基于金属有机骨架前驱体制备纳米磷化镍催化剂

基于金属有机骨架前驱体制备纳米磷化镍催化剂
基于金属有机骨架前驱体制备纳米磷化镍催化剂

[催化剂,性能,环境]环境友好磷化镍催化剂的HDN性能研究

环境友好磷化镍催化剂的HDN 性能研究 1 实验部分 1.1 实验药品 随着人们环保意识的增强对油品中的硫氮含量要求越来越严格,传统的催化剂已不能满足日益提高的要求。过渡金属磷化物与 TiO2改性-Al2O3作为一种新型的加氢催化剂有着优越的潜力[1,2]。本文采用原位还原技术制备出Ni2P/TiO2-Al2O3催化剂,以喹啉为模型化合物对催化剂的加氢脱氮性能进行评价,结果表明该催化剂具有优良加氢脱氮效果,应用前景非常广阔。 1.2 催化剂的制备 1.2.1 TiO2-Al2O3复合载体的制备 将一定量的钛酸四正丁酯溶解在无水乙醇中,加冰醋酸使之与钛酸四正丁酯形成螯合物,得到颗粒细小且均匀的胶体溶液。将无水乙醇、去离子水以及盐酸的混合液溶滴加到溶胶中,加入一定量的模板剂,搅拌 2 h;缓慢加入 A12O3水溶液,形成坚硬凝胶,放入干燥箱中,在 120 ℃下恒温干燥 24 h。将制得的晶体研成粉末后放入马弗炉中 550 ℃恒温焙烧 4 h,得到 TiO2-Al2O3复合载体。对应不同钛铝比,制备了四种载体,其 TiO2与 A12O3比分别为 1∶2、1∶4、1∶6 和 1∶8,将其分别记为 TA12、TA14、TA16、TA18。 1.2.2 催化剂的制备 将计量好的硝酸镍和磷酸二氢铵溶于去离子水中,将溶液逐滴滴加到钛铝复合载体粉末上。室温下浸渍 12 h,在干燥箱中 120 ℃恒温 12 h,再于马弗炉中程序升温至 550 ℃焙烧 4 h,制得催化剂前驱体。前驱体氧化镍的还原在连续固定床高压微反装置上进行,首先将催化剂前驱体压片破碎,采用程序升温法进行还原,得到 Ni2P/TiO2-Al2O3催化剂。制得磷化镍负载量不同的载体,其负载量分别为10%、15%、25%和 35%。 2 结果与讨论 2.1 催化剂活性评价 2.1.1 不同 TA 摩尔配比的复合载体对催化剂 HDN活性的影响 以含 1%(wt)喹啉的正十二烷溶液为模型化合物,考察催化剂的 HDN 活性,在反应压力3.0 MPa,温度 360 ℃,氢油比 500,空速 3.0 h-1的条件下进行 HDN 反应。 2.1.2 模板剂用量对催化剂加氢脱氮性能影响 模板剂对复合载体的结构有着重要影响,模板剂的加入对改善载体的比表面积和孔结构起重要作用。本实验以十六烷基三甲基溴化铵(CTAB)为模板剂,以模板剂和钛酸丁酯摩尔比

