红外热像仪测温原理

红外热像仪测温原理
红外热像仪测温原理

红外热像仪测温原理

热像仪的操作以红外热像仪的测温原理为基础。热像仪通常作为一种开源节流的检测工具,可用于诊断、维护和检查电气系统、机械系统和建筑结构,另外,科学研究和企业研发人员也可以通过热成像技术攻克各类研究过程中的难题。那么,到底什么是红外热成像技术呢?而红外热像仪测温原理又是什么呢?就让福禄克红外热像仪来告诉你吧!

红外热成像

红外热成像是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。

人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。

例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。

热像仪测温原理

热像仪旨在检测目标所放出的红外辐射。参见下图。目标是指使用热像仪进行检查的物体。

热像仪

目标

热像仪检测目标所发出的红外辐射

目标是指使用热像仪进行检查

的物体。热像仪旨在检测目标所发出的红外辐射。

红外辐射通过热像仪的光学镜片聚焦于探测器,从而引起反应,通常是电压或电阻的变化,该变化由热成像系统中的电子元件读取。热像仪产生的信号将转换成电子图像(温度记录图)并显示在屏幕上。温度记录图是经过电子处理后显示在屏幕上的目标图像,在该图像中,不同的色调与目标表面上的红外辐射分布相对应。在这个简单的过程中,热像仪可以查看与目标表面上发出的辐射能量相对应的温度记录图。

热像仪组件

典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、探测器和处理电子元件、控件、数据存储设备、配有手带的把柄以及数据处理和报告制作软件。这些组件因热成像系统的类型和型号而异。参见下图。

典型的热像仪由多个常用组件组成,包括镜头、镜头盖、显示屏、控件和配有手带的把柄。

热像仪通常都带有一个便携包,用于放置热像仪、软件及现场使用的其它相关设备。

镜头。热像仪至少配有一个镜头。热像仪镜头可以捕获红外辐射并使之聚焦于红外探测器上。探测器将作出反应并生成电子(热)图像或温度记录图。热像仪镜头用于采集传入的红外辐射并使之聚焦于探测器上。大多数长波热像仪的镜头包含锗(Ge)薄层增透膜,可以改善镜头的透光能力。

福禄克最新发布的全新25微米微距镜头和4倍长焦预校准镜头,将极端目标温度变化尽收眼底。25微米微距镜头可以识别在印刷电路板等上的超微目标,甚至是肉眼难以看见的缺陷。新的4倍长焦镜头让用户能够看到放大四倍的远处目标,从而能够轻松检测电线或高火炬塔等目标。

显示屏。热图像显示在热像仪的液晶显示屏(LCD) 上。LCD 显示屏必须足够大,而且足够清晰,以便在各种场合的不同光线条件下轻松查看图像。此外,显示屏通常还会提供其它信息,例如电池电量、日期、时间、目标温度(以°F、°C 或°K 为单位)、可见光图像以及与温度有关的色谱键。参见图1-5。

图1-5 热像图显示在热像仪上的液晶屏(LCD)上。

探测器和处理电子元件。探测器和处理电子元件用于将目标处理成为有用的信息。目标发出的热辐射将聚焦于探测器(通常是电子半导体材料)上。热辐射可使探测器作出可测量的反应。该反应在热像仪中经过电子处理,形成热图像,并显示在热像仪的显示屏上。

控件(操作菜单)。控件用于执行各种电子调整,以优化显示屏上的热图像。可以对温度范围、热跨度和级别、调色板和图像融合度等变量执行电子调整。此外,还可以对辐射率和反射背景温度执行调整。参见图1-6。近几年已出现触摸屏热像仪实现所有操控。

图1-6 借助控件,可以对变量(例如温度范围、热跨度和级别和其它设置)执行电子调整。

数据存储设备。包含热图像和相关数据的电子数字文件存储在各类电子记忆卡或存储器以及传输设备中。许多红外成像系统还允许存储补充语音或文字数据以及通过集成的可见光摄像机采集的相应可见光图像。

数据处理和报告制作软件。与大多数现代热成像系统配合使用的软件不仅功能强大,而且容易使用。数字热图像和可见光图像可以导入个人计算机中,然后在此处通过各种调色板显示,而且还可以进一步调整所有辐射参数和分析功能。之后,经过处理的图像将被插入报告模板中,或者发送至打印机、以电子形式存储或者通过互联网发送给客户。福禄克红外热像仪使用的是SmartView红外分析软件。

红外测温方法的工作原理及测温..

红外测温方法的工作原理及测温仪 (北京化工大学信息科学与技术学院) 摘要:本文从黑体辐射原理出发分析了红外测温的工作原理,从发射率、距离系数、环境等几个方面,探讨和分析了测温误差的原因,以及基于红外测温技术的测温仪的简单的概述,并对红外测温仪的分类、性能、选择及应用简要的说明。 关键词:黑体辐射、红外测温仪、温度测量 Infrared Thermometer and the working principle of Infrared Temperature measurement (College of Science and Technology, Beijing University of Chemical Technology) Abstract: In this paper, the theory of infra-red temperature measurement was analyzed according to the principle of blackbody radiation. We discussed the main factors for measurement accuracy, such as reflectance, distance coefficient and environment.Based on infrared temperature measurement technology, we make a simple overview of infrared thermometer, and a brief description of its classification, performance, selection and application. Key words: Blackbody radiation; infrared thermometer; temperature measurement 0引言 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1常用测温方法对比 测温方法温度传感器测温范围(°C)精度(%) 接触式热电偶-200~1800 0.2~1.0 热电阻-50~3000.1~0.5非接触式红外测温-50~33001其它示温材料-35~2000<1

