w 1Mx
m §、
、、 q
葛屈 倒蟹
c
I H 腐、
5 -孵I
C @暇 l
妇犯色 6
屈 型 、 挝 |
挝 , € 眠
离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。
第二章一阶逻辑

练习2 在一阶逻辑中将下列命题符号化。 ⑴ 兔子比乌龟跑得快。 ⑵ 每个人都有自己喜欢的职业。 ⑶ 不存在同样高的两个人。 ⑷ 存在最小的自然数。 解 ⑴兔子比乌龟跑得快。 令F(x):x是兔子, G(x):x是乌龟, H(x,y):x比y跑得快。 本命题符号化为 x(F(x)→ y(G(y)→H(x,y))), 或 x y(F(x)∧G(y)→H(x,y))。
⑷ 存在着偶素数。
⑸ 在北京工作的人未必都是北京人。
解 ⑴有的有理数是整数。
令Q(x):x是有理数。 P(x):x是整数。 本命题符号化为 x (Q(x)∧P(x))。
⑵每个计算机系的学生都学离散数学。
令P(x):x是计算机系的学生。
R(x):x学离散数学。
本命题符号化为x (P(x)→R(x))。
⑶ 每个人都会犯错误。
令 R(x):x是人。 P(x):x会犯错误。 本命题符号化为 x (R(x)→P(x))。
⑷ 存在着偶素数。
令E(x):x是偶数。
P(x):x是素数。
本命题符号化为 x(E(x)∧P(x))。
⑸在北京工作的人未必都是北京人。
令W(x):x在北京工作。
B(x):x是北京人。
母a, b, c, d 等表示常元。
个体变项(也称个体变元,简称变元):泛指
个体域中个体的符号。一般用小写英文字母x, y,
z 等表示变元。
例
2是有理数。 这是一个简单命题。 “2”是个体词 “…是有理数”是谓词,它表示个体的性 质。 个体词:是表示个体的符号。 谓词:用来刻画个体的性质或个体之间的关 系。一般用大写英文字母表示谓词。 例 张三比李四高。 有两个个体词:张三,李四 “…比…高”是谓词,表示两个体之间的关 系。
4一阶逻辑公式及解释

4一阶逻辑公式及解释一阶逻辑(First-Order Logic, FOL)是数理逻辑中的一个重要分支,它被广泛应用于数学、计算机科学和人工智能等领域。
在一阶逻辑中,逻辑公式是推理的基础,能够对命题进行符号化的描述和推理。
本文将介绍一阶逻辑的基本概念和常见的一阶逻辑公式,并对其进行解释。
一、一阶逻辑基本概念1. 常量:在一阶逻辑中,常量是指代具体对象的符号,如a、b、c 等。
常量一般用小写字母表示。
2. 变量:变量是用来占位的符号,可以代表任意对象。
在一阶逻辑中,变量一般用大写字母表示,如X、Y、Z等。
3. 函数:函数是一种从一个或多个参数到一个值的映射关系。
在一阶逻辑中,常用的函数包括算术函数、关系函数等。
函数一般用小写字母或希腊字母表示,如f(x)、g(x)等。
4. 谓词:谓词是描述对象性质的符号,可以表示真假的陈述。
在一阶逻辑中,常用的谓词包括等于、大于、小于等。
谓词一般用小写字母或希腊字母表示,如P(x)、Q(x)等。
二、一阶逻辑公式在一阶逻辑中,公式是用符号表示的逻辑陈述,包括原子公式和复合公式两类。
1. 原子公式原子公式是一阶逻辑中最基本的公式,它不再含有其他公式作为子公式。
原子公式由一个谓词和一个或多个常量、变量组成,形式为P(t1,t2,...,tn),其中P为谓词,t1,t2,...,tn为常量、变量。
举例:P(a,b)表示P是一个二元谓词,a和b是其两个参数。
2. 复合公式复合公式由一个或多个公式通过逻辑连接词(如否定、合取、析取、蕴含等)组合而成。
- 否定(¬):如果φ是一个一阶逻辑公式,则¬φ也是一个一阶逻辑公式。