雷尼镍催化剂的制法

骨架镍催化剂的制法 骨架镍催化剂(Raney nickel,拉尼镍)是利用粉碎了的镍一硅合金或镍一铝合金与苛性钠水溶液反应而制得。用这种方法制得的催化剂具有晶体骨架结构,其内外表面吸附有大量氢气,具有很高的催化活性。在放置过程中,催化剂会慢慢失去氢,在空气中活性下降得特别快。因此只有在密闭良好的容器中,将骨架镍催化剂放在醇或其它惰性溶剂的液面以下,隔绝空气才会保持其活性。 拉尼镍是一种应用范围广泛的催化剂,差不多对所有能进行氢化和氢解的官能团都起作用。对烯烃或芳环的氢化相当有效,能顺利地氢解碳--硫键(脱硫作用);但对酰胺、酯的氢解效果不佳。它的主要特点是在中性或碱性溶液中,能发挥很好的催化作用,尤其是在碱性条件下,催化作用更好。因此在氢化时常加入少量的碱性物质,例如三乙胺、氢氧化钠和氢氧化锂等,均能明显提高活性(硝基化合物除外)。如还原羰基化合物时,加入少量的碱,吸氢速度可以增加3~4倍。与其它贵金属催化剂例如氧化铂、钯/炭等相比,其氢化温度和压力较高,但价格要便宜的多。而且来源方便,制备简便。 卤素(尤其是碘),含磷、硫、砷或铋的化合物及含硅、锗、锡或铅的有机金属化合物在不同程度上可使拉尼镍中毒。在压力下,有水蒸气存在时,拉尼镍会很快失活,使用时应予注意。 拉尼镍活性降低的主要原因是①失去氢;②催化剂表面层组成改变,⑧由于生成结晶而使催化剂表面积减少,④中毒。 镍一硅合金由于较硬,粉碎和溶解都较难,所以使用不普遍。通常,镍一铝合金是制备各种类型拉尼镍的基本原料。含镍一般在30~50%之间,其余为铝。使用上述组成的镍一铝合金,均能制得具有一定活性的拉尼镍,可根据需要加以选择。最常用的镍—铝合金是镍铝各占50﹪的微细颗粒体。其制备过程如下。在氧化铝或石棉坩埚内,按比例先把纯铝放入坩埚,在电炉上熔融。待温度达到 1000℃左右时,加入纯镍粉。这时由于有熔化热产生,使温度升到 1200~1300℃。用石墨棒不断搅动,保温 20~30分钟。然后倒入大容器中,缓缓冷却以保证合金具有规则的晶格结构。若冷的太快、

有机催化剂的应用及发展

催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中最主要的改性手段。

液相法制备超细粉体的原理及特点

液相法制备超细粉体的原理及特点 一、超细粉体材料 任何固态物质都有一定的形状,占有相应空间,即具有一定的大小尺寸。我们通常所说的粉末或细颗粒,一般是指大小为1毫米以下的固态物质。 当固态颗粒的粒径在0.1μm一10μm之间时称为微细颗粒,或称为亚超细颗粒,空气中漂浮的尘埃,多数属于这个范围。 超细粉通常是指粒径为1 ~100nm的微粒子,其处于微观粒子和宏观物体之间的过渡状态。由于极细的晶粒大量处于晶界和晶粒内,缺陷的中心原子以及其本身具有的量子体积效应、量子尺寸效应、表面效应,介电限域效应和宏观量子隧道效应,使超细粉体材料在光、电、磁等方面表现出其他材料所不具备的特性,是重要的高科技的结构和功能材料,因而受到极大的关注,目前在冶金、化工、轻工、电子、航天、医学和生物工程等领域有着广泛的应用。 目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。 二、液相法制备的主要特征 (1)可将各种反应的物质溶于液体中,可以精确控制各组分的含量,并实现了原子、分子水平的精确混合。 (2)容易添加微量有效成分,可制成多种成分的均一粉体。 (3)合成的粉体表面活性好。 (4)容易控制颗粒的形状和粒径。 (5)工业化生产成本较低。 (6)液相法可分为物理法和化学法 三、超细粉体的液相制备方法 制备纳米粉体的液相方法主要有液相沉淀法、溶胶-凝胶法、水热法、微乳液法等。 (一)沉淀法 沉淀法是在原料溶液中添加适当的沉淀剂,使得原料液中的阳离子形成各种形式的沉淀物,

