一阶逻辑基本概念复习课程

合集下载

8一阶逻辑-概念公式4-14-1

8一阶逻辑-概念公式4-14-1

4)∀x(F(g(x,a),x)→F(x,y) )
4)谓词 F(x,y): x=y
5)∀x∀y(F(f(x,a),y)→
F(f(y,a),x) )
6)∀x∀y∃z F(f(x,y),z)
例:给定解释I 1)个体域为整数集合Z 2) Z上的特定元素 a0=0,a1=1; 3)Z上的特定函数 f(x,y)=x-y, g(x,y)=x+y; 4)Z上的特定谓词 F(x,y): x < y;
任何数如果是整数则一定都是偶数--是假命题
仅有个体与谓词还不能准确表示一些逻辑问题 如:N(x):x是整数, O(x):x是偶数 所有的整数是偶数可符号化为 N(x)→ O(x) 肯定为假 其否定应为真. 但 ┑(N(x)→O(x))等值于 N(x)∧┑O(x) 即: 所有的整数且不是偶数也为假 主要原因是:没有体现整体和个别的关系 所以在描述时必须引入反映数量关系的词
4、闭式定义 设A是公式,若A中不含自由出现的个体变项则称A为封闭的
公式,简称闭式
二、公式的解释(相当于命题公式的赋值) 按合式公式的形成规则形成的符号串是F中的公式,这种公式 没有确定意义.一旦将其中的变项(项的变项,谓词变项等)用 指定的常项代替后,所得公式就具备一定意义,有时就变成命 题了
一个解释不外乎指定个体域、个体域中一些特定的元素、特定 的函数和谓词等部分. 1、公式的解释 1)定义:F的解释I的内容一般由下面4部分组成: (a)指定非空个体域DI (个体域的取值范围) (b)指定DI中一些特定元素(常量)的集合{a1,a2,…ai}. (c)给定DI上特定函数集合{fi | i ≥ 1}. 具体的函数 (d)给定DI上特定谓词的集合{ Hi | i≥1}. 具体的谓词
在解释I下的公式A中的个体变项均取值于DI. 被解释I下的公式不一定全部包含解释中的四部分

离散数学第四章 一阶逻辑基本概念

离散数学第四章 一阶逻辑基本概念
将下列命题符号化. (1)兔子比乌龟跑得快. (2)有的兔子比所有的乌龟跑得快. (3)并不是所有的兔子都比乌龟跑得快. (4)不存在跑得同样快的两只兔子. 设F(x):x是兔子. G(y):y是乌龟.H(x,y):x比y跑得快. L(x,y):x与y跑得同样快. (1)xy(F(x)G(y)H(x,y)) (2) x (F(x) y (G(y)H(x,y)) (3) xy(F(x)G(y)H(x,y)) (4) x y(F(x)G(y) L(x,y))
(1) 非空个体域DI (2) 对每一个个体常项ai, a i DI, 称作ai在I中的解释 (3) 对每一个函数符号fi, 设其为m元的, 元函数, 称作fi在I中的解释
fi 是DI上的m
是一个n元
(4) 对每一个谓词符号Fi, 设其为n元的, Fi 谓词, 称作Fi在I中的解释
25
实例
例4.8 给定解释I 如下: (a) 个体域 D=N (b) a 2 (c) f ( x, y) x y, g ( x, y) xy (d) 谓词 F ( x, y) : x y 说明下列公式在 I 下的含义, 并讨论其真值 (1) xF(g(x,a),x) x(2x=x) 假命题 假命题
合式公式又称谓词公式, 简称公式
21
量词的辖域
定义4.5 在公式xA和xA中, 称x为指导变元, A为相应量 词的辖域. 在x和x的辖域中, x的所有出现称为约束出现, A中不是约束出现的其他变项称为自由出现 例4.6 公式 x(F(x,y)yG(x,y,z)) x的辖域:(F(x,y)yG(x,y,z)), 指导变元为x y的辖域:G(x,y,z), 指导变元为y x的两次出现均为约束出现 y的第一次出现为自由出现, 第二次出现为约束出现 z为自由出现.

