法拉第电磁感应定律知识点及例题

合集下载

(完整版)第二讲 法拉第电磁感应定律考点分类精析(DOC)

(完整版)第二讲 法拉第电磁感应定律考点分类精析(DOC)

第二讲 法拉第电磁感应定律知识点1、感应电动势和感应电流产生的条件的理解核心知识总结:1、在电磁感应现象中产生的电动势叫感应电动势。

2、对感应电动势的理解要注意以下几个方面:(1)不管电路是否闭合,只要穿过电路的磁通量发生变化,都产生感应电动势.(2)产生感应电动势的部分导体相当于电源,该部分导体的的电阻相当于内阻。

(3)要产生感应电流,电路必须闭合,感应电流大小不仅与感应电动势大小有关,还与闭合电路的电阻有关,即感应电流的大小为I 感=E 感/(R 外+r 内)。

只要穿过回路的磁通量发生变化,就产生感应电动势;如果回路闭合,则可以产生感应电流.考题1、如图所示,在匀强磁场中,MP 、PQ 是两根平行的金属导轨,而ab 、cd 为串有电压表和电流表的两根金属棒,初两表外其余电阻不计,当两棒同时以相同速度向右运动时,用Uab 和Ucd 分别表示a 、b 间和c 、d 间的电势差,下列说法正确的有( )。

A.电压表无读数,电流表无读数 B 。

电压表有读数,电流表无读数 C.Uab>Ucd D. Uab=Ucd 答案:AC解析:此题考查对电磁感应现象的理解和对电压表、电流表示数的理解.两棒以相同速度向右运动时,因穿过面abcd 的磁通量不变,回路中没有感应电流,电流表和电压表均不会有读数。

Uab>0,Ucd 〈0 . 变式1-1、如图所示,在匀强磁场中放有与磁场方向垂直的金属线圈abcd ,在下列叙述中正确的是() A 、在线圈沿磁场方向平动过程中,线圈中有感应电动势,而无感应电流(以下简称有势无流) B 、在线圈沿垂直磁场方向平动过程中,线圈中有势无流。

C 、当线圈以bc 为轴转动时,线圈中有势有流。

D 、当线圈以cd 为轴转动时,线圈中无势无流.答案:C [ 线圈垂直于磁场方向水平平动时,线圈总电动势为零,电流为零。

线圈沿磁场方向平动,磁通量不变,也不切割磁感线,无电动势,无电流。

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析

高考物理法拉第电磁感应定律习题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。

导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。

已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。

则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。

【考点】考查电磁感应知识。

举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。

【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。

【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。

(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。

一轮复习--法拉第电磁感应定律

一轮复习--法拉第电磁感应定律

Blvsin θ
.
.
Blv
1 2 Bl ω 2
(平均速度等于中点位置线速度
1 lω). 2
例 4. (2010·山东理综·21)如图 4 所示,空间存在两个磁 场,磁感应强度大小均为 B,方向相反且垂直纸面, MN 、PQ 为其边界,OO ′为其对称轴.一导线折成边 长为 L 的正方形闭合回路 abcd,回路在纸面内以恒定 速度 v 0 向右运动,当运动到关于 OO′对称的位置时 ( A.穿过回路的磁通量为零 B.回路中感应电动势大小为 BL v 0 C.回路中感应电流的方向为顺时针方向 D.回路中 ab 边与 cd 边所受安培力方向相反 ) 图4
答案
C
由楞次定律知电容器 P 板带负电,故 D 选项正确.
【例 2】
如图 2 所示, 一个电阻值为 R 、 匝数为 n 的圆形金属线圈与阻值为
2R 的电阻 R 1 连接成闭合回路.线圈的半径为 r1, 在线圈中半径为 r2 的圆 形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度 B 随时间 t 变 化的关系图线如图(b)所示.图线与横、纵轴的截距分别为 t0 和 B 0. 导线 的电阻不计.求 0 至 t1 时间内:
一轮复习电磁感应第二课时
法拉第电磁感应定律 及自感现象
考点梳理
一、法拉第电磁感应定律 1. 感应电动势 (1)感应电动势:在 相当于
电磁感应现象 中产生的电动势.产生感应电动势的那部分导体就 电源 ,导体的电阻相当于 电源内阻 . 闭合电路欧姆
定律,即 I=
(2)感应电流与感应电动势的关系:遵循 2. 法拉第电磁感应定律
E R+r
.
(1)内容: 闭合电路中感应电动势的大小, 跟穿过这一电路的

