直流电源原理讲解

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

电路原理图详解

电子电路图原理分析 电器修理、电路设计都是要通过分析电路原理图,了解电器的功能和工作原理,才能得心应手开展工作的。作为从事此项工作的同志,首先要有过硬的基本功,要能对有技术参数的电路原理图进行总体了解,能进行划分功能模块,找出信号流向,确定元件作用。若不知电路的作用,可先分析电路的输入和输出信号之间的关系。如信号变化规律及它们之间的关系、相位问题是同相位,或反相位。电路和组成形式,是放大电路,振荡电路,脉冲电路,还是解调电路。 要学会维修电器设备和设计电路,就必须熟练掌握各单元电路的原理。会划分功能块,能按照不同的功能把整机电路的元件进行分组,让每个功能块形成一个具体功能的元件组合,如基本放大电路,开关电路,波形变换电路等。 要掌握分析常用电路的几种方法,熟悉每种方法适合的电路类型和分析步骤。 1.交流等效电路分析法 首先画出交流等效电路,再分析电路的交流状态,即:电路有信号输入时,电路中各环节的电压和电流是否按输入信号的规律变化、是放大、振荡,还是限幅削波、整形、鉴相等。 2.直流等效电路分析法 画出直流等效电路图,分析电路的直流系统参数,搞清晶体管静态工作点和偏置性质,级间耦合方式等。分析有关元器件在电路中所处状态及起的作用。例如:三极管的工作状态,如饱和、放大、截止区,二极管处于导通或截止等。 3.频率特性分析法 主要看电路本身所具有的频率是否与它所处理信号的频谱相适应。粗略估算一下它的中心频率,上、下限频率和频带宽度等,例如:各种滤波、陷波、谐振、选频等电路。 4.时间常数分析法 主要分析由R、L、C及二极管组成的电路、性质。时间常数是反映储能元件上能量积累和消耗快慢的一个参数。若时间常数不同,尽管它的形式和接法相似,但所起的作用还是不同,常见的有耦合电路、微分电路、积分电路、退耦电路、峰值检波电路等。 最后,将实际电路与基本原理对照,根据元件在电路中的作用,按以上的方法一步步分析,就不难看懂。当然要真正融会贯通还需要坚持不懈地学习。 电子设备中有各种各样的图。能够说明它们工作原理的是电原理图,简称电路图。 电路图有两种 一种是说明模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种是说明数字电子电路工作原理的。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能的。为了和模拟电路的电路图区别开来,就把这种图叫做逻辑电路图,简称逻辑图。 除了这两种图外,常用的还有方框图。它用一个框表示电路的一部分,它能简洁明了地说明电路各部分的关系和整机的工作原理。 一张电路图就好象是一篇文章,各种单元电路就好比是句子,而各种元器件就是组成句子的单词。所以要想看懂电路图,还得从认识单词——元器件开始。有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法等内容可以点击本文相关文章下的各个链接,本文只把电路图中常出现的各种符号重述一遍,希望初学者熟悉它们,并记住不忘。 电阻器与电位器(什么是电位器) 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