红外测温方法的工作原理及测温(自己总结的)

红外测温方法的工作原理及测温仪 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm 的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1 常用测温方法对比 测温方法 温度传感器 测温范围(°C ) 精度(%) 接触式 热电偶 -200~1800 0.2~1.0 热电阻 -50~300 0.1~0.5 非接触式 红外测温 -50~3300 1 其它 示温材料 -35~2000 <1 1 红外测温仪的工作原理及特点 1.1 黑体辐射与红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1,其它的物质反射系数小于1,称为灰体。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 由于黑体的光谱辐射功率Pb(λΤ)与绝对温度Τ 之间满足普朗克定理: ()1 exp 251-= -T c c T P b λλλ (1) 其中,Pb(λΤ)—黑体的辐射出射度; λ—波长; T —绝对温度; c 1、c 2—辐射常数。

FLIR E50热像仪精确测温

FLIR E50热像仪精确测温 1、了解最大的测量距离 当需要测量目标温度的时候,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。 如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到最精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。 2、工作背景单一 在户外使用红外热像仪进行检测工作时,你将会发现大多数目标都是接近于环境温度的。当在户外工作时,请务必考虑太阳反射和吸收对图像和测温的影响。因此,有些老型号的红外热像仪只能在晚上进行测量工作,以避免太阳反射带来的影响。 3、调整焦距 对于红外热像仪焦距的调整,可以在红外图像存储后对图像曲线进行调整,但是这样无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。 4、要求生成清晰红外热图像以及同时要求精确测温 一条量化的温度曲线可用来测量现场的温度情况,也可以用来编辑显著的温升情况。清晰的红外图像同样十分重要。但是如果在工作过程中,需要进行温度测量,并要求对目标温度进行比较和趋势分析,便需要记录所有影响精确测温的目标和环境温度情况,例如发射率,环境温度,风速及风向,湿度,热反射源等等。 5、选择正确的测温范围 为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对红外热像仪的温度跨度进行微调将得到最佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。 6、保证测量过程中仪器平稳 现在所有FLIR E50热像仪的长波NEC红外热像仪都可以达到60Hz帧频速率,因此在

红外测温原理

红外线人体测温仪电路的设计 技术分类:测试与测量消费电子设计 | 2007-11-07 来源:现代电子技术 | 唐岳湘赵修良等 由于医学发展的需要,在很多情况下,一般的温度计已经满足不了快速而又准确的测温要求,例如车站和机场等的人口密度较大的地方进行人体温度测量。虽然现在国外这种测温的技术都比较成熟,但是国内这方面的技术还处于发展阶段。因此,为了适应医学发展的需要,有效地进行特殊环境下的温度测量,从而有力地控制和预防诸如非典之类的特殊疾病的传播,急需设计一种测温速度快,准确率高的测温仪。针对一般的工业用的红外测温仪的精确度不够高,我们根据这种红外线测温的原理,通过关键器件的选择、瞄准系统的设计以及温度补偿的自动调节来提高红外线测温仪的精确度,设计了一种用红外线测温电路,用于人员密集且流量大的场合进行快速的人体温度测量。 1 红外线测温的原理 自然界一切温度高于绝对零度(-273.15℃)的物体,由于分子的热运动,都在不停地向周围空间辐射包括红外波段在内的电磁波,其辐射能量密度与物体本身的温度关系符合辐射定律。 组外辐射原理——辐射定律: 式中:E为辐射出射度,W/m3;σ为斯蒂芬—波尔兹曼常数,5.67×10-8W/(m2·K4);ε为物体的辐射率;T为物体的温度,单位K;T0为物 体周围的环境温度,单位K。 测量出所发射的E,就可得出温度。 利用这个原理制成的温度测量仪表叫红外温度仪表。这种测量不需要与被测对象接触,因此属于非接触式测量。红外温度仪表测温范围很宽,从-50℃直至高于3 000℃。在不同的温度范围,对象发出的电磁波能量的波长分布不同,在常温(0~100℃)范围,能量主要集中在中红外和远红外波长。用于不同温度范围和用于不同测量对象的仪表,其具体的设计也不同。 根据式(1)的原理,仪表所测得的红外辐射为:

深入了解红外热像仪的NETD(热灵敏度)

一、NETD的定义 NETD即热灵敏度,又被称为噪声等效温差,是红外热像仪的重要参数之一,用来描述红外热像仪可探测的最小温差值,NETD数值越小,表示灵敏度越高,图像越清晰。 NETD常用毫开式温标(mK)表示,当噪声与最小可测量温差想当时,探测器已达到其解析有用热信号能力的极限。噪声越大,探测器的NETD值越大,灵敏度越低。 二、NETD的测量 为了测量探测器的噪声等效温差,红外热像仪必须对着一个温控黑体。开始测量前,需要将黑体固定,然后在特定的温度时测量噪声等效温差。这不是简单的快照测量,而是噪声的临时测量。 二、影响NETD的因素: 1.校准的测温范围。选定不同的测温范围与物体温度,噪声读数会有所不同。只要图像中存在显著的热对比度,而且目标区域的温度