然后再经过虑、洗涤、干燥,有时还需加热分解等工艺过程制得纳米粉体的方法。沉淀法具有设备简单、工艺过程易控制、易于商业化等优点,能制取数十纳米的超细粉。沉淀法可分为共沉淀法、直接沉淀法、均匀沉淀法和水解法等。 1、共沉淀法 在混合的金属盐溶液中加入合适的沉淀剂,由于解离的离子是以均一相存在于溶液中,经反应后可以得到各种成分具有均一相的沉淀,再进行热分解得到高纯超细粉体。 如果原料溶液中有2种或2种以上的阳离子,它们以均相存在于溶液中,加入沉淀剂进行沉淀反应后,就可得到成分均一的沉淀,这就是共沉淀法。它是制备含有2种以上金属元素的复合氧化物超微粉的重要方法。 采用共沉淀法制备纳米粉体,反应物需充分混合,使反应两相间扩散距离缩短,以有利于晶核形成,同时要注意控制生成产物的化学计量比。不足之处是过剩的沉淀剂会使溶液中的全部正离子作为紧密混合物同时沉淀。利用共沉淀法制备超细粉体时,洗涤工序非常重要。此外,离子共沉淀的反应速度也不易控制。 2、直接沉淀法 这种方法是使溶液中的金属阳离子直接与沉淀剂发生化学反应而形成沉淀物。 3、均匀沉淀法 均匀沉淀法是在溶液中加入某种物质,这种物质不会立刻与阳离子发生反应生成沉淀,而是在溶液中发生化学反应缓慢地生成沉淀剂。是利用某一化学反应使溶液中的构晶离子由溶液中缓慢而均匀地产生出来的方法。 该方法的优点是颗粒均匀致密,可以避免杂质的共沉淀。缺点是反应时间过长。 4、水解沉淀法 水解沉淀法是指通过原料溶液的PH值或者通过改变原料液温度而使金属离子水解产生沉淀。 水解沉淀法以无机盐为原料,具有原料便宜、成本低的优势,是最经济的制备方法。除此之外,它还具有诸多优点,最显著的一点就是可以在常温常压条件下,采用简单的设备,于原子、分子水平上通过反应、成核、成长、收集或处理而获得高纯度的、组分均一的、尺寸达几十纳米的超细体。此外它还可以精确控制化学组成,容易添加微量的有效成分,制备粉体的表面活性好。易控制颗粒的形状和粒径。但是,因为必须通过液固分离才能得到沉淀物,要完全洗净无机杂质离子较困难;另一个需要特别重视的问题是容易形成团聚体,如控制不当,团聚将会严重影响分体的后续使用。 (二)溶胶-凝胶法 溶胶-凝胶工艺是60年代发展起来的一种超细粉体的制备工艺,它是指金属有机或无机化合

【CN110038634A】一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂及其合成方

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910373344.X (22)申请日 2019.05.07 (71)申请人 大连理工大学 地址 116024 辽宁省大连市甘井子区凌工 路2号 (72)发明人 王治宇 邱介山 孙富  (74)专利代理机构 大连理工大学专利中心 21200 代理人 李晓亮 潘迅 (51)Int.Cl. B01J 31/22(2006.01) B01J 35/00(2006.01) B01J 35/02(2006.01) (54)发明名称 一种基于MXene与金属有机骨架化合物复合 结构的析氧反应催化剂及其合成方法 (57)摘要 一种基于MXene与金属有机骨架化合物复合 结构的析氧反应催化剂及其合成方法,属于纳米 材料、能源与催化领域。该催化剂由表面均匀负 载MOFs纳米颗粒的MXene二维纳米薄片组成,具 有二维结构。制备方法:将MXene、金属盐、有机配 体和缚酸剂溶解混合均匀后,离心、洗涤、真空干 燥,获得结构、成分可精细调控的二维纳米结构 的电催化剂。本发明获得的电催化剂可有效克服 MOFs导电性差、稳定性差而导致析氧反应催化性 能无法发挥的基础性难题;所得催化剂在碱性电 解液中对析氧反应表现出优异的催化活性与稳 定性,为燃料电池、金属空气电池、电解水等新能 源技术的广泛应用奠定基础。权利要求书1页 说明书5页 附图5页CN 110038634 A 2019.07.23 C N 110038634 A

