一阶逻辑基本概念详解

合集下载

一阶逻辑基本概念

一阶逻辑基本概念

问:(司能否将Q)符号化为
Vx(M(x) AF(x)) ?
常项或变项之间数量关系的词。称表示个体常项或变项之间数量关系的词为 量词。量词可分两种:
(1)全称*i司 日常生活和数学中所用的〃一切的〃,〃所有的〃,〃每一个〃,"任意 的",〃凡〃,〃都〃等词可统称为全称量词,将它们符号化为7'。并用 Vx , Vy等表示个体域里斤有个依,而用VxF(x) , VyG(y)等分别表示个体 域里所有 个体都有性质F和都有性质G。
S P
H
用d
KI
3 、 茹
7 a1 3回 A国 m今
Tt
R鄂
由例4.2可知,命题(1) , (2)在不同的个体域D]和D2中符号化的形式不
I 一样。主要区别在于,在使用个体域D2时,要将人与其他事物区分开来。
\ 为此引进了谓词M(x),像这样的谓词称为特性谓词。在命题符号化时一定 荽
正确使用特性谓词。
域可以是有穷集合,例如,{:1,2,3}, {a , b , c , d}, {a , b , c,…,x , y ,
z};也可以是无穷集合,例如,自然数 集合N={0,1,2 ,…},实数集合R={x|x是实数}。有一个特殊的个体域, 它是由宇宙间一切事物组成的,称它为全总个
体域。本书在论述或推理中如没有指明 所采用的个体域,都是使用全总个体域。
( ()
赣 炀
m
s e
S 般
m 畏、、
、 ^ 任、
w 1Mx
m §、
、、 q
葛屈 倒蟹
c
I H 腐、
5 -孵I
C @暇 l
妇犯色 6
屈 型 、 挝 |
挝 , € 眠