比背景温度高很多,便不会对测量精度产生太大影响。 2.探测器温度。如果将红外热像仪放在较高的环境温度中,系统噪声可能 会增加,这取决于红外热像仪内部稳定性如何。内部温度漂移可在非均匀性校准或NUC之间观测到,可能是几分钟的间隔。 3.镜头的光圈级数。镜头的光圈级数或光圈数决定了热辐射如何抵达探测器。总体而言,光圈级数越低,噪声值越优。 红外热像仪NETD在25℃时为60mK,最优可达到40mK,灵敏度比较高,测温精准,图像清晰,性能稳定。 格物优信为多家冶金、电力、危废、煤矿、养殖、铁路、科研等行业客户提供了行之有效的红外热成像可行性红外监控方案,深入解决了多家行业客户的难题,获得了客户的广泛信赖,更多详细方案介绍、业绩及技术咨询可至格物优信官网,格物优信致力于为各大行业贡献更多力量,携手客户共赢未来。

IT系列红外测温仪说明书

IT系列红外测温仪

目录 1 概述 2 技术参数 3 外形结构 3.1 IT-5外形结构 3.1 IT-6/ITL-500外形结构及面板说明 3.2 IT-8外形结构及面板说明 4 选型表 4.1 ITL-500选型表 4.2 IT-5选型说明 4.2 IT-6/8选型表 5 使用 5.1 安装 5.2 引出线定义 5.3 输出选择 5.4 瞄准及距离系数

1 概述 IT红外测温仪分为,ITL-500,IT-5,IT-6,IT-8四大种系列产品,各系列产品各具特色,可分别适用于各种不同的场合。ITL-500用于从负温度起到1200℃的温度测量,IT-5用于安装空间小,测量目标小的场合,IT-6是一款性价比高,适应性很强的测温仪,可广泛运用于金属加工,科研试验等领域。IT-8是IT红外测温仪的高端产品,适合有色金属加工,例如铝材,铜材等。 IT各系列红外测温仪产品均具有激光瞄准功能,安装使用方便,温度测量范围覆盖了-25℃-3000℃,各系列产品可在其有效的测量范围内自由分段。可以满足用户各种温度测量的需求。IT红外测温仪采用优异的光学结构及工艺;电路处理单元采用32bit(部分产品使用16bit)MCU。严谨的制作工艺及严格的质量管理,使得本测温仪的测量精度和重复性有了很好的保证。非接触测量的特性,使得IT红外测温仪可广泛运用于运动物体,带电导体,真空环境或其他特殊要求的目标进行非接触温度检测。 IT红外测温仪可广泛应用于食品,塑料加工,铸造、粉末冶金、轧钢、电力、化工、玻璃、陶瓷生产、热处理,中高频感应加热,线材生产,焦化,热压烧结、焊接等行业。 选型使用推荐及各系列产品适用的行业: ITL-500 该型号测温仪由于波长,温度范围的特点,适用于温度较低,常规材料辐射率比较接近1的场合,行业包括感应加热的电磁线高频烧结,塑料,化工,电机热安装等行业 IT-5 安装空间狭窄或者对精确瞄准及快速响应要求较高的场合,例如高频焊接,中频钎焊等行业,目前较典型的如全自动焊齿机IT-6 中频长短棒料透热,窑炉,中频钎焊,轧钢,玻璃,陶瓷,粉末冶金,热压烧结,精密铸造等行业 IT-8

红外热像仪的测温原理

红外热像仪的测温原理 自然界中除了人眼看得见的光(通常称为可见光),还有紫外线、红外线等非可见光。而红外线是自然界中存在最广泛的电磁波,物体只要有温度,无论高低,都会发出红外线。随着科技的日新月异,人们悄然运用红外线这一特性,让一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学应运而生,那就是红外线热成像。而红外线热成像仪又是什么呢?简单的说,红外线热成像仪的操作就是以红外线热成像原理为基础的检测。那红外线热成像仪的检测手段是什么原理呢?红外热像仪的测温原理是什么呢? 简单来说,红外线热成像仪具有安全、直观、高效、防止漏检4大核心优势。 普通红外线测温仪仅有单点测量功能,而红外线热成像仪则可捕获被测目标的整体温度分布,快速发现高温、低温点,从而避免漏检。各位如果使用过红外线测温仪的工程师,应该深有体会,扫描一个高约1米的电气柜,需要反复来回扫描,生怕漏掉某个高温,造成安全隐患,几分钟是一定要的。而使用红外线热成像仪,几秒钟的时间就可完成,最关键的是一目了然,绝对无遗漏。

其次,普通红外测温仪虽有激光指示器,但仅起提示被测目标作用,并不等于被测温点,而是对应的目标区域内的平均温度,但是大部分的使用者都会误以为屏幕显示的温度值就是激光点的温度,大错特错!而红外线热成像仪则不存在这个问题,由于显示的是整体的温度分布,一目了然,而且市面上的多数红外线热成像仪带激光指示器,以及LED灯,便于现场快速定位识别。对于某些有安全距离限制的检测环境,普通红外测温仪无法满足需求,因为随测量距离增大,即扩大了准确检测的目标面积,自然得出的温度值会受到影响。但是,