法拉第电磁感应定律知识点及例题培训讲学

法拉第电磁感应定律知识点及例题培训讲学

法拉第电磁感应定律知识点及例题第3讲 法拉第电磁感应定律及其应用一、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

二、法拉第电磁感应定律 公式一: t n E ∆∆=/φ注意: 1)该式普遍适用于求平均感应电动势。

2)E 只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

公式tnE ∆∆=φ中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时S tBn E ∆∆=, 此式中的∆∆B t 叫磁感应强度的变化率, 若∆∆Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。

2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φt表示磁通量变化的快慢,公式二: θsin Blv E =要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

高中人教物理选择性必修二第2章第1节法拉第电磁感应定律

高中人教物理选择性必修二第2章第1节法拉第电磁感应定律

第二章 电磁感应第2节 法拉第电磁感应定律一、电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体相当于电源. (2)在电磁感应现象中,只要闭合回路中有感应电流,这个回路就一定有感应电动势;回路断开时,虽然没有感应电流,但感应电动势依然存在.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =ΔΦΔt .若闭合导体回路是一个匝数为n 的线圈,则E =n ΔΦΔt .①若ΔΦ仅由磁场变化引起,则表达式可写为E =n ΔBΔt S .②若ΔΦ仅由回路的面积变化引起,则表达式可写为E =nB ΔSΔt .3、Φ、ΔΦ、ΔΦΔt的比较磁通量Φ 磁通量的变化量ΔΦ 磁通量的变化率ΔΦΔt物理 意义某时刻穿过磁场中某个面的磁感线条数在某一过程中穿过某个面的磁通量的变化量穿过某个面的磁通量变化的快慢大小 计算Φ=BS ⊥ΔΦ=⎩⎪⎨⎪⎧Φ2-Φ1B ·ΔS S ·ΔBΔΦΔt =⎩⎪⎨⎪⎧|Φ2-Φ1|ΔtB ·ΔSΔtΔB Δt ·S注意穿过某个面有方向相反的磁场时,则不能直接应用Φ=B ·S .应考虑相反方向的磁通量抵消以后所开始和转过180°时,平面都与磁场垂直,但穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S 而不既不表示磁通量的大小也不表示变化的多少.在Φt 图象中,可用图线的斜率表示剩余的磁通量 是零4、磁通量的变化率ΔΦΔt 是Φ-t 图像上某点切线的斜率大小.如图中A 点磁通量变化率大于B 点的磁通量变化率.二、导体切割磁感线时的感应电动势 1.垂直切割导体棒垂直于磁场运动,B 、l 、v 两两垂直时,如图甲,E =Bl v .2.不垂直切割导线的运动方向与导线本身垂直,但与磁感线方向夹角为 θ时,如图乙,则E =Bl v 1=Bl v sin_θ. 3、对公式E =Blv sin θ的理解(1)对 θ的理解:当B 、l 、v 三个量方向互相垂直时, θ=90°,感应电动势最大;当有任意两个量的方向互相平行时, θ=0°,感应电动势为零.(2)对l 的理解:式中的l 应理解为导线切割磁感线时的有效长度,如果导线不和磁场垂直,l 应是导线在与磁场垂直方向投影的长度;如果切割磁感线的导线是弯曲的,如图所示,则应取与B 和v 垂直的等效直线长度,即ab 的弦长.(3)对v 的理解①公式中的v 应理解为导线和磁场间的相对速度,当导线不动而磁场运动时,也有电磁感应现象产生.②公式E =Bl v 一般用于导线各部分切割磁感线速度相同的情况,若导线各部分切割磁感线的速度不同,可取其平均速度求电动势.如图所示,导体棒在磁场中绕A 点在纸面内以角速度ω匀速转动,磁感应强度为B ,平均切割速度v =12v C =ωl 2,则E =Bl v =12Bωl 2.4.