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。

数理逻辑中的一阶逻辑与高阶逻辑的推理规则

数理逻辑中的一阶逻辑与高阶逻辑的推理规则

数理逻辑中的一阶逻辑与高阶逻辑的推理规则数理逻辑是研究形式系统的一门学科,其中包括一阶逻辑和高阶逻辑两种推理规则。

本文将分别介绍一阶逻辑和高阶逻辑的定义、基本概念以及推理规则。

一、一阶逻辑一阶逻辑是形式逻辑中的一种基本逻辑形式,也被称为一阶谓词逻辑或一阶一周理论。

它的推理规则包括以下几个方面:1. 命题逻辑命题逻辑是一阶逻辑的基础,它研究命题之间的逻辑关系以及对命题进行推理的规则。

命题逻辑中的推理规则主要涉及命题的合取、析取、否定等逻辑操作。

2. 量化一阶逻辑引入了变量和量词的概念,通过引入全称量词和存在量词,可以对一阶逻辑中的命题进行更加精确的描述。

量化的推理规则包括全称推广、全称规约、存在引入和存在消解等。

3. 假言推理假言推理是一阶逻辑中常见的一种推理形式,它通过条件语句的前提和结论之间的逻辑关系进行推理。

常用的假言推理规则有蕴涵引入、蕴涵消解、假言推广和假言规约等。

4. 等价推理等价推理是一阶逻辑中常用的一种推理形式,它通过等价命题之间的逻辑关系进行推理。

等价推理的规则包括等价引入、等价消解、双重否定引入和双重否定消解等。

二、高阶逻辑高阶逻辑是一种在一阶逻辑的基础上进行扩展的逻辑形式,它涉及到更高级别的量词和谓词的运用。

高阶逻辑中的推理规则包括以下几个方面:1. 高阶量词高阶逻辑引入了更高级别的量词,如二阶量词、三阶量词等,通过这些量词可以对更复杂的命题进行描述和推理。

高阶量词的推理规则包括量词引入和量词消解等。

2. 谓词高阶逻辑中的谓词可以是一阶逻辑中的命题或者函数,通过对谓词的运用可以进行更加精确的推理。

谓词的推理规则包括谓词引入、谓词消解等。

3. 广义命题高阶逻辑中的广义命题是指一个命题包含了其他命题作为子命题,通过对广义命题的推理可以对复杂的逻辑关系进行推理。

广义命题的推理规则包括广义命题引入和广义命题消解等。

总结:数理逻辑中的一阶逻辑和高阶逻辑是逻辑推理的重要分支,它们通过不同的推理规则对不同级别的命题进行推理和描述。

4一阶逻辑公式及解释

4一阶逻辑公式及解释

4一阶逻辑公式及解释一阶逻辑(First-Order Logic, FOL)是数理逻辑中的一个重要分支,它被广泛应用于数学、计算机科学和人工智能等领域。

在一阶逻辑中,逻辑公式是推理的基础,能够对命题进行符号化的描述和推理。

本文将介绍一阶逻辑的基本概念和常见的一阶逻辑公式,并对其进行解释。

一、一阶逻辑基本概念1. 常量:在一阶逻辑中,常量是指代具体对象的符号,如a、b、c 等。

常量一般用小写字母表示。

2. 变量:变量是用来占位的符号,可以代表任意对象。

在一阶逻辑中,变量一般用大写字母表示,如X、Y、Z等。

3. 函数:函数是一种从一个或多个参数到一个值的映射关系。

在一阶逻辑中,常用的函数包括算术函数、关系函数等。

函数一般用小写字母或希腊字母表示,如f(x)、g(x)等。

4. 谓词:谓词是描述对象性质的符号,可以表示真假的陈述。

在一阶逻辑中,常用的谓词包括等于、大于、小于等。

谓词一般用小写字母或希腊字母表示,如P(x)、Q(x)等。

二、一阶逻辑公式在一阶逻辑中,公式是用符号表示的逻辑陈述,包括原子公式和复合公式两类。

1. 原子公式原子公式是一阶逻辑中最基本的公式,它不再含有其他公式作为子公式。

原子公式由一个谓词和一个或多个常量、变量组成,形式为P(t1,t2,...,tn),其中P为谓词,t1,t2,...,tn为常量、变量。

举例:P(a,b)表示P是一个二元谓词,a和b是其两个参数。

2. 复合公式复合公式由一个或多个公式通过逻辑连接词(如否定、合取、析取、蕴含等)组合而成。

- 否定(¬):如果φ是一个一阶逻辑公式,则¬φ也是一个一阶逻辑公式。

- 合取(∧):如果φ和ψ是两个一阶逻辑公式,则(φ∧ψ)也是一个一阶逻辑公式。

- 析取(∨):如果φ和ψ是两个一阶逻辑公式,则(φ∨ψ)也是一个一阶逻辑公式。

- 蕴含(→):如果φ和ψ是两个一阶逻辑公式,则(φ→ψ)也是一个一阶逻辑公式。

举例:如果P(x)表示“x是人”,Q(x)表示“x是聪明的”,那么复合公式可以表示为:(P(x)∧Q(x)),表示“x是人且x是聪明的”。

离散数学 一阶逻辑

离散数学 一阶逻辑

离散数学一阶逻辑离散数学是一门研究离散结构及其运算规律的学科,它涉及到数学中的逻辑、代数、集合论、图论等多个方面。

其中,一阶逻辑作为离散数学中的重要分支,具有广泛的应用和研究价值。

本文将从逻辑的基本概念、一阶逻辑的语法和语义、一阶逻辑的推理规则、一阶逻辑的应用等几个方面来介绍一阶逻辑,旨在帮助读者全面了解一阶逻辑的基本概念和使用方法,并为其后续学习和应用提供指导。

