第二节1一阶逻辑基本概念
一阶逻辑基本概念

问:(司能否将Q)符号化为
Vx(M(x) AF(x)) ?
常项或变项之间数量关系的词。称表示个体常项或变项之间数量关系的词为 量词。量词可分两种:
(1)全称*i司 日常生活和数学中所用的〃一切的〃,〃所有的〃,〃每一个〃,"任意 的",〃凡〃,〃都〃等词可统称为全称量词,将它们符号化为7'。并用 Vx , Vy等表示个体域里斤有个依,而用VxF(x) , VyG(y)等分别表示个体 域里所有 个体都有性质F和都有性质G。
S P
H
用d
KI
3 、 茹
7 a1 3回 A国 m今
Tt
R鄂
由例4.2可知,命题(1) , (2)在不同的个体域D]和D2中符号化的形式不
I 一样。主要区别在于,在使用个体域D2时,要将人与其他事物区分开来。
\ 为此引进了谓词M(x),像这样的谓词称为特性谓词。在命题符号化时一定 荽
正确使用特性谓词。
域可以是有穷集合,例如,{:1,2,3}, {a , b , c , d}, {a , b , c,…,x , y ,
z};也可以是无穷集合,例如,自然数 集合N={0,1,2 ,…},实数集合R={x|x是实数}。有一个特殊的个体域, 它是由宇宙间一切事物组成的,称它为全总个
体域。本书在论述或推理中如没有指明 所采用的个体域,都是使用全总个体域。
( ()
赣 炀
m
s e
S 般
m 畏、、
、 ^ 任、
w 1Mx
m §、
、、 q
葛屈 倒蟹
c
I H 腐、
5 -孵I
C @暇 l
妇犯色 6
屈 型 、 挝 |
挝 , € 眠
离散数学第2章一阶逻辑

2.1 一 阶 逻 辑 基 本 概 念
综上,有如下结论: (1)谓词中个体词的顺序不能随意变更。 (2)一元谓词用以描述一个个体的某种特性, 而n元谓词则用以描述n个个体之间的关系。 (3)0元谓词就是一般命题。 (4)具体命题的谓词表示形式和n元谓词是不同的, 前者是有真值的,而后者不是命题,它的 真值是不确定的。 (5)一个n元谓词不是一个命题,但将n元谓词中的 个体变项都用个体域中某个具体的个体取代后, 就成为一个命题。而且,个体变项在不同的个体域 中取不同的值对是否成为命题及命题的真值有很大 的影响。
26
2.2.1 一阶逻辑公式的语言翻译 2.1 一 阶 逻 辑 基 本 概 念
例2.2.1 用一阶逻辑符号化下述语句. (1)天下乌鸦一般黑。 (2)没有人登上过木星。 (3)在美国留学的学生未必都是亚洲人。 (4)每个实数都存在比它大的另外的实数。 (5)尽管有人很聪明,但未必一切人都聪明 (6)对任意给定的ε >0,必存在着δ >0,使 得对任意的x,只要|x-a|<δ ,就有 |f(x)-f(a)|<ε 成立。
27
2.1 一 阶 逻 辑 基 本 概 念