权 利 要 求 书1/1页CN 110038634 A 1.一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂,其特征在于,该催化剂由表面均匀负载MOFs纳米颗粒的MXene二维纳米薄片组成,具有二维结构,尺寸在100-500nm之间;MXene上负载的MOFs纳米颗粒含量在75wt.%以上,尺寸在10-100nm之间,MOFs中的金属元素包括镍、铁、钴、锰中的至少一种或两种以上;所得催化剂在碱性条件下对析氧反应具有优异的催化活性与稳定性。 2.权利要求1所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,包括如下步骤: 1)将MXene于常温常压条件下分散在水中制备分散液; 2)将金属盐和有机配体于常温常压条件下溶解于N,N-二甲基甲酰胺DMF和乙醇的混合溶剂中形成均一溶液;所述的金属盐和有机配体摩尔比为1:1,有机配体的浓度为0.0375-0.04mol/L;所述的有机配体为对苯二甲酸和2-氨基对苯二甲酸的至少一种;所述的金属盐为镍、铁、钴、锰的氯化盐、硝酸盐、醋酸盐中的至少一种或两种以上; 3)于常温常压条件下将步骤1)制备的MXene分散液与步骤2)制备的金属盐/有机配体均一溶液均匀混合; 4)于常温常压条件下向步骤3)制备得到的混合溶液中加入缚酸剂三乙胺后,搅拌反应2-4h,反应结束后使用乙醇离心洗涤,真空干燥得到产物。 3.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤1)所述的MXene分散液浓度为5-15mg mL-1。 4.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤2)所述的混合溶剂中,DMF与乙醇的体积比为5:1-15: 1。 5.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤2)中,当使用两种金属盐时,两种不同阳离子金属盐的摩尔比为5:1-1:5;当使用三种金属盐时,三种不同阳离子金属盐的摩尔比为1:1:1。 6.根据权利要求2所述的一种基于MXene与金属有机骨架化合物复合结构的析氧反应催化剂的合成方法,其特征在于,步骤4)所述的三乙胺与混合溶液体积比为:1:20-68。 2

雷尼镍催化剂的制备

雷尼镍催化剂的制备 雷尼镍催化剂是一种十分重要的骨架镍催化剂,其发现和发展最早可以追述到1925年。现在由于其具有的高活性、高选择性以及生产使用成本低的优点,已被广泛应用于有机还原反应,如烯烃芳香环、醛、酮、硝基、腈基等的催化加氢及脱卤反应。本文将主要介绍W-6型拉尼镍催化剂的主要制备方法。 1.W-6型拉尼镍催化剂的制备原理 雷尼镍催化剂最先由Murray Raney(1885-1966)发现,并于1925年申请专利。制备时,先用NaOH溶液溶去镍铝合金中的Al,然后洗涤,残余物为类似海绵状的微粒,大小为25~150A0。催化剂主要含Ni,Al(1~8%),少量NiO 和AL2O3水合物(1~20%),总表面积为50~130m2/g。 Raney-Ni催化剂一般由合金制备,分为两步,即展开和洗涤。展开是指用碱(特别是NaOH)溶出合金中无催化活性的部分(铝),这一步称为展开操作,反应式如下: 2NaOH+2 Al+2H2O→2NaAlO2+3H2 研究表明合金粒度和温度对展开速度有较大的影响,温度越高,展开速度越快;粒度的增大,溶解速度则减小R.Choudary等人通过实验,得出一个展开模型:log(x/1-x)= αlog(tβ),其中α为常数,β为速率参数(单位为1m/s), t为展开时间,展开活化能为56.6Kj/mol。 洗涤展开后的Raney-Ni是类似海绵状的微粒,可用蒸馏水洗涤至中性,最后用乙醇洗涤。由于Raney-Ni是一种易燃的催化剂,故应保存在适当的溶剂中。2.W-6型拉尼镍催化剂的制备方法:固相分离浸取法 熔融,沥滤是制备骨架催化剂的一种方法。其制备主要分为三步:即合金的制备,合金的粉碎及合金的浸溶,其制备工艺流程及简介入下: NaOH溶液 镍┓↓ ┃→熔融→冷却→粉碎→浸溶→洗涤→成品 铝┛ 70年代发明的固相分离浸取法是对传统雷尼镍催化剂制备方法最近的一次突破。原理是向回体NaOH与合金粉的混合物中加水.使其均匀润湿但不形