高频开关电源直流柜使用说明

GZMCW 高频开关直流电源屏 使用操作手册 湖南科明电源有限公司

(一) 概述 GZMC(W)系列直流电源柜可用于发电厂、变电所、通讯部门,工矿企业作不间断直流控制,保护电源,继电保护和电磁操作机构分合闸电源等各类低压设备用电,也可用于一般工厂、企业变配电室,发电站作直流分合闸电源,应急灯光照明等,并可按用户要求配备双路交流电源进线,另一路可自动切换投入,以提高供电的可靠性。 (二) 功能及特点 本装置由电源整流充电系统,配电馈线系统,电池系统及附加保护装置等单元组成。整流充电单元系智能高频开关整流成套装置,控制系统采用美国MOTOROLA公司的MC68HCO5系列单片机作为主控制模块,大量运用了微带原理及线性快速反馈系统。通过CPU双重控制电路的控制、检测、采样、退出等实现CPU死机保护,控制模块具有自诊断功能,使控制模块因自身原因造成系统异常时能自动(或手动)进入系统紧急状态(转入较安全的浮充状态),还能实现对电力模块的运行状态进行实时监控及故障反馈,使其本身具备了较高可靠性。 电力模块采用先进的尖峰抑制器件及EMI滤波电路,由全桥整流电路,将三相交流电整流为直流,再由DC/DC高频变换电路(300KHZ)把所得的直流电逆变成稳定可控的直流输出。电流保护采用双臂式全向保护电路,避免了开关电路本身所存在的偏磁,逆变桥臂直通等影响。保证模块瞬态过程(负载突变、短路、参数浮移等)中工作的稳定性,控制电路采用了双电压环(输出电压、电感电压)及峰值电流环三环反馈系统,具有很高的功态响应速度和系统稳定性,同时对于均流控制采用双重均流控制,使模块自适应PWM均流控制均流(通过控制器),电力模块既可受控于控制模块输出设定值,又可独立工作在设定的自控状态。电力模块本身既可单机自控工作完成各种基本功能,又可并联组合工作在控制模块控制状态,完成组合输出,实现集中监控,确保智能高频开关整流装置系统运行的双重保险。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

电工基础电路图讲解

电路图基础知识讲解 对一个没有电工基础,或者刚入门的从业者,都比较迷茫,都会有这么一个问题,看到电路图,无从下手,不知道该从哪边学起,下面简单介绍下一些基础知识,供大家参考。 首先,要了解各个元件的有什么功能,有什么特点。说白了就是要了解各个元件有什么作用。 其次,要了解各个元件间的组合有什么功能。 再者,要知道一些基本的电路,比如:基本的电压源与电流源之间的相互转换电路,基本的运算放大电路等等。 然后,就是可以适当的看一点复杂的电路图,慢慢了解各个电路间电流的走向。 以上所说的模拟电路,还有数字电路就是要多了解一些‘门’的运用,比如说:与非门,与或门等等。还有在一些复杂的电路图上会有集成芯片,所以,你还要了解给个芯片引脚的作用是什么,该怎么接,这些可以在网上或书上查到,再有,提到一点就是一些电路中的控制系统,有复杂的控制系统,也有简单的控制系统,我说一个简单的,比如说单片机的,你就要了解这个单片机有多少引脚,各个引脚的功能是什么,这个单片机要一什么铺助电路想连接,这样组成一个完整的电路。 想学会电路图就是要你多看,多去了解,多去接触,这样更容易学会。 一、电子电路图的意义 电路图是人们为了研究和工程的需要,用约定的符号绘制的一种表示电路结构的图形。通过电路图可以知道实际电路的情况。这样,我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了;在设计电路时,也可以从容地在纸

上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功;而现在,我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高了工作效率。 二、电子电路图的分类 常遇到的电子电路图有原理图、方框图、装配图和印板图等 ( 一) 原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做“电原理图”。这种图,由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号,以及它们之间的连接方式,就可以了解电路的实际工作时情况。图1 所示的就是一个收音机电路的原理图。 图一 ( 二) 方框图( 框图) 方框图是一种用方框和连线来表示电路工作原理和构成概况的电路图。从根本上说,这也是一种原理图,不过在这种图纸中,除了方框和连线,几乎就没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全部的元器

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

直流列头柜说明书

DPZ型直流配电设备 产品说明书 (DPZ-48/630) 中通服节能技术服务有限公司

目录 1 概述 (1) 2 设备介绍 (1) 2.1 工作环境 (1) 2.2 电气及技术要求 (1) 2.3 规格及型号 (2) 3 结构形式 (2) 4 电路组成及功能 (2) 4.1 配电系统 (2) 4.2 信号及告警系统 (2) 5 设备的安装 (3) 5.1 机架的安装 (3) 5.2 线缆的连接 (4) 5.2.1 直流总工作地的接入 (4) 5.2.2 直流-48V电缆线的接入 (4) 5.2.3 分路工作地输出线的连接 (4) 5.2.4 分路-48V输出线的连接 (4) 7 设备的使用、维护及故障处理 (5) 7.1 安全使用及维护 (5) 7.2 故障处理 (5) 8 包装、运输和贮存 (5)