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结

离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。

一阶逻辑基本概念

一阶逻辑基本概念
解 ① L(, ): 比高;: 小李;: 小赵, 则该命题符号化为 L(, )。
② P(, , ): 位于和之间;: 武汉; : 北京; : 广州, 则该命题符号化为P(, , )。
注:个体变元的顺序影响命题真值, 不能随意调换
2024/3/7
18
个体域对符号化影响
(1) 墨西哥位于南美洲
在命题逻辑中, 设 p: 墨西哥位于南美洲
符号化为 p
在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲, 符号化为F(a)
2024/3/7
14
2) 2 是无理数仅当 3 是有理数
在命题逻辑中, 设 p: 2 是无理数,q: 3 是有理数.
符号化为 p q
在一阶逻辑中, 设F(x): x是无理数, G(x): x是有理数
第四章 一阶逻辑
基本概念
命题逻辑的局限性
• 苏格拉底三段论:

凡是人都要死的——p.

苏格拉底是人——q.

所以,苏格拉底是要死的——r.
• 在命题逻辑中,只能用p、q、r表示以上3个命题,
• 上述推理可表成(p∧q)→r。这不是重言式.判断不出推理的正确性。
• 所以,命题逻辑具有一定的局限性,甚至无法判断一些常见的简单推理.
② 不满足关系P, Q, R, 记作¬P(), ¬Q(,), ¬R(,,)
2024/3/7
15
引入量词符号化(个体域对符号化的影响)
例4.2 在一阶逻辑中将下面命题符号化
(1)人都爱美;
(2) 有人用左手写字
分别取(a) D为人类集合, (b) D为全总
个体域 .
解:(a) (1) 设G(x): x爱美,
(4)有的自然数是素数。

离散数学-03-一阶逻辑

离散数学-03-一阶逻辑
20
3.1.4 一阶逻辑公式与分类
解释和赋值的直观涵义
例 公式x(F(x)G(x)) 指定1 个体域:全总个体域, F(x): x是人, G(x): x是黄种人 真/假命题? 假命题 指定2 个体域:实数集, F(x): x>10, G(x): x>0 真/假命题? 真命题
21
3.1.4 一阶逻辑公式与分类
离散数学(第3版) 屈婉玲 耿素云 张立昂 编著 清华大学出版社出版
第3章 一阶逻辑
上海大学 谢江
1
第3章 一阶逻辑
• 3.1 一阶逻辑基本概念 • 3.2 一阶逻辑等值演算
2
3.1 一阶逻辑基本概念
• 3.1.1 命题逻辑的局限性 • 3.1.2 个体词、谓词与量词
– 个体常项、个体变项、个体域、全总个体域 – 谓词常项、谓词变项 – 全称量词、存在量词
n元谓词P(x1, x2,…, xn): 含n个个体变项的谓词, 是定义在 个体域上, 值域为{0,1}的n元函数 一元谓词: 表示事物的性质 多元谓词(n2): 表示事物之间的关系 0元谓词: 不含个体变项的谓词,即命题常项或命题变项 0元谓词是命题? 命题均可表示成0元谓词?
8
3.1.2 个体词、谓词与量词
• 3.1.3 一阶逻辑命题符号化
3
3.1 一阶逻辑基本概念(续)
• 3.1.4 一阶逻辑公式与分类
– 一阶语言L (字母表、项、原子公式、合式 公式) – 辖域和指导变元、约束出现和自由出现 – 闭式 – 一阶语言L 的解释 – 永真式、矛盾式、可满足式 – 代换实例
4
3.1.1 命题逻辑的局限性
11
3.1.3 一阶逻辑命题符号化
一阶逻辑命题符号化