红外测温仪使用说明书

红外测温仪及二次表现场使用 说明书

双波长红外测温仪 为了解决温度的测量问题,温度的自由选择问题,以及长期稳定的校准需要等,威廉姆森设计了双波长高温计,这使得威廉姆森温度的测量上远远超过了业界的其它测温产品,显示出威廉姆森显著的优势 传感器概述: 相对与单波长温度传感器,双波长红外测温仪的主要优点在于: ●对于难测量的物体(如灰色金属表面),红外测温仪采用自动 补偿的方法从而增加准确度。 ●目标大小小于传感器目标直径,如电线,或移动的目标等,它 也可以准确无误的测量。 ●目标在部分受到阻挡镜头模糊时,或干预媒体,如烟雾,灰尘, 和/或水喷雾,双波长红外测温仪仍然可以准确和可靠的测量

williamson 有两种类型的高温计的设计。双波长及双色彩设计。这两种温度测量技术是基于相同的物理原理主要涉及测量红外能量 在两个相邻的波长之间计算的比例通过这两项测量,确定温度。两者的设计不同点在于:双色彩设计采用了两个层次的红外探测器被称为“夹心探测器” ,而双波长技术采用“单一探测器”的设计(见图) 。 基于其独特的技术测量红外能量,双波长红外测温仪设计提供了一些优势。 一, 在恶劣的环境下更高的稀释信号因子。提高了传感器的控制能力,使它可以穿过脏的窗口或水喷淋,喷雾油,烟,和尘埃等。从而也提高了测量精度这使得它对被测物体表面的氧化物,熔融金属,有光泽的金属(低辐射)等都不会受到影响 ,包括应用目标大小小于传感器目标直径,如电线,或移动的目标等,它也可以准确无误的测量。 双波长 双色彩

二、可根据需要定制温度范围,测量目标的温度可以低至300 C 以 下 三、长期稳定的校准过程监测与控制等方面的应用,使得测量结果准 确无误。 红外测温仪现场连接方式按现场接线图连接 工作正常时LCD上应显示LO TEMP 红外测温仪工作基本原理

红外热像仪及红外测温传感器

红外热像仪及红外测温传感器 实验指导书 一实验目的 1.对红外热像仪和红外测温传感器具有一定认识; 2.了解红外探测的发展过程; 3.了解红外热成像和测温的工作原理和优点; 二实验仪器设备 1.FILR公司Tau系列红外热成像机芯 2.数据连接线 3.电脑及软件 三实验原理 在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。 热成像摄像机(又叫热像仪)利用红外探测器、光学成像物镜接收被测目标的红外辐射信号。辐射信号经过红外光学系统成像在红外探测器上,利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。红外成像可以探测微小的温度差别,并将温度差异转换成实时的视频图像,显示在监视器上。 图一、可见光图和红外热像图 图二、安装不同镜头的红外热像仪机芯 非制冷红外焦平面探测器由许多MEMS微桥结构的像元在焦平面上二维重复排列构成,每个像元对特定入射角的热辐射进行测量,其基本原理如图三所示:a):红外辐射被像元中的红外吸收层吸收后引起温度变化,进而使非晶硅热敏电阻的阻值变化; b):非晶硅热敏电阻通过MEMS绝热微桥支撑在硅衬底上方,并通过支撑结构与制作在硅衬底上的COMS独处电路相连;

c):CMOS电路将热敏电阻阻值变化转变为差分电流并进行积分放大,经采样后得到红外热图像中单个像元的灰度值。 图三、非制冷红外热像原理 图四、红外热辐射转化为电信号原理 四实验步骤 1.用红外测温仪检测: A、检测人体表面温度,对比接触式的测量结果; B、对比同样温度、不同材料(桌面、墙体、黑色机箱)表面辐射的测量 结果; 2.用红外热像仪: A、打开红外热成像软件,观察目标的红外热成像; B、通过软件测试目标的温度; C、拍摄红外热像仪对不同材料成像的结果 五思考题 1.为什么用红外热像仪观察不同颜色衣服的人会不同? 2.怎样用红外热像仪来监测温度分布(需要借助什么器材)? 3.对高压输电线的温度进行监测,应该如何选配器材? 六产品参数 FLIR红外热像仪 温度灵敏度: 50mK 机芯重量:70g 视频帧频:25HZ 工作温度:-40℃~80℃

浅析红外热像仪的精度与不确定性概念 菲力尔FLIR

热像仪精度规格与不确定性方程式 你可能会注意到,大多数红外热像仪的数据规格手册上的精度规格会显 示为±2 ?C或读数的2%。这一规格数 据是基于广泛采用的名为“平方和根值”(RSS)不确定性分析技术结果。它的概念是一个计算温度测量公式每个变量的局部误差值,取每个误差项的平方,然后将其全部相加,最后取其平方根值。虽然这个公式听起来复杂,但其实很简单。从另一方面来讲,局部误差值的确定可能会很难。 “局部误差”来自于典型红外热像仪温度测量公式中多个变量中的一个,包括: ? 发射率 ? 反射的环境温度 ? 透过率大气温度? 热像仪的响应值 ? 校准器(黑体)的温度精度 一旦确定上述各个值的“局部误差”响应值,那么整个误差公式就是: 总误差 = √?T12+?T22+?T32 …以此类推其中,?T1、?T2、?T3...是测温公式中变量的局部误差值。 那为何公式是这样的?事实证明,随机的误差值有时是在同一个方向上相加,使你离正确值的偏差越来越远;有时,误差值又是在相反方向上相加,相互抵消。所以,采用“平方和根植”是计算总误差值最适合的方法,并一直作为FLIR红外热像仪数据规格表上的显示数据。 些数据,而红外热像仪常常会被归到这一测量仪器的类别之中。而且,在讨论红 外热像仪的测量精度时,常常会用到一些令人困惑不已、产生误解的复杂术语和 行话。最终使一些研究人员完全对这些工具绕行而走。不过也因此,他们会与其 在研发热测量应用所具有的潜在优势失之交臂。在下面的讨论中,我们会避免使 用技术术语,以直白的语言阐述红外热像仪在测温上的不确定性,让你对此有基 本的了解,从而帮助你理解红外热像仪标定流程和精度。 图1 – 位于美国佛罗里达州尼斯维尔的FLIR温度记录校 准实验室 这里需要说明的是,目前所讨论的计 算值有效的条件是只有当热像仪用于 实验室或户外短距离范围(20米以内)。 由于大气吸收因素,还有影响程度较 小的发射率因素,距离变长会增加测 量值的不确定性。当红外热像仪的研 发工程师在实验室条件下对大部分现 代的红外热像仪系统采用“平方和根 值”的分析方法时,所得结果近似为 ±2 ?C或2% — 因此成为热像仪规格参 数中使用的合理精度率。但是,实践 表明,诸如FLIR X6900sc的高性能的热 像仪比FLIR E40的经济型热像仪的精度 效果要好,因此,我们仍需要做些工 作来更好地解释这一观察结果。 技术说明