1 概述 我公司的DPZ型直流配电设备,广泛的应用于电信、移动、联通、网通等通信机房,与进口、国产通信机列、光端机列等配套使用,具有直流电源分配、工作地线汇接、保护地复接、熔断器熔断告警、干接点输出等功能,并可对工作电压、总电流测量并显示。本产品选用优质熔断器作为电源保护器件,可靠性高,安全性好,规格齐全,能满足用户的各种要求。 本产品具有如下特点: ?选用优质的熔断器作输入、输出分路保护,可靠性高,安全性好; ?选用高导电率铜排作为导电器件,电源端直流压降小; ?可以根据需要设置工作地线及分路输出接线端子,方便设备的安装和使用; ?各熔断器熔断告警信号经干接点输出,提高了维护人员排除告警的效率; ?外表美观,紧固件、连接件等处均采用优质不锈钢材料。 2 设备介绍 2.1 工作环境 环境温度:空气温度-15℃~+50℃; 空气湿度:≤95%; 相对湿度:≤90%(20℃±2℃时); 抗震强度:八级。 海拔高度不超过3000m。 没有震动和颠簸,且垂直倾斜不超过5%。 无导电、爆炸尘埃、无腐蚀金属和破坏绝缘的气体或蒸汽。 2.2 电气及技术要求 额定工作电压:-48V; 额定电流:根据输入、输出分路容量确定。 配电箱电压降:不大于500mV(20℃)。 防护等级:IP30。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

光伏直流配电柜技术说明书

直流配电柜技术说明书 一、功能与特点 ●提供30-300千瓦不同等级逆变配电; ●电压指示; ●防逆流控制切换; ●国际知名品牌断路器; ●可根据客户要求提供不同等级雷电防护; ●提供防雷器失效告警干结点; ●提供各种附加要求 ●安装方便,维护简单 ●工艺考究,能在酸、碱、尘、盐雾及潮湿等恶劣环境下长期工作 二、主要技术参数 SDDL-II-DC-6-200 电气参数 输入电压700VDC 输出电压700VDC 输入电流63A*6 输出路数 2 额定绝缘电压1000V 额定冲击耐受电压5kV 母线分段能力(均值)10kA 防雷参数 标称放电电流20kA,8/20μs 最大通流容量40kA,8/20μs 保护水平(3kA,8/20μs)≤2000V 保护水平(20kA,8/20μs)≤2500V 响应时间25ns 失效指示机械 连接要求 汇流排紫铜

输入导线截面积35-95mm2 输出导线截面积35-95mm2 接地导线截面积25mm2 机械性能 外形尺寸600×800×2200 mm*2 材料厚度2mm 防护等级IP20 环境温度-40~+85℃, 相对湿度≤95%(25℃) 三、安装方法 1、参考安装说明书 四、安装、使用注意事项 1、请在断开电源的情况下安装,以免发生意外! 2、接入导线截面积必须符合技术要求。 五、参考标准 1、GB50254《电气装置安装工程低压电器施工及验收规范》 2、GB2682《电工成套装置中指示灯和按钮颜色》 3、GB2681《电工成套装置中导线颜色》 4、GB4208《外壳防护等级(IP代码)》 5、GB7251 《低压成套开关设备》 6、JB2436《电力传输控制装置用铜制裸压接端头》 7、UL-854 《电动机控制中心》 8、要符合国家、地方质量验收规范及供电局的要求。

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从 3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 如图1所示大功率可调稳压电源电路图 大功率可调稳压电源电路图 图1 大功率可调稳压电源电路图 其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的 5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流

NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

直流油泵控制柜说明书

PI-ZK型直流润滑油泵 控制柜 产品使用说明书 陕西普联电气有限公司

直流润滑油泵控制系统 一、主要功能与特点 ●直流润滑油泵系统往往在发电机组出现故障时启动的备用装置。 ●采用现代电力电子器件、PWM技术、PLC技术于一体的无级调速系统, 启停时对直流系统无冲击; ●平衡电抗器与电容器的使用,使得电流输出平稳;容性直流输入母线的 使用,抑制高频过冲脉冲 ●实现直流电动机的平滑软起,电流不突变,不对主厂房直流系统造成任 何影响。 ●控制器采用插拔式结构,便于安装检修 ●过流保护使得输出电流被限制在安全运行设定值,同时报警 二、主要技术指标 ●工作电压DC 220V ●智能监控,起动电流限制在额定电流的1.2倍以内。 ●集直流电动机的过热、过流、过载、短路等多种保护于一身。 ●人性化的中文人机界面。 ●全中文故障信息显示和存贮。 ●故障自诊断。 ●多种信号输出(无源接点、RS485、4-20mA)。 ●直流母线启动停止电压纹波最大值20V ●室温下运行2小时,散热片温升小于摄氏25度 三、运行控制方式 ●DCS控制:由上位机发出指令实现启停控制 ●母管控制:系统通常处于待机状态,油压低时自动启动运行 ●热工控制:热工控制台控实现启停控制 ●就地控制:在本地可通过手动操作转换开关控制启停 四、运行状态控制 ●上电自检:当给控制柜提供220V直流电源,并合上机柜内的空气开关, 系统将进行一次自检过程。风扇电源启动,励磁继电器LJA、LJB 闭合,控制继电器BJ也上电,向主控室送出合闸状态指示。延时 数秒后,风扇停止,励磁继电器LJA、LJB断开,控制继电器BJ 断开,合闸指示结束,系统处于待机状态。 ●待机状态:系统自检完成后将处于待机状态,等待主控室(或本地)的 启动控制操作。此时,继电器JJ带电,常开接点闭合并送到主控 室被监视;系统的控制电路始终带电,而就地绿灯亮表示装置正处 于待机状态;励磁继电器LJA、LJB断开,电枢电压为0,直流电 机处于停机状态。 ●启动控制:按启动按钮,装置开始软起动过程,首先励磁继电器LJA、 LJB上电,对直流电机施加励磁,风扇启动运行;延时2秒后,电

电路图识别详解

电路图识别详解——简化电路图先看口诀,就两部分,很简单:标号和画图: 1、?标号:电路每个节点编号,标号遵循以下原则 (1)?从正极开始标1 (2)?导线连通的节点标同样的数字 (3)?沿着导线过一个用电器,数字+1 (4)?到遇到电源负极为止 (5)?要求所有点的标号要大于等于1,小于等于负极的标号 2、画图 (1)?在平面上画出节点号 (2)?根据原图画出节点之间的用电器或电表

⑶?整理,美化 3、注意事项 (1)?当用电器两端标号不等时,电流从小标号点到大标号点,因为小标号更接近正极 (2)?当用电器两端标号相等时,相当于一根导线接在用电器两端,因此用电器短路没有电流。介绍完毕,谢谢大家。什么,你没懂?啊~不要扔西红柿!下面还有。我们看几道例题 如图,这道题太典型了,估计每个老师都要讲。答案估计大家都知道,同学甲说这个是串联;同学乙说,不对!R1应该被短路了,没看见上面的”天线”么;这时候老师蹦出来,说你们都错了,实际上是标准的并联电路。倒~,确实不好理解,很多同学老师讲过一遍还是搞不 清楚为啥,最后背下结论了事。现在轮到我们的标号大法上场了,为了说明方便,先用字母 对每个点进行标记下 首先进行标号,我们的标号用红色数字表示,从电源正极出来a点标1同样在一条导线上 的b、d点也标1;检查所有该标1的都标了,那就过一个电阻吧!例如从b点过到c点, 这样c点标2。同一导线上的e、f、g点都标2,这样我们惊奇的发现已经到电源负极了!标号结束!轻松~

进入第二步画图阶段,先画出节点号1,2,其中1节点电源正极,2节点接电源负极,如下图;

然后再原图中查找每个电阻两端的节点标号,放到简化图中对应标号之间,我们看到 R2、R3都在1、2点之间,所以把它们仨依次连接在1、2点之间,就形成了右图, 纯的并联电路,不是么?R1、?清