《离散数学》一阶逻辑

《离散数学》一阶逻辑

关于存在量词的:
x(A(x)B)xA(x)B x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(BA(x))BxA(x)
注意量词的变化
注意量词的变化
33
证明:设D={a1,a2,…,an}
(1)x(A(x)∨B) (A(a1)∨B) ∧(A(a2)∨B)∧… ∧(A(an)∨B) (A(a1)∧A(a2)∧…∧A(an)) ∨B xA(x)∨B
设D={a1,a2,…,an} xA(x)A(a1)A(a2)…A(an) xA(x)A(a1)A(a2)…A(an)
31
量词否定等值式
❖定理2.1 量词否定等值式
▪ xA(x) xA(x)
▪ xA(x) xA(x)
❖证明:设D={a1,a2,…,an}

xA(x)
A(a(A1)(∨a1)∧AA(a(a2)2∨)∧……∨∧AA(a(na)n))
10
明确个体域
例2.(1) 凡人都要死的。( 2) 有人活百岁以上
❖ 考虑个体域D为人类集合
▪ F(x): x是要死的。 x F(x)
个体域不同,符号化不同
▪ G(x): x活百岁以上。 x G(x)
❖ 考虑个体域为全总个体域
▪ 对于所有个体而言,如果它是人,则它是要死的。引入新谓词 M(x): x是人。
(此点以后再讨论); ❖ 当个体域为有限集时,如果D={a1,a2,…an},由量词的意义可以看出,对于
任意的谓词A(x), 都有:
▪ xA(x) A(a1)∧A (a2) ∧…∧A (an); ▪ xA(x) A (a1)∨A (a2) ∨…∨A (an).
13
嵌套量词
❖多个量词同时出现时,不能随意颠倒他们的顺序。 ❖对任意的x,存在着y,使得 x+y=5.

F4一阶逻辑基本概念

F4一阶逻辑基本概念
(a)非空个体域 DI . (b) DI 中一些特定元素的集合{a1,a2 , …,ai , …}. (c) DI 上特定函数的集合{fin|i, n 1}. (d) DI 上特定谓词的集合{Fin|i, n 1}. †其实质是明确公式中各个变项, 繁琐之处毋庸细究.

第四章一阶逻辑基本概念
§4.1 一阶逻辑命题的符号化 §4.2 一阶逻辑公式及解释
091离散数学(60). W&M. §4.2 一阶逻辑公式及解释

命题逻辑形式系统 I = A, E, AX, R, 其中A, E是语言系统. 谓词逻辑形式系统的语言 , 它便于翻译自然语言. (下一章
Dx2Dx1A(x1, x2, …, xn) 可记为 A2(x3, x4, …, xn), …… ,
Dxn…Dx1A(x1, x2, …, xn) 中没有自由出现的个体变项, 可z) = x(F(x, y) G(x, z)) B(z) = yA(y, z) = yx(F(x, y) G(x, z)) C =zyA(y, z) = zyx(F(x, y) G(x, z))
(3) H(a, b), 其中 H: “…与…同岁”, a: 小王, b: 小 李.
(4) L(x, y), 其中L: “…与…具有关系L”.
091离散数学(60). W&M. §4.1 一阶逻辑命题的符号化

一元谓词 F(x) 表示 x 具有性质 F.
二元谓词 F(x, y) 表示个体变项 x, y 具有关系 F.
xy(x + y = 0) 与 yx(x + y = 0) 含义不同. ‡†句子的符号化形式不止一种. 设 H(x): x 是人, P(x): x 是完美的, 则 “人无完人”可 符号化为