红外线测温仪的使用方法

引用红外线测温仪的使用方法 lao wu tong 的红外线测温仪的使用方法 红外线测温仪的理论原理和应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些 介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于 0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光

谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温 度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个 关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。被测物体和反馈源的辐射线经调制器调制后输入到红外检测器。两信号的差值经反放大器放大并控制反馈源的温度,使反馈源的光谱辐射亮度和物体的光谱辐射亮度一样。显示器指出被测物体的亮度温度 三,红外线测温仪的性能指标及作用

红外测温仪使用指南2

红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过吸收被测物体发出的红外辐射来测量其温度。可1秒快速测温,达到快速筛查体温异常的目的,并防止交叉传染。 [种类] ●红外人体表面温度快速筛检仪 (红外筛检仪) 多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,用于体温异常人员的快速筛查。 ●红外体表温度计(红外额温计) 适用于企事业单位、住宅、社区等人流较少的场合,适合移动巡检,目前大量应用于防疫控制中。 ●红外耳温计 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 [准确性] 红外耳温计>红外额温计>红外筛检仪 [使用须知] ●红外筛检仪 1、通电预热,与环境达到热平衡后再使用; 2、避免强电磁干扰,无较大的气流,环境条件应保持恒定,温度不应有较大变化; 3、当被测者来自与测量环境温度差异较大时,建议等候(5~10)分钟,两者达到热平衡后再测量为佳; 4、保持设备的探测镜头干净整洁,避免触碰损伤镜头,影响测量准确性。 ●红外额温计 1、使用前确认“体温”测量模式; 2、保持额温计在(16~35)℃之间工作,使用时应避免阳光直晒和环境热辐射,额温计、被测者和环境温度保持热平衡为佳; 3、额温计应垂直于额头中心、眉心上方,其距离按说明书规定的要求一般为3~5cm,如未说明的按照3cm距离测量,不能紧贴被测者额头; 4、被测者前额应无水迹、汗渍、无化妆品,无帽子、毛发等遮挡物; 5、严格按照使用说明书进行操作。

●红外耳温计 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移; 3、耳温计须配备一次性卫生耳套使用,避免多人使用交叉感染; 4、严格按照仪器使用说明书进行操作。 [遇到红外额温计数值不准怎么办?] 1、确认是否选择“体温”模式; 2、防止额温计长时间暴露在低温环境,一般不超过3分钟,要采取适当保温措施; 3、测量多次取平均值,一般两次测量数据之差不超过0.3℃; 4、人员长时间在寒冷环境下会导致额温偏低,可转移至温暖环境中复测; 5、如出现较大误差或异常情情况时,可用玻璃体温计或电子体温计核查进行数据修正。 ●简易修正方法: 第一步:在相同环境条件下,同时用玻璃体温计(或电子体温计)和红外额温计测量多名健康人员的体温,可测量多次,分别记录玻璃体温计(或电子体温计)和红外额温计测量平均值,两者的差距为修正值; 第二部:使用红外额温计测量时,测量值加上修正值即为人员体温。 [温馨提示] 1、红外测温仪可用于初筛,一旦发现体温异常,应使用经玻璃体温计或医用电子体温计进行二次确认,作为诊断最终依据。 2、如发现红外测温仪数据误差大、示值重复性差、性能不稳定的,则建议停止使用,送计量技术机构校准,并结合校准数据使用,以减少测量误差。 3、测量前20~30分钟要避免剧烈运动、进食、喝酒、喝冷水或热水、冷敷或热敷。测量时须严格按照仪器使用说明执行。

影响红外热像仪测温精度的因素

(1)被测物体的发射率 发射率是描述被测物体相对于黑体发射能量大小的物理量,不同物体的发射率是不同的。红外热像仪从被测物体上得到的发射能量大小与被测物体的发射率成正比,在测量过程中,若不注意被测物体的发射率,且红外热像仪的发射率设定不当,就会导致测量的温度与物体实际温度之间存在误差。发射率还与测量的角度有关,测量的角度越大,误差越大。 不同物体的发散率 (2)红外热像仪的空间分辨率 红外热像仪的空间分辨率是指单只敏感元件经光学系统变换后投射到空间的视场角,以毫弧度(mrad)表示,它的每一个敏感元件都可以看作1台红外热像仪,因而红外热像仪的空间分辨率相当于红外热像仪的距离系数。在实际应用中,时常会忽略测温仪的距离系数,结果导致测量误差很大。当红外热像仪在远距离测量小目标时,应选择距离系数较大的红外热像仪来保证其测温准确性。