有机催化剂的应用及发展

https://www.360docs.net/doc/d36341711.html,/sundae_meng 催化化学综述 综述题目:有机催化剂的应用及发展 学院:_ 专业:_ 班级:___ 学号:_ 学生姓名:_ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

RaneyNi催化剂

雷尼镍是用镍铝合金用试剂将合金中的铝反应完后得到的,多孔,活性很高,能自燃。使用过程中务必氮气保护,防止发生火灾。镍粉的话由于无多孔结构,活性不如雷尼镍。氢化还原的话一般选择雷尼镍,没见过用镍粉的。一般还原的话用锌粉、铁粉的较多,比较安全。 雷尼镍又叫活性镍有活性的可以吸收大量的氢气一般的颗粒镍由于表面积没有雷尼镍大所以没有活性 Raney Ni就是将铝镍合金在氢氧化钠溶液中溶解掉铝,得到的具有多孔结构状的镍,因而具有高的吸附氢的活性,而普通的镍由于不具有这种结构,也就起不到催化还原的效果。 制取雷尼镍:镍铝合金,还原不能直接用,需要用氢氧化钠水溶液将铝洗掉,再将镍水洗中性,再用乙醇洗,还要试洗出的镍的活性,在空气中能自燃,活性较好。镍活性非常高在空气中能自燃,所以分散在水中或是溶剂中。 买了铝镍合金粉末,缓慢假如氢氧化钠溶液里,保持溶液强碱性,反应完,将碱液倾倒出,用无水乙醇洗涤几次,然后放入无水乙醇中备用就可以了。 1)如果是在实验室里面进行脱铝活化的话,要放在冰水里面,防止过热!反应刚开始就放在冰水里,温度上升是飞快的,如果不预先放入冰水中,等你反应过来就已经来不及了! 2)我是做雷尼钴催化剂的,刚开始反应是很剧烈,没必要放到

冰水里,我把合金粉末慢慢加到氢氧化钠溶液中就可以了,没有太大得危险,慢慢加入就可以。 关于Raney Ni加氢还原中脱氯的问题 这个反应中经GS-MS检测,有脱氯的副产物产生,但是不清楚为什么会脱氯(反应加压3 MPa),在改动Raney Ni的用量及DMSO 量的情况下,脱氯现象没有改善——芳卤尤其是Cl、Br、I在Pd/C、Raney Ni等氢化环境下容易被还原掉。我记得以前有看过文献说貌似用硫酸钡作载体就不会掉。压力跟温度调小点,脱氯在2%左右,再低的脱氯我也很纠结。 首先,在氮气氛围投料然后,氢气置换氮气后就可以反应了,记住,不要在氢气氛围投料,特别是投钯碳类的东西。 在大生产上必须用氮气置换2-3次,在实验室里做的话用一个玻璃三通,用真空泵抽真空后直接通氢就行。 1.雷尼镍是镍铝合金经氢氧化钠处理出去其中的铝而得到多孔结构的镍,其与镍粉的最大不同之处在于其单位质量比表面积大,用于催化氢化。 2.雷尼镍的催化活性比较高,还原硝基应该问题不大,可以自己购买镍铝合金在实验室自己做,也可以直接购买使用。 3.雷尼镍易燃,不知道你用的溶剂是什么,目前市售雷尼镍很多保存在水中,如果需要除水,要注意防火。

金属-有机骨架材料的合成及在催化反应中的应用研究进展

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:超细粉体制备 任课教师:教授 完成日期:2015 年12 月5 日 专业:化学工程与技术 学号:2015 姓名: 成绩:

金属-有机骨架材料的合成及在催化反应中的应用研究进展 (北京化工大学化研北京 100029) 摘要:金属有机骨架化合物(MOFs)作为一种结构新颖的材料,相比于传统的分子筛等具有优越的设计性和结构可调控性,在气体的吸附和分离、催化、生物医学等领域展现出较好的应用前景,近年来研究较为活跃。本文介绍了MOFs材料的类型和常用的合成方法,综述了近年来MOFs材料在催化领域的应用。 关键词:金属—有机骨架材料;类型;合成;催化;应用 Research Development of Synthesis and Applications in Catalysis for Materials of Metal-organic Frameworks (Beijing University of Chemical TechnologyHuayanBeijing 100029) Abstract:Metal organic frameworks (MOFs), as a new type of structure materials, has a better design and structure than the traditional molecular sieve.MOFs have exhibited the attractive prospects in many fields, such as the gas adsorption and separation,the catalysts and the bio-medicine.This paper introduces the types of MOFs materials and the methods of synthesis, and summarizes the application of MOFs in catalytic domain. Key words:metal-organic;frameworks; categories; synthesis; catalysis; applications 引言 金属-有机骨架配合物(Metal-organic Frameworks,MOFs),通常是指金属离子或金属簇与氮、氧刚性有机配体通过自组装过程形成的多孔有机骨架材料[1],因此兼备了有机高分子和无机化合物两者的特点。在过去十几年里,不计其数的有机配体和无机金属离子团族链接而得的固体材料被合成出来,这类材料有多种不同命名:金属有机骨架材料(metal-organic frameworks, MOFs)、多孔配位聚合物(porous coordination polymers)、有机无机杂化材料(hybrid organic-inorganic materials)、有机分子蹄类似物(organic zeolite analogues)等[2,3]。这些命名都对应着不同的含义,但大多称其为“金属有机骨架材料”,以描述材料所具有的属性,该术语意味着其具有较强的键合能力,可以为骨架结构提供刚性,而作为连接链的有机分子的官能团可以调变。此外,骨架结构还可以通过几何拓扑结构进行定义[4,5]。已合成的MOFs材料具有纳米级的骨架型规整的孔道结构,大的比表面积和孔隙率以及小的固体密度等优点,在吸附、分离、催化等方面均表现出了优异的性能[6],已成为新材料领域的研究热点与前沿。 1 MOFs的分类 随着大量新配体、新方法的应用,各种拓扑结构的MOFs材料不断被合成出来,常见的3d型二价金属离子(Ni2+、Cu2+、Zn2+等),三价金属离子(Sc3+、V3+、Cr3+、Fe3+等)和p型三价金属离子(Al3+、In3+等)以及一些稀土金属离子都可以用来作为骨架的金属节点,常用的有机配体包括多羧酸芳香配体(对苯二甲酸、均苯三甲酸等)和含氮杂环配体(咪唑类、四唑类、嘧啶、吡啶、嘌呤类等)。根据配体的不同,可将MOFs材料分为含羧酸配体、含氮杂环配体、混合配体MOFs等;根据功能的不同,可分为发光、磁性、导电MOFs等;根据命名的不同,又可以分为MOF、ZIF、MIL等系列。以下介绍几种代表性的MOFs材料。 1.1MOF系列 1999年Yaghi等[7]首次报道了一个典型的材料即M0F-5,其单晶的化学式是Zn4O(BDC)3(DMF)8(C6H5Cl)(BDC为有机配体对苯二甲酸,DMF和C6H5Cl为配位分子)。其晶体结构如图1所示,它由以氧为中心的Zn4O四面体通过6个羧基配体相互桥联形成八面体