首先,我们来介绍逻辑的基本概念。

逻辑是研究判断的科学,它主要关注真理与推理的关系。

在逻辑中,我们使用语句来表示判断,语句可以是真或假。

同时,逻辑将语句分为简单语句和复合语句。

简单语句是指不能再分解为更简单语句的语句,而复合语句则由多个简单语句通过逻辑运算连接而成。

逻辑运算包括取反(¬)、合取(∧)、析取(∨)、蕴含(→)等。

接下来,我们进一步介绍一阶逻辑的语法和语义。

一阶逻辑是最基本且最常用的逻辑系统之一,它包括基本命题、谓词和量词。

基本命题是指具有真或假值的简单语句,如“今天是星期一”。

谓词是一种描述性的语句构造,它通过将一些对象与一些性质关联起来,来表示复杂的判断。

例如,“x是红色”的谓词可以表示成P(x)。

量词则用来表示概括性的判断,包括全称量词∀和存在量词∃。

例如,“对于任意x,P(x)”可以表示成∀xP(x)。

在一阶逻辑中,语义是根据给定的语句和模型来确定语句的真假值。

模型是一种对应关系,它将谓词与具体的对象元素相联系。

通过使用变元(变量)和量化符号(全称量词∀和存在量词∃),我们可以构造出不同的语句并进行语义推理,从而得到推理结论。

此外,一阶逻辑还有一些特殊的推理规则,例如代入规则和全称推广规则。

代入规则是指在一个语句中的某个位置用一个等价的语句替换。

全称推广规则是指在一个语句中添加一个全称量词,将一个具体对象概括为所有对象的性质。

最后,我们来介绍一阶逻辑的应用。

一阶逻辑在人工智能、计算机科学和数学等领域有着广泛的应用。

一阶逻辑基本概念

一阶逻辑基本概念
解 ① L(, ): 比高;: 小李;: 小赵, 则该命题符号化为 L(, )。
② P(, , ): 位于和之间;: 武汉; : 北京; : 广州, 则该命题符号化为P(, , )。
注:个体变元的顺序影响命题真值, 不能随意调换
2024/3/7
18
个体域对符号化影响
(1) 墨西哥位于南美洲
在命题逻辑中, 设 p: 墨西哥位于南美洲
符号化为 p
在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲, 符号化为F(a)
2024/3/7
14
2) 2 是无理数仅当 3 是有理数
在命题逻辑中, 设 p: 2 是无理数,q: 3 是有理数.
符号化为 p q
在一阶逻辑中, 设F(x): x是无理数, G(x): x是有理数
第四章 一阶逻辑
基本概念
命题逻辑的局限性
• 苏格拉底三段论:

凡是人都要死的——p.

苏格拉底是人——q.

所以,苏格拉底是要死的——r.
• 在命题逻辑中,只能用p、q、r表示以上3个命题,
• 上述推理可表成(p∧q)→r。这不是重言式.判断不出推理的正确性。
• 所以,命题逻辑具有一定的局限性,甚至无法判断一些常见的简单推理.
② 不满足关系P, Q, R, 记作¬P(), ¬Q(,), ¬R(,,)
2024/3/7
15
引入量词符号化(个体域对符号化的影响)
例4.2 在一阶逻辑中将下面命题符号化
(1)人都爱美;
(2) 有人用左手写字
分别取(a) D为人类集合, (b) D为全总
个体域 .
解:(a) (1) 设G(x): x爱美,
(4)有的自然数是素数。

F4一阶逻辑基本概念

F4一阶逻辑基本概念
(a)非空个体域 DI . (b) DI 中一些特定元素的集合{a1,a2 , …,ai , …}. (c) DI 上特定函数的集合{fin|i, n 1}. (d) DI 上特定谓词的集合{Fin|i, n 1}. †其实质是明确公式中各个变项, 繁琐之处毋庸细究.

第四章一阶逻辑基本概念
§4.1 一阶逻辑命题的符号化 §4.2 一阶逻辑公式及解释
091离散数学(60). W&M. §4.2 一阶逻辑公式及解释

命题逻辑形式系统 I = A, E, AX, R, 其中A, E是语言系统. 谓词逻辑形式系统的语言 , 它便于翻译自然语言. (下一章
Dx2Dx1A(x1, x2, …, xn) 可记为 A2(x3, x4, …, xn), …… ,
Dxn…Dx1A(x1, x2, …, xn) 中没有自由出现的个体变项, 可z) = x(F(x, y) G(x, z)) B(z) = yA(y, z) = yx(F(x, y) G(x, z)) C =zyA(y, z) = zyx(F(x, y) G(x, z))
(3) H(a, b), 其中 H: “…与…同岁”, a: 小王, b: 小 李.
(4) L(x, y), 其中L: “…与…具有关系L”.
091离散数学(60). W&M. §4.1 一阶逻辑命题的符号化

一元谓词 F(x) 表示 x 具有性质 F.
二元谓词 F(x, y) 表示个体变项 x, y 具有关系 F.
xy(x + y = 0) 与 yx(x + y = 0) 含义不同. ‡†句子的符号化形式不止一种. 设 H(x): x 是人, P(x): x 是完美的, 则 “人无完人”可 符号化为