空间分辨率 (3)红外热像仪测温范围的设定 测温范围时红外热像仪非常重要的一个性能指标,每种型号的红外热像仪都有自己特定的测温范围。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精确度越高,测温越准确;测温范围过宽,精确度会降低,误差较大。因此,用户在选择红外热像仪时必须考虑准确、周全,既不要过窄,也不要过宽。 (4)环境对红外测温工作的影响 由于大气(水蒸气、二氧化碳等)的吸收作用,红外辐射在传输过程中会有一定程度的能量衰减,但大多数红外热像仪没有针对这一情况的补偿手段,因此,在室外进行红外测温时,为减少误差,应选择在无雨、无雾、大气相对湿度不超过75%的环境条件下进行。 红外热像仪广泛应用于电力、铁路、化工、安防等多个领域,但其可靠性、准确性受许多因素影响,在实际使用中,应充分考虑各种可能影响测量准确性的因素,采取正确有效的方法获取真实数据。

红外测温的理论依据.

第一章人体红外线测温仪的理论依据 1.1黑体辐射与红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。 物体的红外辐 射能量的大小及其按波长的分布一一与它的表面温度有着十分密切的关系。 因此,通过对物 体自身辐射的红外能量的测量, 便能准确地测定它的表面温度, 这就是红外辐射测温所依据 的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体, 它吸收所有波长的辐射能量,没有能量的 反射和透过,其表面的发射率为 1,其它的物质反射系数小于1,称为灰体。应该指出,自然 界中并不 存在真正的黑体, 但是为了弄清和获得红外辐射分布规律, 在理论研究中必须选择 合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型, 从而导出了普朗克黑体辐射 的定律,即以波长表示的黑体光谱辐射度, 这是一切红外辐射理论的出发点, 故称黑体辐射 定律。 由于黑体的光谱辐射功率 Pb (入T )绝对温度T 之间满足普朗克定理: P b T 二 (1) ' f exp c 2 ■ T - 1 其中,Pb (入T —黑体的辐射出射度; 入一波长; T —绝对温度; c1、c2—辐射常数。 式(1 )说明在绝对温度 T 下,波长应单位面积上黑体的辐射功率为 Pb (入T 。根据这个关 系可以得到下图1的关系曲线: 从图1中可以看出: (1) 随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外 测温仪的设计依据。 (2) 随着温度升高,辐射峰值向短波方向移动 (向左),并满足维恩位移定理 T * Am = 2897.8 g*K ,峰值处的波长 加与绝对温度T 成反比,虚线为 加处峰值连线。这个公式告诉我们 为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3) 辐射 能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高 (灵 9OOk XC|xm ) 图1黑体辐射的光谱分析

红外测温仪操作使用方法

红外测温仪操作使用法 1.操作测温仪 测温仪会在按下扳机或按下黄色键时打开。若连续8秒钟没有检测到活动,测温仪会自动关闭。测量温度时,将测温仪瞄准目标,拉起并保持扳机按下不动。松开扳机以保持温度读数。一定要考虑距离与光点尺寸比以及视场。激光仅用于瞄准目标物体。 1)找出热点或冷点 要找出热点或冷点,将测温仪瞄准目标区域之外。然后,缓慢地上下移动以扫描整个区域,直到找到热点或冷点为止。见图 5。 图5 找出热点或冷点 2)距离与光点尺寸 随着与被测目标距离(D)的增大,仪器所测区域的光点尺寸(S)变大。光点尺寸表示 90 % 圆能量。当测温仪与目标之间的距离为 1000 mm(100 in),产生 20 mm(2 in)的光点尺寸时,即可取得最大 D:S。见图 6。 图6 距离与光点尺寸

3)视场 要确保目标大于光点的大小。目标越小,则应离它越近。(见图7) 图7 视场 4)发射率 发射率表征的是材料能量辐射的特征。大多数有机材料和涂漆或氧化处理表面的发射率大约为。如果可能,可用遮蔽胶带或无光黑漆(< 150 ℃/302℉)将待测表面盖住并使用高发射率设置,补偿测量光亮的金属表面可能导致的错误读数。等待一段时间,使胶带或油渍达到与下面被覆盖物体的表面相同的温度。测量盖有胶带或油漆的表面温度。 如果不能涂漆或使用胶带,可使用发射率选择器来提高您的测量准确度。即使是使用发射率选择器,对带有光亮或金属表面的目标也很难取得完全准确的红外测量值。 5)用户设置操作 SET键:循环切换设置状态,循环次序为发射率设定锁定测量设定℃/℉选择设定正常测量。按黄色键可直接保存设置并退出。 6)发射率设定 此功能为改变发射率的值。 设定时“E=0.”字样闪烁。 单击▲递加,长按快速增加,当加到后停止。 单击▼递减,长按快速减少,当减到后停止。 可根据不同被测物体设置相应的发射率。请参见表2。表所列的发射率设置为对典型情况的建议。您的特定情况可能有所不同。 7)锁定测量设定 此功能设定锁定测量打开或关闭,锁定测量打开后,无需抠扳机仪表保持正常测量;锁定测量关闭后,用户抠住扳机仪表正常测量,放开扳机仪表自动保持测量结果。设定时屏幕下显示“SET”及“on”或“oFF”。单击▲/▼循环选择“on” /“oFF”。 8)℃/℉选择设定 此功能选择仪表显示℃或℉。 设定时屏幕下显示“SET”。 单击▲/▼循环选择“℃”/ “℉”。 9)HAL限值设定 此功能为设定高限值操作,测量时温度高过此值时连续蜂鸣报警。 按黄色键切换至屏幕下显示“HAL”字样,单击▲递增,长按快速增加,当