公式E =Bl v sin θ与E =n ΔΦΔt的对比E =n ΔΦΔtE =Bl v sin θ区别研究对象 整个闭合回路 回路中做切割磁感线运动的那部分导体 适用范围 各种电磁感应现象 只适用于导体切割磁感线运动的情况计算结果 Δt 内的平均感应电动势某一时刻的瞬时感应电动势联系E =Bl v sin θ是由E =n ΔΦΔt 在一定条件下推导出来的,该公式可看做法拉第电磁感应定律的一个推论【例题1】 如图所示,半径为r 的金属圆环,其电阻为R ,绕通过某直径的轴OO ′以角速度ω匀速转动,匀强磁场的磁感应强度为B .从金属圆环的平面与磁场方向平行时开始计时,求金属圆环由图示位置分别转过30°角和由30°角转到330°角的过程中,金属圆环中产生的感应电动势各是多大?[思路点拨] (1)确定磁感线穿过圆环的有效面积; (2)了解磁通量正负号的含义; (3)确定不同角度转过的时间. [答案] 3Bωr 2 35Bωr 2[解析] 初始位置时穿过金属圆环的磁通量Φ1=0;由图示位置转过30°角时,金属圆环在垂直于磁场方向上的投影面积为S 2=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ2=BS 2=12B πr 2;由图示位置转过330°角时,金属圆环在垂直于磁场方向上的投影面积为S 3=πr 2sin 30°=12πr 2,此时穿过金属圆环的磁通量Φ3=-BS 3=-12B πr 2.所以金属圆环在转过30°角和由30°角转到330°角的过程中磁通量的变化量分别为 ΔΦ1=Φ2-Φ1=12B πr 2,ΔΦ2=Φ3-Φ2=-B πr 2,又Δt 1= θ1ω=π6ω=π6ω,Δt 2= θ2ω=5π3ω=5π3ω.此过程中产生的感应电动势分别为 E 1=ΔΦ1Δt 1=12B πr 2π6ω=3Bωr 2,E 2=|ΔΦ2Δt 2|=B πr 25π3ω=35Bωr 2.[例2] 如图所示,有一半径为R 的圆形匀强磁场区域,磁感应强度为B ,一条足够长的直导线以速度v 进入磁场.从直导线进入磁场至匀速离开磁场区域的过程中,求:(1)感应电动势的最大值为多少?(2)在这一过程中感应电动势随时间变化的规律如何?(3)从开始运动至经过圆心的过程中直导线中的平均感应电动势为多少? [思路点拨] (1)求瞬时感应电动势选择E =Bl v . (2)求平均感应电动势选择E =n ΔΦΔt .(3)应用E =Bl v 时找准导线的有效长度. [答案] (1)2BR v (2)2B v 2R v t -v 2t 2(3)12πBR v[解析] (1)由E =Bl v 可知,当直导线切割磁感线的有效长度l 最大时,E 最大,l 最大为2R ,所以感应电动势的最大值E =2BR v .(2)对于E 随t 变化的规律应求的是瞬时感应电动势,由几何关系可求出直导线切割磁感线的有效长度l 随时间t 变化的情况为l =2R 2-(R -v t )2,所以E =2B v 2R v t -v 2t 2.(3)从开始运动至经过圆心的过程中直导线的平均感应电动势E =ΔΦΔt =12πBR 2R v=12πBR v .1.(多选)单匝矩形线圈在匀强磁场中匀速运动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图所示,则O ~D 过程中( )A .线圈中O 时刻感应电动势最大B .线圈中D 时刻感应电动势为零C .线圈中D 时刻感应电动势最大D .线圈中O 至D 时间内平均感应电动势为0.4 V2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀增大到2B ,在此过程中,线圈中产生的感应电动势为( )A.na 2B 2ΔtB.a 2B 2ΔtC.na 2B ΔtD.2na 2B Δt3.(多选)关于感应电动势的大小,下列说法不正确的是( ) A .穿过闭合电路的磁通量最大时,其感应电动势一定最大 B .穿过闭合电路的磁通量为零时,其感应电动势一定为零C .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定为零D .穿过闭合电路的磁通量由不为零变为零时,其感应电动势一定不为零 4.