一阶谓词逻辑的基本概念与原理

一阶谓词逻辑的基本概念与原理

一阶谓词逻辑的基本概念与原理一阶谓词逻辑是数学逻辑的一个重要分支,它是对自然语言中的命题进行形式化描述和推理的工具。

在数理逻辑中,一阶谓词逻辑也被称为一阶逻辑或一阶谓词演算。

本文将介绍一阶谓词逻辑的基本概念与原理。

一、命题逻辑与谓词逻辑的区别在介绍一阶谓词逻辑之前,我们先来了解一下命题逻辑与谓词逻辑的区别。

命题逻辑是研究命题之间的关系和推理规则的逻辑系统,它只关注命题的真值(真或假)以及命题之间的逻辑连接词(如与、或、非等)。

而谓词逻辑则引入了谓词和量词的概念,可以描述对象之间的关系和属性,以及量化的概念。

二、一阶谓词逻辑的基本概念1. 语言一阶谓词逻辑的语言包括常量、变量、函数和谓词。

常量是指代具体对象的符号,如"1"、"2"等;变量是占位符号,可以代表任意对象,如"x"、"y"等;函数是将一组对象映射到另一组对象的符号,如"f(x)"、"g(x, y)"等;谓词是描述对象之间关系或属性的符号,如"P(x)"、"Q(x, y)"等。