- 合取(∧):如果φ和ψ是两个一阶逻辑公式,则(φ∧ψ)也是一个一阶逻辑公式。
- 析取(∨):如果φ和ψ是两个一阶逻辑公式,则(φ∨ψ)也是一个一阶逻辑公式。
- 蕴含(→):如果φ和ψ是两个一阶逻辑公式,则(φ→ψ)也是一个一阶逻辑公式。
举例:如果P(x)表示“x是人”,Q(x)表示“x是聪明的”,那么复合公式可以表示为:(P(x)∧Q(x)),表示“x是人且x是聪明的”。
《离散数学》-一阶逻辑-基本概念

《离散数学》-⼀阶逻辑-基本概念⼀阶逻辑这个⼀块属于离散数学的内容,它的功能就是将⾃然事物给符号化以为体系的确⽴奠定语⾔基础。
回想⽆论学汉语还是英语的语法,我们都是从句⼦的主⼲学起,那么数学作为⼀门语⾔,它的句⼦当然也有所谓的主⼲。
个体词:个体次是所研究对象可以独⽴存在的具体的或者抽象的客体。
具体⽽特定的客体个体成为个体常项,⼀般⽤⼩写字母a、b、c表⽰。
⽽将抽象或泛指的个体词成为个体变项,⼀般⽤英⽂字母x、y、z表⽰,并称个体变项的取值范围为个体域。
举例说明:(1)“5是素数”,5、素数都是个体词语,5是个体常项⽽素数是个体变项.(2)“x>y”,x、y都是个体变项.谓词:这⾥似乎类似于⾃然语⾔中谓语动词,往往是形容“⼀个动作”,但是在这⾥,谓词是形容“⼀种关系”,当然和个体词类似,根据这种描绘个体之间的关系的确定与否(具体或者抽象泛指),我们也可以把谓词分为常项和变项。
举例说明:(1) X是有理数。
“是有理数”是常项谓词。
(2) X与y有具体关系L。
这⾥及其迷惑⼈的是语句“有具体关系L”,但是本质上关系L还是抽象的不确定的,因此这⾥“有具体关系L”是变项谓词。
下⾯要做的就是将这种描述关系的语句进⾏符号化,这⾥其实有点类似于函数的概念,因为谓词描述的是个体之间的关系,因此它必须依赖于个体。
我们⽤F、G、H来进⾏符号化的表⽰。
F(a)、F(x)分别表⽰个体常项a、个体变项x满⾜的性质F(a)和F(x).更⼀般的情况,P(x1,x2,x3…xn)表⽰个体x1,x2,…xn具有关系P。
对于不含个体变项的谓词,我们成为0元谓词。
Ex1:将下列命题在⼀阶逻辑中⽤0元谓词符号化,并讨论他们的真值(1) 只有2是素数,4才是素数。
G(2)表⽰2是素数,G(4)表⽰4是素数,则我们将这个命题符号化的结果: G(2) —> G(4),由于命题的条件为假,因此该命题为真。
(2) 如果5⼤于4,则4⼤于6G(5,4)表⽰“5⼤于4”,命题符号化之后的结果: G(5,4) —> G(4,6),条件为真结论为假,因此命题为假。
F4一阶逻辑基本概念

第四章一阶逻辑基本概念
§4.1 一阶逻辑命题的符号化 §4.2 一阶逻辑公式及解释
091离散数学(60). W&M. §4.2 一阶逻辑公式及解释
命题逻辑形式系统 I = A, E, AX, R, 其中A, E是语言系统. 谓词逻辑形式系统的语言 , 它便于翻译自然语言. (下一章
Dx2Dx1A(x1, x2, …, xn) 可记为 A2(x3, x4, …, xn), …… ,
Dxn…Dx1A(x1, x2, …, xn) 中没有自由出现的个体变项, 可z) = x(F(x, y) G(x, z)) B(z) = yA(y, z) = yx(F(x, y) G(x, z)) C =zyA(y, z) = zyx(F(x, y) G(x, z))
(3) H(a, b), 其中 H: “…与…同岁”, a: 小王, b: 小 李.
(4) L(x, y), 其中L: “…与…具有关系L”.
091离散数学(60). W&M. §4.1 一阶逻辑命题的符号化
一元谓词 F(x) 表示 x 具有性质 F.