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

有机金属化合物的研究

摘要:简要的评述了分别以无机物和有机物作载体的表面金属有机化合物,金属有机化合物与固体表面反应的基本规律和表面金属有机化合物的结构。 关键词:金属有机化合物;无机物;有机物;载体 表面金属有机化学(Surface Organometallic Chemistry简称SOMC)是化学、材料学及催化科学等学科的交叉融合而诞生的一门新型学科。该学科主要以分子金属有机化学、表面化学和分子配位化学为基础,以金属有机化合物与固体表面反应为研究对象,目的是通过在固体表面接枝金属有机基团制备表面组成和结构明确的、具有特殊性能的无机-有机杂化材料、表面金属原子簇、表面功能化膜等,是近年来化学和材料学学科中非常活跃的研究领域之一。金属有机化合物在固体材料表面的接枝反应性能是SOMC研究的基础,此类化合物在有机合成、烯烃聚合和氢化异构化等领域表现出卓越的性能。因而一直是当今金属有机化学研究最为活跃的一类化合物。近年来的研究表明,茂金属类催化剂一经与固体表面反应后,其所形成的表面金属有机化合物,不仅可以改善原物种的动力学性能、控制聚合物的形态,而且可以大大减少助催化剂的用量等,因此,有关表面茂锆金属有机化合物的研究已经成为人们备受关注的热点。本文简要的评述了分别以无机物和有机物作载体的表面金属有机化合物。 1 无机物载体表面金属有机化合物 1.1 氧化物载体表面金属有机化合物氧化物表面金属有机化合物分为两种反应形式,一种是金属有机化合物与氧化物表面的羟基发生反应,另一种是金属有机化合物与氧化物表面的≡M-O-M≡发生反应。 在500°C下处理的MCM-41分子筛上存在着大量的硅羟基,这些硅羟基亲电进攻金属有机化合物上的配位体,发生M-C间的断裂。一个典型的例子就是四新戊基锆化合物与MCM-41(500)表面羟基的反应[1],反应用红外光谱检测,且分析气体产物,表面接枝产物用13C NMR和化学探针反应等方法表征,结果表明Zr-C键在表面羟基的进攻下发生断裂,生成烷基锆化合物。 Michelle Jezequel[2]等用Cp*Zr(CH3)3和Cp2Zr(CH3)2分别与处理过的SiO、SiO2-Al2O、Al2O、Al2O发生反应,用红外光谱、元素分析、固态核磁、EXAFS等表征,推断出化合物的结构。这些复合材料可用作烯烃聚合反应催化剂,但发现表面化合物的结构与催化活性有很大的关系。Cp*Zr(CH3)3和Cp2Zr (CH3)2与SiO反应得到的固体无催化活性,而当接枝在SiO2-Al2O、Al2O、Al2O上时则有催化活性。 此外还有王绪绪等用四烷基锡化合物与SiO表面羟基发生反应,新戊基钛化合物与MCM-41表面羟基发生反应;丁基锡化合物分别与MCM-41、MCM-41表面羟基发生反应;四甲基锡化合物与MCM-41表面羟基发生反应。 当SiO2在高温下(>800°C)处理后,其表面羟基发生缩合形成≡Si-O-Si≡桥,可以与金属有机化合物反应并发生断裂,Bu3Sn-O-SnBu3与SiO2(1000)表面的反应是通过≡Si-O-Si≡的开环生成两个 ≡Si-O-SnBu3接枝物种[3]。并且这个反应不仅发生在四元环中的≡Si-O-Si≡上,而且还与六元环,甚至是八元环中的≡Si-O-Si≡反应。https://www.360docs.net/doc/d36341711.html,lot[4]等人报道了在SiO和Cp*ZrMe3反应,主要生成两种不同的产物。 1.2 非氧化物MgCl2载体表面的金属有机化合物李现忠[5]等报道了以球型MgCl2为载体的 Ziegler-Natta催化剂与含有茂配体的硅烷化合物反应,制备了一种球型MgCl2负载型单茂钛催化剂,利用该类催化剂进行了乙烯与1-己烯共聚,茂金属配体影响催化剂活性的高低顺序为 Me4Ind>Ind>Cp>Me4Cp (其中 Me表示甲基、Ind表示茚基、Cp表示环戊二烯基)。Soga[10]等将Cl2Si(Ind)2ZrCl2负载到MgCl2上,制备了相应的负载型催化剂,该催化剂用于丙烯聚合可以制得全同立构的聚丙烯。 1.3 金属载体表面的金属有机化合物通过金属表面与金属有机化合物的反应可以制备高分散的双金属或多金属催化剂,并且在不同的催化反应中有特定的选择性。 在氢气的氛围下,四丁基锡可以与铑、镍、或铂(负载在SiO2或Al2O3上)反应制备Sn-Rh[6]、Sn-Ni 合金,这种双金属配合物金属相明显,稳定性得到很大改善,可应用到天然气催化合成中。同样,用茂铁或茂镍可以将铁或镍沉积在钯上形成铁钯合金或表面镍钯合金。 2 有机物载体表面金属有机化合物 使用载体催化剂时,无机载体被引入聚合物而影响聚烯烃的性能。和无机载体相比较,有机聚合物载