如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水平速度v 0抛出,运动过程中棒的方向不变,不计空气阻力,那么金属棒内产生的感应电动势将( )A .越来越大B .越来越小C .保持不变D .方向不变,大小改变5、如图所示,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a -b -c -aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a -c -b -a6、如图所示,A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环的平面向里.当磁场的磁感应强度随时间均匀增大的过程中,流过两导线环的感应电流大小之比为( )A.I AI B =1 B.I AI B =2 C.I A I B =14D.I A I B =127、如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计.已知金属杆MN 倾斜放置,与导轨成 θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A .电路中感应电动势的大小为Bl vsin θB .电路中感应电流的大小为B v sin θrC .金属杆所受安培力的大小为B 2l v sin θrD .金属杆的热功率为B 2l v 2r sin θ8.(多选)如图所示,三角形金属导轨EOF 上放有一根金属杆AB ,在外力作用下,保持金属杆AB 和OF 垂直,以速度v 匀速向右移动.设导轨和金属杆AB 都是用粗细相同的同种材料制成的,金属杆AB 与导轨接触良好,则下列判断正确的是( )A .电路中的感应电动势大小不变B .电路中的感应电流大小不变C .电路中的感应电动势大小逐渐增大D .电路中的感应电流大小逐渐增大9.一个面积为S =4×10-2 m 2、匝数为n =100匝的线圈放在匀强磁场中,磁场方向垂直于线圈平面,磁感应强度B 随时间t 变化的规律如图所示,则下列判断正确的是( )A .在开始的2 s 内穿过线圈的磁通量的变化率等于8 Wb/sB .在开始的2 s 内穿过线圈的磁通量的变化量等于零C .在开始的2 s 内线圈中产生的感应电动势的大小等于8 VD .在第3 s 末线圈中的感应电动势等于零10.(多选)如图所示,单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通量Φ随时间t 的关系可用图像表示,则( )A .在t =0时刻,线圈中的磁通量最大,感应电动势也最大B .在t =1×10-2 s 时刻,感应电动势最大 C .在t =2×10-2 s 时刻,感应电动势为零D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零11.如图所示,面积为0.2 m 2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面.已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4 Ω,求:(1)磁通量变化率及回路的感应电动势; (2)a 、b 两点间电压U ab .12.如图甲所示,轻质细线吊着一质量m =0.32 kg 、边长L =0.8 m 、匝数n =10的正方形线圈,总电阻为r =1 Ω,边长为L2的正方形磁场区域对称分布在线圈下边的两侧,磁场方向垂直纸面向里,大小随时间的变化关系如图乙所示,从t =0开始经t 0时间细线开始松弛,g 取10 m/s 2.求:(1)从t =0到t =t 0时间内线圈中产生的电动势; (2)从t =0到t =t 0时间内线圈的电功率; (3)t 0的值.1.【答案】:ABD【解析】:由法拉第电磁感应定律知线圈中O 至D 时间内的平均感应电动势E =ΔΦΔt =2×10-30.012 V =0.4V ,D 项正确;由感应电动势的物理意义知,感应电动势的大小与磁通量的大小Φ和磁通量的改变量ΔΦ均无必然联系,仅由磁通量的变化率ΔΦΔt 决定,而任何时刻磁通量的变化率ΔΦΔt 就是Φ-t 图像上该时刻切线的斜率,不难看出O 时刻处切线斜率最大,D 点处切线斜率最小为零,故A 、B 正确,C 错误.2.