二元谓词 F(x, y) 表示个体变项 x, y 具有关系 F.
xy(x + y = 0) 与 yx(x + y = 0) 含义不同. ‡†句子的符号化形式不止一种. 设 H(x): x 是人, P(x): x 是完美的, 则 “人无完人”可 符号化为
第四章一阶逻辑的基本概念

(2) 令F(x):x是无理数,G(y):y是有理数,L(x,y):x>y x(F(x)y(G(y)L(x,y) ) )
或者 xy(F(x)G(y)L(x,y))
14
实例4
例4 在一阶逻辑中将下面命题符号化 (1) 没有不呼吸的人 (2) 不是所有的人都喜欢吃糖 解 (1) M(x): x是人, G(x): x呼吸
合式公式 (4) 若A是合式公式,则xA, xA也是合式公式 (5) 只有有限次地应用(1)—(4)形成的符号串才是合式公式. 合式公式简称公式
如, F(x), F(x)G(x,y), x(F(x)G(x)) xy(F(x)G(y)L(x,y))等都是合式公式
19
量词的辖域
定义4.5 在公式 xA 和 xA 中,称x为指导变元,A为相应 量词的辖域. 在x和 x的辖域中,x的所有出现都称为约束 出现,A中不是约束出现的其他变项均称为是自由出现的.
9
(3)存在唯一量词!,用来表达“恰有一个”、“存在唯一”等词语。
“(!x)R(x)”表示命题:“在个体域中恰好有一个个体使谓词R(x)为
真”。(了解)
全称量词、存在量词统称量词。量词是由逻辑学家Fray引入的,有了量 词之后,用逻辑符号表示命题的能力大大增强。
实例1
例1 用0元谓词将命题符号化 (1) 墨西哥位于南美洲
(2) 2 是无理数仅当 3 是有理数
(3) 如果2>3,则3<4
解:在命题逻辑中: (1) p, p为墨西哥位于南美洲(真命题)
(2) p→q, 其中, p:2 是无理数, q: 3 是有理数. 是假命题
(3) pq, 其中, p:2>3, q:3<4. 是真命题
离散数学 第二章:一阶逻辑

(2) xF(x) G(x, y);
(3) xyR(x, y) L(y, z) xH(x, y).
2.闭式
定义6. 设A为任一公式,若A中无自由出现的个体变项,则称A是 封闭的合式公式,简记闭式.
例: xF(x) G(x),xyF(x) G(x, y) 闭式, 但 xF(x) G(x, y),zyL(x, y, z) 不是闭式.
(1)所有的人都要死的. (2)有的人活百岁以上.
全称量词:一切,所有,任意. 用 表示.
1.量词
x:表示对个体域中的所有个
xF(x)体:表. 示个体域中的所有个体都具有性质F.
存在量词:存在着,有一个,至少有一个. 用 表示.
x:表示存在个体域里的个体.
xF ( x):表示存在着个体域中的个体具有性质F.
(2)xR(x) G(x), 其中 G(x): x是整数.
3) 同2).
例3. 将下面命题符号化. (1)对所有的x ,均有 x2-1=(x+1)(x-1). (2)存在x,使得 x+5=2.
要求: 1)个体域为自然数集合. 2)个体域为实数集合.
解:1) 不用引入特性谓词.
(1)xF(x), 其中 F(x): x2-1=(x+1)(x-1). 真命题
(3) xF(x) yF(y) L(x, y),
其中 F(x): x是自然数, L(x,y): y是 x的先驱数.
§2.2 一阶逻辑合式公式及解释
一、合式公式
1.字母表 定义1.字母表如下: (1)个体常项: a,b,c,… (2)个体变项: x,y,z,… (3)函数符号: f,g,h,… (4)谓词符号: F,G,H,…
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n(n1)元谓词:P(x1,x2,…,xn)表示含n个命 题变项的n元谓词。
n=1时,一元谓词 — 表示x1具有性质P。 n≥2时,多元谓词 — 表示x1,x2,…,xn具有 关系P 0元谓词:不含个体变项的谓词。如F(a)、 G(a,b)、P(a1,a2,…,an)。
例4.1 将下列命题在一阶逻辑中用0元谓 词符号化,并讨论真值。 (1)只有2是素数,4才是素数。 (2)如果5大于4,则4大于6. 解: (1)设一元谓词F(x):x是素数,a:2,b:4。
说明:个体词一般是充当主语的名词或代 词
举例 命题:电子计算机是科学技术的工具。 个体词:电子计算机。
命题 :他是三好学生。 个体词:他。