2. 公式一阶谓词逻辑的公式由谓词、变量、常量、函数和逻辑连接词构成。

常见的逻辑连接词有否定、合取、析取、蕴含和等价等。

例如,"¬P(x)"表示谓词P对于变量x的否定,"P(x)∧Q(x)"表示谓词P和Q对于变量x的合取。

3. 全称量词和存在量词一阶谓词逻辑引入了全称量词和存在量词,用于对变量进行量化。

全称量词∀表示对所有对象都成立,存在量词∃表示存在至少一个对象成立。

例如,∀xP(x)表示谓词P对于所有的x都成立,∃xP(x)表示谓词P至少存在一个x成立。

三、一阶谓词逻辑的推理原理一阶谓词逻辑的推理基于一些基本规则和推理规则。

1. 基本规则一阶谓词逻辑的基本规则包括等词规则、全称推广规则、全称特化规则、存在引入规则和存在消去规则等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:在推理中如不指明所采用的个体域,都是使用全总个体域.
2020/9/25
3
Hale Waihona Puke 谓词谓词——表示个体词性质或相互之间关系的词P55 谓词常项 表示具体性质或关系。如, F(a):a是人 谓词变项 表示抽象的或泛指的性质或关系。如, F(x):x具 有性质F n(n1)元谓词: 一元谓词(n=1)——表示性质 多元谓词(n2)——表示事物之间的关系 如, L(x,y):x与 y 有关系 L,L(x,y):xy,… 0元谓词——不含个体变项的谓词, 即命题常项 或命题变项 如 P56 例4.1
2020/9/25
4
量词
量词——表示数量的词
全称量词: 表示所有的.
x : 对个体域中所有的x
如, xF(x)表示个体域中所有的x具有性质F
xyG(x,y)表示个体域中所有的x和y有关系G
存在量词: 表示存在, 有一个.
x : 个体域中有一个x
如, xF(x)表示个体域中有一个x具有性质F
xyG(x,y)表示个体域中存在x和y有关系G
(1) x(M(x)F(x)) (2) x(M(x)G(x))
1. 引入特性谓词M(x) 2. (1),(2)是一阶逻辑中两个“基本”公
式 2020/9/25
8
实例3
例3 在一阶逻辑中将下面命题符号化 (1) 正数都大于负数 (2) 有的无理数大于有的有理数
解 (注意:题目中没给个体域,一律用全总个体域) (1) 令F(x):x为正数,G(y):y为负数, L(x,y):x>y
xyG(x,y)表示对个体域中每一个x都存在一个y使得
x和y有关系G
xyG(x,y)表示个体域中存在一个x使得对每一个y,
x和y有关系G
2020/9/25
5
实例1
例1 用0元谓词将命题符号化 (1) 墨西哥位于南美洲
(2) 2 是无理数仅当 3 是有理数
(3) 如果2>3,则3<4
解:在命题逻辑中: (1) p, p为墨西哥位于南美洲(真命题)
2020/9/25
7
实例2
例 2 在一阶逻辑中将下面命题符号化 (1) 人都爱美 (2) 有人用左手写字 个体域分别为 (a) D为人类集合 (b) D为全总个体域
解 (a) (1) xF(x), F(x):x爱美
(2) xG(x), G(x):x用左手写字 (b) M(x):x为人,F(x):x爱美
2
4.1 一阶逻辑命题符号化
个体词——所研究对象中可以独立存在的具体或抽象的客体 个体常项:具体的事务,用a, b, c表示 个体变项:抽象的事物,用x, y, z表示 个体域(论域)——个体变项的取值范围 有限个体域,如 {a, b, c}, {1, 2} 无限个体域,如 N, Z, R, … 全总个体域——由宇宙间一切事物组成
x(F(x)G(x)) x(F(x)G(x))
(2) F(x): x是人, G(x): x喜欢吃糖 x(F(x)G(x)) x(F(x)G(x))
2020/9/25
10
实例5
例5 设个体域为实数域, 将下面命题符号化 (1) 对每一个数x都存在一个数y使得x<y (2) 存在一个数x使得对每一个数y都有x<y 解 L(x,y):x<y (1) xyL(x,y) (2) xyL(x,y)
2020/9/25
13
4.2 一阶逻辑公式及解释
定义4.1 设L是一个非逻辑符集合, 由L生成的一阶语言L 的 字母表包括下述符号:
非逻辑符号
注意: 与不能随意交换 显然(1)是真命题, (2)是假命题
2020/9/25
11
下面的问题要使用n(n2)元谓词. 例 将下列命题符号化: (1)兔子比乌龟跑得快. (2)有的兔子比所有的乌龟跑得快. (3)并不是所有的兔子都比乌龟跑得快. (4)不存在跑得同样快的两只兔子.
解:因本题没有指明个体域,因而采用全总个体域. “…比…跑得快”是2元谓词. 设F(x): x是兔子,G(y):y是乌龟, H(x,y): x比y跑得快, L(x,y): x与y跑得同样快.则
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))
(2) 令F(x):x是无理数,G(y):y是有理数,L(x,y):x>y
x(F(x)y(G(y)L(x,y))) 或者 xy(F(x)G(y)L(x,y))
2020/9/25
9
实例4
例4 在一阶逻辑中将下面命题符号化 (1) 没有不呼吸的人 (2) 不是所有的人都喜欢吃糖 解 (1) F(x): x是人, G(x): x呼吸
(p q )r (非重言式,推理错误) 克服命题逻辑的局限性:一阶逻辑(谓词逻辑)
2020/9/25
1
第四章 一阶逻辑基本概念
主要内容 一阶逻辑命题符号化
个体词、谓词、量词 一阶逻辑命题符号化 一阶逻辑公式及其解释 一阶语言 合式公式 合式公式的解释 永真式、矛盾式、可满足式
2020/9/25
第四章 一阶逻辑基本概念
为什么要研究一阶逻辑
命题逻辑的局限性 在命题逻辑中,命题是最基本的单位,对简单命题不再分解, 并且不考虑命题间的内在联系和数量关系,具有局限性.
考虑下面的推理: 凡偶数都能被2整除.6是偶数.所以,6能被2整除.
在数学中这是真命题,但在命题逻辑中却无法判断它的正确性. 因将以上三个简单命题依次符号化为p,q,r,则将推理的形式 结构化为:
2020/9/25
12
(1) xy(F(x)G(y)H(x,y))
(2) x(F(x) y(G(y)H(x,y)))
(3) xy(F(x)G(y)H(x,y)) 或 xy(F(x) G(y) H(x,y))
(4) xy(F(x) F(y) L(x,y)) 或 xy(F(x)F(y) L(x,y))
(2) p→q, 其中, p: 2是无理数,q: 3 是有理数. 是假命题
(3) pq, 其中,p:2>3,q:3<4. 是真命题
2020/9/25
6
实例1解答
在一阶逻辑中: (1) F(a),其中,a:墨西哥,F(x):x位于南美洲.
(2) F( 2 )G( 3 ),
其中,F(x):x是无理数,G(x):x是有理数 (3) F(2, 3)G(3, 4),其中,F(x, y):x>y,G(x, y):x<y
相关文档
最新文档