离散数学课件第二章 一阶逻辑

离散数学课件第二章 一阶逻辑

§2.1
一阶逻辑的基本概念
原因:命题逻辑不考虑命题之间的内在联系
和数量关系。
要反映这种内在联系,就要对命题逻 辑进行分析 , 分析出其中的个体词、谓词和 量词,再研究它们之间的逻辑关系,总结出 正确的推理形式和规则,这就是一阶(谓词) 逻辑的研究内容。 办法:将命题再次细分。
解决这个问题的方法: 在表示命题时,既表示出主语,也表示 出谓语,就可以解决上述问题。这就提出了 谓词的概念(谓词是用来刻划个体词的性质 或事物之间的关系的词,谓词S(x)相当于一 个函数).
§2.1 一阶逻辑的基本概念
2.1.1 个体、谓词和命题函数 在谓词逻辑中,将原子命题分解为谓词和个体两部分。
主语 谓语 宾语
讨论对象 对象的性质或关系
讨论对象
个体词(组)
谓词
个体词(组)
1、定义:在原子命题中,所描述的对象称为个体;用 以描述个体的性质或个体间关系的部分,称为谓词。
例2.1:分析下列个命题中的个体和谓词
如何表示?
2.1.3 命题函数 谓词本身并不是命题,只有谓词的括号内填入足够 的个体,才变成命题。 设 H(x) 是谓词 表示 x “能够到达山顶” , l 表示个体李四, t 表示老虎, c 表示汽车, 那么H(l), H(t), H(c),等分别表示各 个不同的命题:但它们有一个共同的形式, 即 H(x) 当 x 分别取 l、 t、 c 时 就表示“李四能够到达山顶”,“老虎能够到达山 顶”,“汽车能够到达山顶”。
Discrete Mathematics
刘师少
Tel: 86613747(h) E-mail: lss@
授课:
51学时
教学目标:
知识、能力、素质
第二章 一阶逻辑
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