个体常项:表示具体或特定的客体的个体词,
用小写字母a,b,c,…表示。
个体变项:表示抽象或泛指的客体的个体词,
用x,y,z,…表示。
个体域(或称论域):指个体变项取值范围。
x(M(x)→F(x)) (2)“有的人用左手写字”符号化为
x(M(x)∧G(x))
注意:
1. 在使用全总个体域时,要将人从其 他事物中区别出来,为此引进了谓词 M(x),称为特性谓词。
2. 正确使用→与∧ 3. 在不同个体域内,同一个命题的符 号化形式可能不同,也可能相同。
当F是谓词常项时,xF(x)是一个命 题,如果把个体域中的任何一个个体a带 入,F(a)都是真,则xF(x)为真;否则 xF(x)为假。
举例
例题1:是无理数。 是个体常项,“是无理数”是谓词,记为F, 命题符号化为F() 。
例题2:x是有理数。 x是个体变项,“是有理数”是谓词,记为G, 命题符号化为G(x)。
例题3:小王与小李同岁。 小王、小李都是个体常项,“与同 岁”是谓词,记为H,命题符号化为 H(a,b),其中a:小王,b:小李。
例4.2 在个体域分别限制为(a)和(b)条件时, 将下面两个命题符号化:
(1)凡人都呼吸。 (2)有的人用左手写字。 其中:(a)个体域D1为人类集合; (b)个体域D2为全总个体域。
解:(a)个体域为人类集合。 令 F(x):x呼吸。 G(x):x用左手写字。 (1)在个体域中除了人外,再无别的东西,
第四章 一阶逻辑基本概念
1. 一阶逻辑命题符号化 2. 一阶逻辑公式及其解释
4.1一阶逻辑命题符号化
命题逻辑的局限性: 在命题逻辑中,研究的基本单位是简单命
题,对简单命题不再进行分解,并且不考虑命 题之间的内在联系和数量关系。 例如:凡偶数都能被2整除,6是偶数,所以6能 被2整除。
将出现的3个命题依次符号化为p,q,r,将 推理的形式结构
(3)有些命题的符号化形式可不止一种。 (例4.5之(3))
(4)一般说来,多个量词出现时,它们的顺序不 能随意调换。
例如,考虑个体域为实数集,H(x,y)表示 x+y=10,
则命题“对于任意的x,都存在y,使得x+y=10” 的符号化形式为
xyH(x,y)
真命题
如果改变两个量词的顺序,得
yxH(x,y)
定义4.2 一阶语言F的项的定义如下:
(1)个体常项和个体变项是项。
(2)若(x1,x2,…,xn)是任意的n元函数, t1,t2,…,tn是任意的n个项,则(t1,t2,…,tn) 是项。
(3)所有的项都是有限次使用(1),(2)得到的。
定义4.3 设R(x1 ,x2 ,… ,xn)是一阶语言F的任 意n元谓词,t1 ,t2 ,… ,tn是一阶语言F的任意 的n个项,则称R(t1,t2,… ,tn)是一阶语言F的 原子公式。
x是指导变元。 量词的辖域A=(F(x,y)→G(x,z))。 在A中,x的两次出现均是约束出现。y和z均为 自由出现。
例4.6 指出下列各公式中的指导变元,各量词 的辖域,自由出现以及约束出现的个体变项。 (2) x(F(x)→G(y))→y(H(x)∧L(x,y,z))
解:前件上量词的指导变元为x 量词的辖域A=(F(x)→G(y)),
例题4:x与y具有关系L。 x,y都是个体变项,谓词为L,命题符号 化为 L(x,y)。
谓词常项:表示具体性质或关系的谓词。 用大写字母表示。如①、②、③中谓词F、 G、H。
谓词变项:表示抽象的、泛指的性质或 关系的谓词。用大写字母表示。如④中谓 词L。例x与y具有关系L。x,y都是个体变 项,谓词为L,命题符号化为 L(x,y)
xF(x)也是一个命题,如果个体域 中存在一个个体a,使得F(a)为真,则 xF(x)为真;否则xF(x) 为假。
例4.3 在个体域限制为(a)和(b)条件时, 将下列命题符号化: (1)对于任意的x,均有x2-3x+2=(x-1)(x-2) (2)存在x,使得x+5=3。 其中:(a)个体域D1=N(N为自然数集合)
例如:1元谓词F(x),G(x),2元谓词H(x,y), L(x,y)等都是原子公式。
定义4.4 一阶语言F的合式公式定义如下:
(1) 原子公式是合式公式。
(2) 若A是合式公式,则(┐A)也是合式公式。
(3) 若A,B是合式公式,则(A∧B),(A∨B), (A→B),(AB)也是合式公式。 (4) 若A是合式公式,则xA,xA也是合式公式 (5) 只有有限次的应用(1)~(4)构成的符号串 才是合式公式.