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

负载型镍催化剂的制备

科技论文检索与写作作业 ——负载型镍催化剂的制备 一、制备的目的和意义 1. 了解并掌握负载型金属催化剂的原理和制备方法。 2. 制备一种以金属镍为主要活性组分的固体催化剂。 意义:催化剂在现代化学工业中占有重要地位。镍基催化剂是一种常 用的经典催化剂,具有催化活性高、稳定性好和价格较低等优点,已被广泛应用于加氢、脱氢、氧化脱卤、脱硫等转化过程。 二、制备方法、 1.一种负载型镍催化剂的制备方法,其特征在于,具体包括如下步骤:(1)按钛酸丁酯与无水乙醇体积比为1:1.5~1:3的比例将钛酸丁酯与无水乙 醇混合,强力搅拌后得到混合溶液,按无水乙醇与醋酸的体积比为 10:1~30:1的比例在混合溶液中加入醋酸形成溶液A;(2)按去离子水与无 水乙醇的体积比为1:5~1:10的比例将去离子水与无水乙醇混合得到混合溶液,在混合溶液中加入稀盐酸或稀硝酸调节混合溶液的pH为2~5得到溶液B;(3)按溶液B与溶液A的体积比为1:1~1:4的比例将B溶液加入到A溶液中,然 后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入 十六烷基三甲基溴化铵形成钛溶胶;(4)按γAl2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γAl2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h后干燥、焙烧得到TiO2Al2O3复合载体;(5)将TiO2Al2O3复合载体于浓度为

0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2Al2O3负载型镍催化剂。 2.一种用于氨分解制氢的负载型镍催化剂,活性组分为Ni,载体为氧化硅、氧化铝或氧化钛;活性组份的质量百分含量为1-50%。其制备步骤为:将可溶性镍盐、pH值调节剂、沉淀剂、载体以及去离子水配成悬浊液;悬 浊液加热至70-110℃沉积60-300分钟;上述悬浮液降至20-30℃后并过滤,水洗涤、过滤;在80-120℃干燥18-24小时,400-900℃焙烧2-6小时;在氢气气氛,或者氢气和氦气的混合气气氛中,于400-900℃活化3-5小时,还 原制成负载型纳米镍催化剂。本发明催化剂对氨分解反应具有较高的活性,可以应用于氨分解制不含COx氢气的工艺,还可用于各种含氨气体的净化处理过程。 3.一种用于浆态床甲烷化负载型镍基催化剂重量百分比组成为: NiO10-40wt%;载体56-90wt%;助剂为0-4wt%。配制浓度为0.5~1.3g/ml 的硝酸镍与助剂的可溶性盐溶液,依次向其中加入催化剂载体和可溶性有机燃料,搅拌条件下浸渍6-24h,浸渍结束后将溶液于60-90℃水浴条件下加 热浓缩,或直接在300-700℃加热点燃,将燃烧后余下粉末收集,研磨,造粒,在固定床500-700℃用还原气进行还原2-6h,即得到负载型镍基催化剂。本发明具有浆态床甲烷化工艺,且催化性能稳定好,可大规模工业化的优点。 4.一种用于α-蒎烯加氢反应负载型镍催化剂的制备方法和应用,该负 载型镍催化剂的制备工艺步骤包括:在钛酸丁酯中加入无水乙醇后强力搅拌,然后加入醋酸,充分搅拌形成溶液A;将去离子水与无水乙醇混合后调节pH 值得到形成溶液B;把B溶液滴加到A溶液中,加入十六烷基三甲基溴化铵

相关文档
最新文档