解: (1)设F(x):x是乌鸦;G(x,y):x与y一般黑 (x)(y)(F(x)F(y)G(x,y)) 或者 (x)(y)(F(x)F(y)G(x,y)) (2)设H(x):x是人;M(x):x登上过木星。 (x)(H(x)M(x)) 或 (x)(H(x) M(x)) (3)设H(x):是亚洲人;A(x):是在美国留学的学生。 (x)(A(x) H(x)); 或者: (x)(A(x) H(x)) (4)设R(x):x是实数;L(x,y):x小于y (x)(R(x) (y)(R(y) L(x,y))); (5)设M(x):x是人;C(x):x很聪明 (x)(M(x)C(x)) (x)((M(x) C(x)); (6)对任意给定的ε >0,必存在着δ >0,使得对任意的x,只 要|x-a|<δ ,就有|f(x)-f(a)|<ε 成立。 (ε )((ε >0)(δ )((δ >0) (x)(( |x-a|<δ (|f(x)-f(a)|<ε )))) 28
4一阶逻辑公式及解释

4一阶逻辑公式及解释一阶逻辑(First-Order Logic, FOL)是数理逻辑中的一个重要分支,它被广泛应用于数学、计算机科学和人工智能等领域。
在一阶逻辑中,逻辑公式是推理的基础,能够对命题进行符号化的描述和推理。
本文将介绍一阶逻辑的基本概念和常见的一阶逻辑公式,并对其进行解释。
一、一阶逻辑基本概念1. 常量:在一阶逻辑中,常量是指代具体对象的符号,如a、b、c 等。
常量一般用小写字母表示。
2. 变量:变量是用来占位的符号,可以代表任意对象。
在一阶逻辑中,变量一般用大写字母表示,如X、Y、Z等。
3. 函数:函数是一种从一个或多个参数到一个值的映射关系。
在一阶逻辑中,常用的函数包括算术函数、关系函数等。
函数一般用小写字母或希腊字母表示,如f(x)、g(x)等。
4. 谓词:谓词是描述对象性质的符号,可以表示真假的陈述。
在一阶逻辑中,常用的谓词包括等于、大于、小于等。
谓词一般用小写字母或希腊字母表示,如P(x)、Q(x)等。
二、一阶逻辑公式在一阶逻辑中,公式是用符号表示的逻辑陈述,包括原子公式和复合公式两类。
1. 原子公式原子公式是一阶逻辑中最基本的公式,它不再含有其他公式作为子公式。
原子公式由一个谓词和一个或多个常量、变量组成,形式为P(t1,t2,...,tn),其中P为谓词,t1,t2,...,tn为常量、变量。
举例:P(a,b)表示P是一个二元谓词,a和b是其两个参数。
2. 复合公式复合公式由一个或多个公式通过逻辑连接词(如否定、合取、析取、蕴含等)组合而成。
- 否定(¬):如果φ是一个一阶逻辑公式,则¬φ也是一个一阶逻辑公式。
- 合取(∧):如果φ和ψ是两个一阶逻辑公式,则(φ∧ψ)也是一个一阶逻辑公式。
- 析取(∨):如果φ和ψ是两个一阶逻辑公式,则(φ∨ψ)也是一个一阶逻辑公式。
- 蕴含(→):如果φ和ψ是两个一阶逻辑公式,则(φ→ψ)也是一个一阶逻辑公式。
举例:如果P(x)表示“x是人”,Q(x)表示“x是聪明的”,那么复合公式可以表示为:(P(x)∧Q(x)),表示“x是人且x是聪明的”。
《离散数学》-一阶逻辑-基本概念

《离散数学》-⼀阶逻辑-基本概念⼀阶逻辑这个⼀块属于离散数学的内容,它的功能就是将⾃然事物给符号化以为体系的确⽴奠定语⾔基础。
回想⽆论学汉语还是英语的语法,我们都是从句⼦的主⼲学起,那么数学作为⼀门语⾔,它的句⼦当然也有所谓的主⼲。
个体词:个体次是所研究对象可以独⽴存在的具体的或者抽象的客体。
具体⽽特定的客体个体成为个体常项,⼀般⽤⼩写字母a、b、c表⽰。
⽽将抽象或泛指的个体词成为个体变项,⼀般⽤英⽂字母x、y、z表⽰,并称个体变项的取值范围为个体域。