–n=1时,一元谓词——表示x1具有性质P。 –n≥2时,多元谓词——表示x1,x2,…,xn具有关系P。
0元谓词:不含个体变项的谓词。如F(a)、G(a,b)、
P(a1,a2,…,an)。若F、G、P为谓词常项,则上述0元谓词为命 题常项;若F、G、P为谓词变项,则为命题变项。
n元谓词是命题吗?
则P(x,y,z)为三元谓词。 指定元素--命题:P(2,3,4)=1,P(4,2,2)=0
例题
将命题“这只大红书柜摆满了那些古书。”符号化.
(1)设 F(x,y):x摆满了y,R(x):x是大红书柜
Q(y):y是古书, a:这个书柜 b:那些书
符号化为:R(a)∧Q(b)∧F(a,b)
(2)设 A(x):x是书柜, B(x):x是大的
S={1,2,…,50} 表述S中所有元素都大于3这样一个性质,需要 1>3, 2>3, …, 50>3 等50个命题。ຫໍສະໝຸດ 2. 不能描述命题间的逻辑联系
例如,逻辑学中著名的苏格拉底三段论: P:所有人必死 Q:苏格拉底是人 R:苏格拉底必死
表示为命题逻辑:应该有 (PQ) R,也就是公式 (PQ)R应该是恒真的。
离散数学
第4章 一阶逻辑基本概念
本章说明
本章的主要内容
– 一阶逻辑基本概念、命题符号化 – 一阶逻辑公式、解释及分类
本章与后续各章的关系
–克服命题逻辑的局限性 –是第五章的先行准备
命题逻辑的缺陷
把命题看成是一个个孤立的命题,忽略了命题之间的联 系,不能反映某些重要的常见的逻辑思维过程。
1. 繁琐 例. 表述集合个体性质及相互关系
–命题:电子计算机是科学技术的工具。 个体词:电子计算机。
–命题:他是三好学生。 个体词:他。
说 明
个体词一般是充当陈述句主语的名词或代词
个体词及相关概念
个体常项:表示具体或特定的客体的个体词,用小写字母a, b,c,…表示。
个体变项:表示抽象或泛指的客体的个体词,用x,y,z,…表
示。
原因——命题P的确切意思应该是: “对任意x,如果 x是人,则x必死”。 但是
H(x)M(x)
中并没有确切的表示出 “对任意x”这个意思,因此,在 谓词逻辑中除引进谓词外,还需要引进 “对任意x”这个 语句,及其对偶的语句 “存在一个x”。
显然该公式不是恒真的,解释{P,Q,R}就能弄 假该公式。
原因:命题R和命题P, Q是有内在关系的,只是这 种关系在命题逻辑中无法表示。
因此,需要对命题的成分、结构和命题间的共同 特性等作进一步的分析,分析出个体词、谓词和 量词,以期达到表达出个体与总体的内在联系和 数量关系,这正是谓词逻辑所要研究的问题。
个体域(或称论域):指个体变项的取值范围。
–可以是有穷集合,如{a, b, c}, {1, 2}。
–可以是无穷集合,如N,Z,R,…。
全总个体域(universe)——由宇宙间一切事物组成 。
说 明
本教材在论述或推理中,如果没有指明所采
用的个体域,都是使用的全总个体域。
谓词及相关概念
谓词(predicate)是用来刻画个体词性质及个体词之间相 互关系的词。
本章内容
4.1 一阶逻辑命题符号化 4.2 一阶逻辑公式及解释
本章小结 习题 作业
4.1 一阶逻辑命题符号化
一阶逻辑命题符号化的三个基本要素 –个体词 –谓词 –量词
个体词及相关概念
个体词:指所研究对象中可以独立存在的具体或抽
象的客体。
心物一元 or 心物二元?
举例
量子力学中的测不准原理
(1) 是无理数。 是个体常项,“是无理数”是谓词,记为F,命题符号 化为F() 。
(2) x是有理数。 x是个体变项,“是有理数”是谓词,记为G,命题符号 化为G(x)。
(3) 小王与小李同岁。 小王、小李都是个体常项,“与同岁”是谓词,记为H ,命题符号化为H(a,b) ,其中a:小王,b:小李。
G(x,y)不是命题,而是一个命题函数即谓词。 将x,y代以任意确定的个体,由G(x,y)都能得到一个
命题。
例题
D={2, 3, 4} 设P(x):x大于3,则P(x)为一元谓词。 指定元素--命题:P(2)=0, P(3)=0, P(4)=1 设P(x,y):x大于y,则P(x,y)为二元谓词。 指定元素--命题:P(2,3)=0, P(4,2)=1 设P(x,y,z):若x+y-1=z,则P(x,y,z)为1,否则为0 。
则三段论的三个命题表示如下: P: H(x)M(x) Q: H(苏格拉底) R: M(苏格拉底)
但问题是…
令命题P為:所有人都会死 ,其否定命題為 P = (H(x)M(x)) = (H(x)M(x)) = H(x)M(x)
亦即,命题 P“所有人都会死” 的否定命题是 “所有人 都不會死”。这和人们对命题 “所有人都必死”的否定 的理解並不一致。
(4) x与y具有关系L。 x,y都是个体变项,谓词为L,命题符号化为L(x,y)。
谓词及相关概念
谓词常项:表示具体性质或关系的谓词。用大写字母表示。 如(1)、 (2) 、(3) 中谓词F、G、H。
谓词变项:表示抽象的、泛指的性质或关系的谓词。用大写 字母表示。如(4) 中谓词L。
n(n1)元谓词:P(x1,x2,…,xn)表示含n个个体变项的n元谓词
思 考
不是,只有用谓词常项取代P,用个体常项取代 x1,x2,…,xn时,才能使n元谓词变为命题。
谓词的形式化定义
设D是非空个体名称集合,定义在Dn上取值于{0,1} 上的n元函数,称为n元命题函数或n元谓词。其中Dn表 示集合D的n次笛卡尔乘积。
例:令G(x,y): “x高于y”,G(x,y)是一个二元谓词。 将x代以个体 “张三”,y代以个体 “李四”,则G(张 三,李四)就是命题: “张三高于李四”。
C(x):x是红的, D(y):y是古老的
E(y): y是图书, F(x,y):x摆满了y
a:这个东西
b:那些东西
符号化为:A(a)∧B(a)∧C(a)∧D(b)∧E(b)∧F(a,b)
现在可以将苏格拉底三段论符号化为…
用谓词的概念可将苏格拉底三段论做如下的符号化: 令 H(x)表示 “x是人”, M(x)表示 “x必死”。
相关文档
最新文档