(1)所有人都长着黑头发。 令 F(x):x长着黑头发 命题(1)的符号化形式为
x(M(x)F(x)) 命题为假
(2)有的人登上过月球。 令 F(x):x登上过月球 命题(2)的符号化形式为
x(M(x)∧F(x)) 命题为真
(3)没有人登上过木星。 令 F(x):x登上过木星 命题(3)的符号化形式为
L(x,y):x与y跑得同样快 命题符号化形式为
┐zy(F(z)∧F(y)∧ L(z,y)) 思考:命题符号化形式为
xy(F(x)∧F(y)┐L(x,y))可以么?
一阶逻辑命题符号化时需要注意的事项:
(1)分析命题中表示性质和关系的谓词,分
别符号为一元和n(n2)元谓词。
(2)根据命题的实际意义选用全称量词或存 在量词。
个”、“有的”、“至少有一个”等词统称为存在 量词。
yG(y)表示个体域里存在个体具有性质G等。 xyG(x,y)表示个体域里存在个体x和个体y 有关系G。
xyG(x,y)表示个体域里所有个体x,存在y, 使得x和y有关系G 。
xyG(x,y)表示个体域里存在个体x,使得和 所有的个体y有关系G 。
(1)兔子比乌龟跑得快。 解:令 F(x):x是兔子, G(y):y是乌龟,
H(x,y):x比y跑得快 命题(1)的符号化形式为
xy(F(x)∧G(y)H(x,y))
(2)有的兔子比所有的乌龟跑得快。 解:令 F(x):x是兔子, G(y):y是乌龟,
H(x,y):x比y跑得快 命题符号化形式为
全称量词:符号化为“” 日常生活和数学中所用的“一切的”、“所有的”、 “每一个”、“任意的”、“凡”、“都”等词可 统称为全称量词。
x表示个体域里的所有个体,xF(x)表示个体 域里所有个体都有性质F。xyG(x,y)表示个体域 里的所有个体x和y有关系G 。
存在量词:符号化为“” 日常生活和数学中所用的“存在”、“有一
定义4.1 一阶语言F的字母表定义如下:
(1)个体常项:a, b, c, …, ai, bi, ci, … , i 1 (2)个体变项:x, y, z, …, xi , yi, zi, … , i 1 (3)函数符号:f, g, h, …, fi, gi, hi, … , i 1
(4)谓词符号:F, G, H, …, Fi, Gi, Hi, … , i 1 (5)量词符号: , (6)联结词符号:┐,∧,∨,→, (7)括号与逗号:(,),,
假命题
4.2 一阶逻辑命题符号化
同在命题逻辑中一样,为在一阶逻辑中进行演算 和推理,必须给出一阶逻辑中公式的抽象定义,以及 它们的分类及解释。
一阶语言是用于一阶逻辑的形式语言,而一阶逻 辑就是建立在一阶语言基础上的逻辑体系,一阶语言 本身不具备任何意义,但可以根据需要被解释成具有 某种含义.
一阶语言的形式是多种多样的,本书给出的一阶 语言是便于将自然语言中的命题符号化的一阶语言, 记为F。
x在A中是约束出现的,y在A中是自由出现的。 后件中量词的指导变元为y,量词的辖域
为B=(H(x)∧L(x,y,z)),y在B中是约束出现的, x、z在B中均为自由出现的。
因而“凡人都呼吸”应符号化为 xF(x)
(2)在个体域中除了人外,再无别的东西, 因而“有的人用左手写字”符号化为
xG(x)
(b)个体域为全总个体域。 即除人外,还有万物,所以必须考虑将人先分离 出来。所以引入谓词 M(x):x是人。 令F(x):x呼吸。 G(x):x用左手写字。 (1)“凡人都呼吸”应符号化为
一阶语言F的合式公式也称为谓词公式,简 称公式。
定义4.5 指导变元、辖域、约束出现、自由出 现 在公式xA和xA中,称x为指导变元。
在公式xA和xA中,A为相应量词的辖域。
在x和x的辖域中,x的所有出现都称为约 束出现。
A中不是约束出现的其他变项均称为是自由 出现的。
例4.6 指出下列各公式中的指导变元,各量词 的辖域,自由出现以及约束出现的个体变项。 (1) x(F(x,y)→G(x,z))
p∧qr
4.1一阶逻辑命题符号化
为了克服命题逻辑的局限性,将简 单命题再细分,分析出个体词、谓词和 量词,以期达到表达出个体与总体的内 在联系和数量关系。这就是一阶逻辑所 研究的内容。
一阶逻辑命题符号化的三个基本要素: (1) 个体词 (2) 谓词 (3) 量词
(1) 个体词 个体词:指所研究对象中可以独立存在的 具体或抽象的客体。