举例说明:(1)“5是素数”,5、素数都是个体词语,5是个体常项⽽素数是个体变项.(2)“x>y”,x、y都是个体变项.谓词:这⾥似乎类似于⾃然语⾔中谓语动词,往往是形容“⼀个动作”,但是在这⾥,谓词是形容“⼀种关系”,当然和个体词类似,根据这种描绘个体之间的关系的确定与否(具体或者抽象泛指),我们也可以把谓词分为常项和变项。
举例说明:(1) X是有理数。
“是有理数”是常项谓词。
(2) X与y有具体关系L。
这⾥及其迷惑⼈的是语句“有具体关系L”,但是本质上关系L还是抽象的不确定的,因此这⾥“有具体关系L”是变项谓词。
下⾯要做的就是将这种描述关系的语句进⾏符号化,这⾥其实有点类似于函数的概念,因为谓词描述的是个体之间的关系,因此它必须依赖于个体。
我们⽤F、G、H来进⾏符号化的表⽰。
F(a)、F(x)分别表⽰个体常项a、个体变项x满⾜的性质F(a)和F(x).更⼀般的情况,P(x1,x2,x3…xn)表⽰个体x1,x2,…xn具有关系P。
对于不含个体变项的谓词,我们成为0元谓词。
Ex1:将下列命题在⼀阶逻辑中⽤0元谓词符号化,并讨论他们的真值(1) 只有2是素数,4才是素数。
G(2)表⽰2是素数,G(4)表⽰4是素数,则我们将这个命题符号化的结果: G(2) —> G(4),由于命题的条件为假,因此该命题为真。
(2) 如果5⼤于4,则4⼤于6G(5,4)表⽰“5⼤于4”,命题符号化之后的结果: G(5,4) —> G(4,6),条件为真结论为假,因此命题为假。
《离散数学》一阶逻辑

关于存在量词的:
x(A(x)B)xA(x)B x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(BA(x))BxA(x)
注意量词的变化
注意量词的变化
33
证明:设D={a1,a2,…,an}
(1)x(A(x)∨B) (A(a1)∨B) ∧(A(a2)∨B)∧… ∧(A(an)∨B) (A(a1)∧A(a2)∧…∧A(an)) ∨B xA(x)∨B
设D={a1,a2,…,an} xA(x)A(a1)A(a2)…A(an) xA(x)A(a1)A(a2)…A(an)
31
量词否定等值式
❖定理2.1 量词否定等值式
▪ xA(x) xA(x)
▪ xA(x) xA(x)
❖证明:设D={a1,a2,…,an}
▪
xA(x)
A(a(A1)(∨a1)∧AA(a(a2)2∨)∧……∨∧AA(a(na)n))
10
明确个体域
例2.(1) 凡人都要死的。( 2) 有人活百岁以上
❖ 考虑个体域D为人类集合
▪ F(x): x是要死的。 x F(x)
个体域不同,符号化不同
▪ G(x): x活百岁以上。 x G(x)
❖ 考虑个体域为全总个体域
▪ 对于所有个体而言,如果它是人,则它是要死的。引入新谓词 M(x): x是人。
(此点以后再讨论); ❖ 当个体域为有限集时,如果D={a1,a2,…an},由量词的意义可以看出,对于
任意的谓词A(x), 都有:
▪ xA(x) A(a1)∧A (a2) ∧…∧A (an); ▪ xA(x) A (a1)∨A (a2) ∨…∨A (an).
13
嵌套量词
❖多个量词同时出现时,不能随意颠倒他们的顺序。 ❖对任意的x,存在着y,使得 x+y=5.