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

高频开关直流电源柜说明书V01

GZDW33系列微机控制型高频开关直流电源柜 使用说明书苏州中兴龙源电气有限公司

第一章概述 (4) 1.1.用途 (4) 1.2.系统特点 (4) 1.2.1.高性能 (4) 1.2.2.高智能化 (4) 1.2.3.高品质 (5) 1.1.参照标准 (5) 1.2.工作原理简介 (6) 1.3.型号定义和说明 (7) 1.4.系统参数 (7) 1.4.1.10A、5A系列充电模块组成系统的技术参 数 (7) 1.4. 2.20A、10A充电模块组成系统的技术参数 (9) 1.5.使用条件 (11) 第二章系统结构 (12) 第三章系统基本模块 (13) 3.1.充电模块 (13) 3.2.蓄电池 (13) 3.3.配电控制模块 (14) 3.4.交流电压采样板 (14) 3.5.直流电压采用板 (14)

3.6.交流自动切换盒 (15) 3.7.防雷器单元 (15) 3.8.绝缘监测仪 (15) 3.9.电池监测仪 (15) 3.10.PWS人机界面触摸屏 (16) 第四章系统操作指南 (18) 4.1.操作说明 (18) 4.2.系统开机 (18) 4.3.设定触摸屏 (19) 4.4.主菜单 ............... 错误!未定义书签。 4.4.1模拟图 (20) 4.4.2.单体电池 (29) 4.4.3.绝缘监测 (30) 4.4.4.单体记录 (32) 4.4.5.记录查询 (34) 4.4.6.故障信息查询 (35) 4.4.7.电池组充、放电曲线 (36) 4.4.8.运行参数浏览与修改 (37) 4.4.9.报警参数浏览与修改 (39) 版本列表 (43)

48V电动车充电高清电路图与原理详解

工作原理 220V 交流电经 LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经 C3 滤波后形成约 300V 的直流电压,300V 直流电压经过启动电阻 R4 为脉宽调制集成电路 IC1 的 7 脚提供启动电压,IC1 的 7 脚得到启动电压后,(7 脚电压高于 14V 时,集成电路开始工作),6 脚输出 PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过 VT1 的 S 极-D 极-R7-接地端.此时开关变压器 T1 的 8-9绕产生感应电压,经 VD6,R2 为 IC1 的 7 脚提供稳定的工作电压,4 脚外接振荡阻 R10 和振荡电容 C7 决定 IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器 4N35)配合用来稳定充电压,调整 RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级 6-5 绕组输出的电压经快速恢复二极管 VD60 整流,C18 滤波得到稳定的电压(约 53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻 R38,稳压二极管 VZD1,滤波电容 C60,为比较器 IC3(LM358)提供 12V 工作电源,VD12 为 IC3 提供基准压,经 R25,R26,R27 分压后送到 IC3 的 2 脚

和 5 脚。 正常充电时,R33 上端有 0.18-0.2V 的电压,此电压经 R10 加到 IC3 的3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动 VT2 导通,散热风扇得开始工作,第二路经过电阻 R34 点亮双色二极管 LED2 中的红色发光二极管,第三路输入到 IC3 的 6 脚,此时 7 脚输出低电平,双色发光二极管 LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到 44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管 LED2 中的红色发光二极管熄灭,三极管 VT2 截止,风扇停止运转,同时 IC3 的 7 脚输出高电平,此高电平一路经过电阻 R35 点亮双色发光二极管 LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经 R52,VD18,R40,RP2 到达 IC2 的 1 脚,使输出电压降低,充电器进入 200MA-300MA 的涓流充电阶段(浮充),改变 RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障 这种类型充电器的常见故障有下面几种情况: 1、高压电路故障:该部分路出现问题的主要现象是指示灯不亮。通常还伴有保险丝烧断,此时应检查整流二极管 VD1-VD4 是否击穿,电容 C3 是否炸裂或者鼓包, VT2 是否击穿, R7,R4 是否开路,此时更换损坏的元件即可排除故障,若经常烧 VT1,且 VT1 不烫手,则应重点检查 R1,C4,VD5 等元器件,若VT1 烫手,则重点检查开关变压器次级路中的元器件有无短路或者漏电。若红色指示灯闪烁,则故障多数是由 R2 或者 VD6 开路,变压器 T1 线脚虚焊引起。 2、低压电路故障:低压电路中最常见的故障就是电流检测电阻 R33 烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若 RP2 接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕 RP2 因振动而改变阻值),就会导致输出电压移。若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

相关文档
最新文档