红外热像仪的辐射定标和测温误差分析

红外热像仪的辐射定标和测温误差分析 非接触红外测温技术由于不影响和改变温度场分布、能远距离测量、测温范围宽等优点被广泛应用。但因物体的发射率一般小于1,会反射周围物体辐射、太阳辐射等进入光学系统,导致热像仪的显示温度不同于物体的真实温度,结果往往造成错误判断,给使用者带来麻烦和经济损失。 因此考虑各种影响因素,消除测温误差,在应用方面有着重要的价值。本文通过对热像仪进行光谱辐射定标,实现了温度测量。 对影响测温精度的因素进行了分析和探讨,提出了对测温结果进行修正的办法。利用标准面黑体源在实验室条件下对红外热像仪进行校准,建立了图像灰度均值与黑体温度之间的数学模型。 分析了目标到红外系统的测试距离对测温精度的影响。利用红外热像仪探测面上照度与像方孔径角的关系,对测试距离的影响进行了理论分析;比较了不同距离处测量温度与真实温度的差别。 理论分析了发射率测量误差、环境温度测量误差对测温精度的影响。得到如下结论:物体温度越高,发射率设定不准引起的测温误差越大;物体的温度升高,环境背景的温度测量不准引起的测温误差将变小。 因此在测温时,如果物体的温度远高于环境温度时,则发射率的影响不容忽视,当物体温度低于或者和环境温度接近时,环境温度的影响将变大,需要对测温结果进行修正。进一步研究了红外热像仪内部温度对测温精度的影响,结果表明:探测器的工作温度不同,探测器响应状态也不同,导致测温结果不同。 测温时保持探测器内部温度和校准时相同,能有效避免因两者差异导致的系统误差。为实现三波段成像,利用一个能响应三波段的探测器共用一个光学系统,

实现了照相机在紫外、可见、近红外波段的成像。 测定了三个不同波段滤光片的透射率,利用积分球均匀光源实现了三波段照相机的光谱辐射定标,对应不同曝光时间(0.125-8 ms有7档可调),建立了探测器输出图像灰度均值和输入辐亮度的关系,为相机适应不同波段清晰成像提供了适当曝光参数选择。

红外测温实验报告

红外测温方法 1.温度测量的基本概念 温度是度量物体冷热程度的物理量。在生产生活和科学实验中占有重要的地位。是国际单位之中的基本物理量之一。从能量角度来看,温度是描述系统不同自由度的能量发布状况的物理量。从热平衡角度来看,温度是描述热平衡系统冷热程度的物理量。从微观上看,温度温度标志着系统内部分子无规则运动的剧烈程度。温度高的物体分子平均动能大,温度低的无题分子平均动能小。早期人们凭感觉出发,凭感觉到的冷热程度来区别温度的高低,这样的出来的结果不准确。研究表明,几乎所有的物质性质都与温度有关。例如尺寸,体积,密度,硬度,弹性模量,破坏强度,电导率,导磁率,光辐射强度等。利用这些性质及其随温度变化规律可进行温度测量。也就是说,温度只能通过物体随温度变化的某些特征来间接测量。而用来测量温度的尺标称为温标。它规定了温度的读数起点(零点)和基本单位。目前国际上用的较多的是华氏温标,摄氏温标,热力学温标和国际实用温标。 2. 红外测温原理,方法和适用范围 2.1红外测温原理 物体处于绝对温度零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波的形式向外辐射能量。波长涉及紫外,可见,红外光区。物体的红外辐射量的大小几千波长的分布与它的表面温度有着十分密切的关系。因此,通过物体自身红外辐射能量便能准确的确定其表面温度。这就是红外辐射测温所应用的原理。 2.2红外测温仪结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内置的算法和目标发射率校正、环境温度补偿后转变为被测目标的温度值。除此之外还应考虑目标和测温仪的环境条件,如温度,气压,污染和干扰等因素对其性能的影响和修正方法。 2.3红外测温仪器的种类 红外测温仪对于原理可分为单色测温仪和双色测温仪。对于单色测温仪,在例行测温时,检测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视场干扰测温读数,造成误差。相反,如果目