第二章 一阶逻辑

或 xy F ( x) G( y) H ( x, y)
例4、在一阶逻辑中将下列命题符号化。
(6) 每列火车都比某些汽车快。
某些汽车比所有的火车慢。
G ( y ) :y 是汽车, x 是火车, 解: F ( x) :
H ( x, y) : x 比 y 快,
第二句为:y G( y) x F ( x) H ( x, y) 或 yx G( y) F ( x) H ( x, y)
x Q( x) Z ( x)
注:若本题指定的个体域为有理数集,
则(1),(2)分别符号化为xF ( x)
和 xZ ( x) 。
例4、在一阶逻辑中将下列命题符号化。
(1) 凡偶数均能被2整除。
x 是偶数,G ( x) : x 能被2整除, 解:F ( x) :
x F ( x) G( x)
均以全总个体域为个体域,
2、量词——表示数量的词。 量词 全称量词 存在量词
使用量词时,应注意以下6点:
(3) 在引入特性谓词后,使用全称量词用“ ”, 使用存在量词用“ ”, (4) n 元谓词化为命题至少需要 n 个量词,
2、量词——表示数量的词。 量词 全称量词 存在量词
( A B),( A B) 也是合式公式;
3、原子公式。
设 R( x1 , x2 , xn )是任意 n 元谓词,
t1 , t2 ,, tn 是项,则称 R(t1 , t2 ,, tn ) 为原子公式。
4、合式公式的递归定义。
(4) 若 A 是合式公式,则xA, xA 也是合式公式;
(2) 存在着偶素数。
x 是偶数,H ( x ) : x 是素数, 解:F ( x) :
一阶逻辑基本概念知识点总结

一阶逻辑基本概念知识点总结一阶逻辑是一种形式化的逻辑系统,也称为一阶谓词演算。
它由一组基本的概念组成,包括:1. 项(Term):一阶逻辑中的项是指个体或对象,可以是常量、变量或函数应用。
常量是指已知的个体,变量是指代未知个体,函数应用是将一个函数应用于一组参数得到的结果。
2. 公式(Formula):一阶逻辑中的公式是用来描述真假性的陈述。
公式可以是原子公式或复合公式。
原子公式是一个谓词应用,谓词是一个描述性的关系符号,用来描述个体之间的关系。
复合公式是由逻辑连接词(如否定、合取、析取、蕴含等)连接的一个或多个公式。
3. 量词(Quantifier):一阶逻辑中的量词用来描述一个谓词在某个个体集合上的性质。
常见的量词包括全称量词(∀,表示对所有个体都成立)和存在量词(∃,表示存在至少一个个体成立)。
4. 推理规则(Inference Rule):一阶逻辑中的推理规则用来进行逻辑推理,在给定一组前提条件的情况下,得出结论的过程。
常用的推理规则包括引入规则(例如全称引入和存在引入)、消去规则(例如全称消去和存在消去)、逆反法和假设法等。
5. 自由变量和限定变量:一阶逻辑中的变量可以分为自由变量和限定变量。
自由变量是没有被量词约束的变量,限定变量是被量词约束的变量。
6. 全称有效性和存在有效性:一阶逻辑中的一个论断是全称有效的,如果它在所有模型中都为真;一个论断是存在有效的,如果它在某个模型中为真。
这些是一阶逻辑的基本概念,它们提供了一种描述和推理关于个体和关系之间的真假性的形式化方法。
一阶逻辑在数学、人工智能、计算机科学等领域有广泛的应用。
离散数学第二章一阶逻辑

(2) ∀x∀y(x+0=y →y+0=x) 真命题 (3) ∀x∀y∃z(x+y=z) 真命题 (4) ∀x∀y(x+y=x*y) 假命题 (5)x+y=y+z,它的真值不确定,因而不是命题. 注)非闭式,在有的解释中不是命题.
定义:设A为一公式(谓词公式),如果A在任何解释下都是 真的,则称A为逻辑有效式(永真式);如果A在任何解释下 都是假的,则称A是矛盾式(永假式);若至少存在一个解 释使A为真,则称A是可满足式. 2.代换实例 设A0是含命题变项p1,p2,…,pn的命题公式,A1,A2,…,An 是n个谓词公式,用Ai(1≤i≤n)处处代换pi,所得公式A 称为A0的代换实例. 例如:F(x)→G(x),∀xF(x)→∃xG(x)等都是p→q的代换实例; 命题公式中的重言式的代换实例在谓词公式中可仍称为重言式 ,这样的重言式都是逻辑有效式. 命题公式中的矛盾式的代换实例仍为矛盾式.
例2.7 给定解释I如下: 1)DI={2,3} 2)DI中特定元素a=2 3)函数f(x)为f(2)=3,f(3)=2 4)谓词F(x)为F(2)=0,F(3)=1 G(x,y)为G(i,j)=1,i,j=2,3 L(x,y)为L(2,2)=L(3,3)=1,L(2,3)=L(3,2)=0 在解释I下,求下列各式的真值 (1) ∀ ∀x(F(x)∧G(x,a)) (2)∃x(F(f(x))∧G(x,f(x))) ∃ (3)∀x∃yL(x,y) ∀ ∃
例2.2 在一阶逻辑中将下面命题符号化 (1)凡有理数均可表成分数; (2)有的有理数是整数; 要求:1)个体域为有理数集合, 2)个体域为实数集合, 3)个体域为全总个体域. 解: 1)个体域为有理数集合(不用引入特性谓词): (1) 设 F(x):x可表成分数; 则命题符号化为∀xF(x). ∀ (2) 设 G(x):x是整数;则命题符号化为∃xG(x). 2)个体域为实数集合(引入特性谓词):令 R(x):x是有理数; (1) 设F(x):x可表成分数;则命题符号化为∀x(R(x)→F(x)) (2) 设G(x):x是整数;则命题符号化为∃x(R(x)∧G(x))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或其带上、下标来表示。
11
例如,在命题“张明是位大学生”中,“张明”是个 体,“是位大学生”是谓词,它刻划了“张明”的性 质。
设S(x):x是位大学生,c:张明,则“张明是位大学 生”可表示为S(c),或者写成S(c):张明是位大学生。
又如,在命题“武汉位于北京和广州之间”中,武汉、 北京和广州是三个个体,而“…位于…和…之间”是 谓词,它刻划了武汉、北京和广州之间的关系。
论域。定义了全总论域,为深入研究命题提供 了方便。当一个命题没有指明论域时,一般都 从全总论域作为其论域。而这时又常常要采用
一个谓词如P(x)来限制个体变项x的取值范围, 并把P(x)称为特性谓词。
18
3.量词
利用n元谓词和它的论域概念,有时还是不能 用符号来很准确地表达某些命题,例如S(x)表 示x是大学生,而x的个体域为某单位的职工, 那么S(x)可表示某单位职工都是大学生,也可
3
命题逻辑的局限性
单用一个字母表示一个命题,描述不深刻,揭示 不出原子命题内部的含义;
命题演算对命题中量的概念无法表示。
有些简单的推理问题,在命题逻辑中无法解决; 问题出在各命题之间的逻辑关系不是体现在简单 命题之间,而是体现在构成简单命题的内部成分 之间,所以在必要对简单命题作进一步细分。
8
1.个体词、谓词和命题的谓词形式 定义2.1.1 在原子命题中,所描述的对象称为个
体词;用以描述个体词的性质或个体词间关系 的部分,称为谓词。 个体词,是指可以独立存在的事物,它可以是 具体的,也可以是抽象的,如张明,计算机, 精神等。表示具体或特定的客体的个体词,称
为个体常元,以a,b,c…或带下标的ai,bi, ci…表示;表示抽象或泛指的个体词,称为个 体变元,以x,y,z…或xi,yi,zi…表示。
在命题逻辑中,命题是具有真假意义的陈述句。 从语法上分析,一个陈述句由主语和谓语两部分 组成。在一阶逻辑中,为揭示命题内部结构及其 不同命题的内部结构关系,就按照这两部分对命 题进行分析,并且把主语称为个体词或客体,把 谓语称为谓词。
6
例如:吴华是大学生,用P表示,
李明是大学生,用Q表示。
“……是大学生”用A(x)表示:x是大学生, 命题符号含有个体词变量。
a表示吴华,A(a)表示吴华是大学生。
b表示李明,A(b)表示李明是大学生。
相当于“……是大学生”,用A(·)来表示, 这就是谓词。
7