红外测温仪的工作原理及检定数据处理方法探讨

红外测温仪的工作原理及检定数据处理方法探讨Working Principle of Infra-Red Thermometer and Discussion of the Method Verification Data Processing 张 钦 (成都市计量监督检定测试院,四川成都610021) 摘 要:本文主要介绍红外测温仪的工作原理、特点、阐述如何进行精确测温及详细探讨检定后的数据处理方法。 关键词:红外测温仪;发射率;辐射温度;斯忒潘-波尔兹曼定律 1 红外测温仪的工作原理及特点 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。红外辐射能量的大小按波长的分布与它的表面温度有着十分密切的关系。因此,通过对物体自身发出的红外能量的测量,便能准确地测出它的表面温度。红外测温仪能接收多种物体自身发射出的不可见红外辐射能量。红外辐射是电磁频谱的一部分,红外位于可见光和无线电波之间。当仪器测温时,被测物体发射出的红外辐射能量,通过测温仪的光学系统在探测器上转为电信号,并通过红外测温仪的显示部分显示出被测物体的表面温度。 红外测温仪特点:非接触式测量,测温范围广,响应速度快,灵敏度高。但由于受被测对象的发射率影响,几乎不可能测到被测对象的真实温度,测量的是表面温度。2 红外测温仪精确测温的重要因素 红外测温仪确保测温精度最重要的因素是发射率,到光斑的距离、光斑的位置,视场。 (1)所有的物体都会反射、透过(对于不透明的材料透射率为0)和发射能量,但只有发射的能量能指示物体温度,当红外测温仪测量表面温度时,仪器能接收到所有这三种能量,因此测温仪必须调节为能读出发射的能量,测量误差通常由其他光源反射的红外能量引起的。 有些测温仪可以改变发射率,测温时应尽可能地设置成与被测材料相同的发射率值,尽可能使测量示值与被测物的真实温度一致。而大多数仪器的发射率固定予置为0.95,该发射率的温度计对于大多数有机材料、油漆或氧化表面的表面温度进行测量时就要用一种黑胶带或平光黑漆涂于被测表面加以补偿。使黑胶带或黑漆达到与基底材料相同温度时,测量胶带或漆表面的温度,即为真实温度。 (2)距离与光斑之比(D:S),光学分辨率定义为仪器到物体的距离与被测光斑尺寸之比(D:S)。比值越大,仪器的分辨率越好,且被测光斑尺寸也就越小。红外测温仪的光学系统从圆形测量光斑收集能量并聚焦在探测器上。注意:激光瞄准只有用以帮助瞄准在测量点上。 (3)视场,确保目标大于仪器测量时的光斑尺寸,目标越小,就应离它越近,当精度特别重要时,要确保目标至少2倍于光斑尺寸。 3 检定红外测温仪时的注意事项 在规程中只说明了怎样瞄准辐射源靶面和怎样读数,为了保证检定时红外温度计的精确测温还应注意以下事项: (1)有些测量仪可以改变发射率,检定时要将发射率置为1。大多数红外测温仪的发射率固定予置为0.95。 (2)为了准确测温,将仪器对准辐射源靶面的靶心,保证安排好距离和光斑尺寸之比、视场。按触发器在仪器的LCD上读出温度数据。 (3)不能透过玻璃进行测温,玻璃有很特殊的反射和透过特性,不允许精确红外测温。但可通过红外窗口测温。 (4)注意环境条件:水蒸汽、灰尘、烟雾、二氧化碳等中间介质。它阻挡仪器的光学系统而影响精确测温。 (5)环境温度,如果测温仪突然暴露在环境温差为20度或更高的情况下,允许仪器在20分钟内调节到新的环境温度。 4 检定时的数据处理 在规程中是以标准铂电阻、标准热电偶或标准光学高温计作为参考标准的,用它们测出的实际温度与被检温度点的偏离值来计算红外测温计在被检温度点的示值。即以下计算公式:(见规程JJG415-2001,P6) t′N=(t′1+t′2)/2(1) T′N=t′N-Δt N(2)Δt N=T N-T标(3)式中:t′N—温度计在被检温度点的平均实测温度值,℃; t′1,t′2—温度计在被检温度点的两次实测温度值,℃; Δt N—实际温度偏离被检温度点引起的温度差值,℃; T′N—温度计在被检温度点的示值,℃; T N—参考标准在被检温度点平均实测温度值,℃; T标—参考标准在被检温度点检定证书上给出的温   46 《计量与测试技术》2008年第35卷第8期

红外测温仪使用指南

2 附件红外测温仪使用指南 红外测温仪是一种非接触式测温仪器,通过探测被测秒测温,达到物体发出的红外辐射来测量其温度。最快1 快速筛查体温异常的目的,并防止交叉传染。种类][(红外热成像筛检仪)红外人体表面温度快速筛检仪●多点测温图像识别追踪,适用于机场口岸、地铁、车站、码头、医院等人流密集的场合,超温报警用于体温异常人员的快速筛查。 红外体表温度计(红外额温计)●适用于企事业单位、住宅、社区等人流较少的场合,易于便携适合移动巡检,目前大量应用于防疫控制中。红外耳温计● 通过耳腔和鼓膜测量体温,适用于家庭、个人及严格消毒的医院非发热普通门诊。 ] 准确性[- 1 - 红外耳温计>红外额温计>红外筛检仪] [使用须知●红外热成像筛检仪1、通电预热,与环境达 到热平衡后再使用;、避免强电磁干扰,无较大的气流,环境条件应保持2 恒定,温度不应有较大变化;、当被测者来

自与测量环境温度差异较大时,建议等3 5候(~10)分钟,两者达到热平衡后再测量为佳;、保持设备的探测镜头干净整洁,避免触碰损伤镜4 头,影响测量准确性。●红外额温计1、使用前确认“体温”测量模式;)℃之间工作,使用时应避16~35、保持额温计在(2额温计、被测者和环境温度保持,免阳光直晒和环境热辐射热平衡为佳;- 2 - 、额温计应垂直于额头中心、眉心上方,其距离按说3,如未说明的按照明书规定的要求,一般为()cm3~5 3cm距离测量为佳,不能紧贴被测者额头;、被测者前额应无水迹、汗渍、无化妆品,无帽子、4 毛发等遮挡物;、严格按照使用说明书进行操作。5红外耳温计● 1、测量前保持耳道清洁,清理耳垢等污物; 2、测量时对准耳道和鼓膜中心位置,不偏不移;、耳温计须配备一次性卫生耳套使用,避免多人使用3 交叉感染;、严格按照仪器使用说明书进行操作。4 ] [遇到红外额温计数值不准怎么办?、确认是否选择“体温”模式,以及是否还有足够电1 量;- 3 - 32、防止额温计长时间暴露在低温环境,一般不超过分钟,要采取适当保温措施;、测量多次取平均值,一般两次测量

相关文档
最新文档