例:张三比李四高,
用H(x,y)表示x比y高。
ቤተ መጻሕፍቲ ባይዱa:张三b:李四
H(a,b):张三比李四高
H(b,a):李四比张三高
x,y,a,b表示个体,H(·,·)是谓词,这个谓 词涉及了两个个体,是二元谓词。
例如,令S(x):x是大学生。 若x的论域为某大学的计算机系中的全体同学,
则S(x)是真的; 若x的论域是某中学的全体学生,则S(x)是假的; 若x的论域是某剧场中的观众,且观众中有大学
生也有非大学生的其它观众,则S(x)是真值是不
确定的。 17
通常,把一个n元谓词中的每个个体的论域综 合在一起作为它的论域,称为n元谓词的全总
形式或命题的谓词形式。 应注意的是,命题的谓词形式中的个体出现的
次序影响命题的真值,不是随意变动,否则真
值会有变化。如上述例子中,P(b,a,c)是假。
14
2.原子谓词公式 原子命题的谓词形式还可以进一步加以抽象,比
如在谓词右侧的圆括号内的n个个体常项被替换 成个体变项,如x1,x2,···,xn,这样便得了一种关 于命题结构的新表达形式,称之为n元原子谓词。 定义2.1.3 由一个谓词(如P)和n个体变项(如x1, x2,…,xn)组成的P(x1,x2,…,xn),称它为n 元原子谓词或n元命题函数,简称n元谓词。而个
在研究某些推理时,对原子命题进一步分析出其 中的个体词,谓词和量词,研究它们的形式结构 的逻辑关系、正确的推理形式和规则,这些正是 谓词逻辑(或称为一阶逻辑)的基本内容。
4
第二章 一阶(谓词)逻辑
2.1一阶逻辑基本概念 2.2一阶逻辑合式公式及解释 2.3一阶逻辑等值式
5
2.1一阶逻辑基本概念 (个体词、谓词和量词)
用命题逻辑来表示,设P、Q和R分别表示这三
个原子命题,则有
P,QR
2
然而,(P∧Q)→R并不是永真式,故上述推理形
式又是错误的。一个推理,得出矛盾的结论, 问题在哪里呢? 问题就在于这类推理中,各命题之间的逻辑关 系不是体现在原子命题之间,而是体现在构成 原子命题的内部成分之间,即体现在命题结构 的更深层次上。对此,命题逻辑是无能为力的。
设P(x,y,z):x位于y和z之间,a:武汉,b:北京,c: 广州,则P(a,b,c):武汉位于北京和广州之间。
12
注:区分:谓词与运算。 虽都是自变量取自个体域上的函数,但函数值不 同,运算的函数值是个体,谓词的函数值是真值。
13
定义2.1.2 一个原子命题用一个谓词(如P)和n个 有次序的个体常项(如a1,a2,…,an)表示成 P(a1,a2,…,an),称它为该原子命题的谓词
9
个体域:个体变项的取值范围。 (分有限集合和无限集合)
全总个体域:由宇宙间的一切事物组成。
10
谓词,当与一个个体相联系时,它刻划了个体 性质;当与两个或两个以上个体相联系时,它 刻划了个体之间的关系。
表示具体性质或关系的谓词 ,称为谓词常元; 表示抽象或泛指的性质或关系的谓词 ,称为谓
在命题逻辑中,把命题分解到原子命题为止,认 为原子命题是不能再分解的,仅仅研究以原子命 题为基本单位的复合命题之间的逻辑关系和推理。 这样,有些推理用命题逻辑就难以确切地表示出 来。例如,著名的亚里士多德三段论苏格拉底推 理:
退1出
所有的人都是要死的,
苏格拉底是人,
所以苏格拉底是要死的。
根据常识,认为这个推理是正确的。但是,若
体变项的论述范围,称为个体域或论域。
15
当n=1时,称一元谓词;当n=2时,称为二元 谓词,…。特别地,当n=0,称为零元谓词。
零元谓词是命题,这样命题与谓词就得到了统 一。
16
n元谓词不是命题,只有其中的个体变项用特定
个体或个体常项替代时,才能成为一个命题。但 个体变项在哪些论域取特定的值,对命题的真值 极有影响。