【答案】:A【解析】:正方形线圈内磁感应强度B 的变化率ΔB Δt =BΔt ,由法拉第电磁感应定律知,线圈中产生的感应电动势为E =nS ΔB Δt =n ·a 22·B Δt =na 2B2Δt,选项A 正确.3.【答案】:ABC【解析】:磁通量的大小与感应电动势的大小不存在内在的联系,故A 、B 错;当磁通量由不为零变为零时,闭合电路的磁通量发生改变,一定有感应电流产生,有感应电流就一定有感应电动势,故C 错,D 对.4.【答案】:C【解析】:由于导体棒中无感应电流,故棒只受重力作用,导体棒做平抛运动,水平速度v 0不变,即切割磁感线的速度不变,故感应电动势保持不变,C 正确.5、【答案】:C【解析】:金属框abc 平面与磁场平行,转动过程中磁通量始终为零,所以无感应电流产生,选项B 、D 错误.转动过程中bc 边和ac 边均切割磁感线,产生感应电动势,由右手定则判断U a <U c ,U b <U c ,选项A 错误.由转动切割产生感应电动势的公式得U bc =-12Bl 2ω,选项C 正确.6、【答案】:D【解析】:A 、B 两导线环的半径不同,它们所包围的面积不同,但穿过它们的磁场所在的区域面积是相等的,所以两导线环上的磁通量变化率是相等的,E =ΔΦΔt =ΔB Δt S 相同,得E A E B =1,I =E R ,R =ρlS (S 为导线的横截面积),l =2πr ,所以I A I B =r B r A ,代入数值得I A I B =r B r A =12.7、【答案】:B【解析】:由电磁感应定律可知电路中感应电动势为E =Bl v ,A 错误;感应电流的大小I =Bl v r l sin θ=B v sin θr ,B 正确;金属杆所受安培力的大小F =B B v sin θr ·l sin θ=B 2l v r ,C 错误;热功率P =(B v sin θr )2r l sin θ=B 2l v 2sin θr ,D 错误.8、【答案】:BC【解析】:设三角形金属导轨的夹角为θ,金属杆AB 由O 点经时间t 运动了v t 的距离,则E =B v t ·tan θ·v ,电路总长为l =v t +v t tan θ+v t cos θ=v t (1+tan θ+1cos θ),又因为R =ρl S ,所以I =ER =B v S sin θρ(1+sin θ+cos θ),I 与t 无关,是恒量,故选项B 正确.E 逐渐增大,故选项C 正确.9.【答案】:C【解析】:在开始的2 s 内,磁通量的变化量为ΔΦ=|-2-2|×4×10-2 Wb =0.16 Wb ,磁通量的变化率ΔΦΔt =0.08 Wb/s ,感应电动势大小为E =n ΔΦΔt=8 V ,故A 、B 错,C 对;第3 s 末虽然磁通量为零,但磁通量的变化率为0.08 Wb/s ,感应电动势不等于零,故D 错.10.【答案】:BC【解析】:由法拉第电磁感应定律知E ∝ΔΦΔt,故t =0及t =2×10-2 s 时刻,E =0,A 错,C 对.t =1×10-2s ,E 最大,B 对.0~2×10-2 s ,ΔΦ≠0,E ≠0,D 错. 11.【答案】:(1)0.04 Wb/s 4 V (2)2.4 V 【解析】:(1)由B =(2+0.2t )T 得ΔBΔt =0.2 T/s ,故ΔΦΔt =S ΔBΔt=0.04 Wb/s , E =n ΔΦΔt=4 V.(2)线圈相当于电源,U ab 是外电压,则 U ab =ER 1+R 2R 1=2.4 V .12.【答案】:(1)0.4 V (2)0.16 W (3)2 s 【解析】:(1)由法拉第电磁感应定律得 E =n ΔΦΔt =n ΔB Δt ×12×⎝⎛⎭⎫L 22=0.4 V .(2)I =Er =0.4 A ,P =I 2r =0.16 W.(3)分析线圈受力可知,当细线松驰时有 F 安=nB t 0I ·L 2=mg ,I =E r ,则B t 0=2mgrnEL =2 T.由图象知B t 0=1+0.5 t 0(T),解得t 0=2 s.。

法拉第电磁感应定律压轴题知识归纳总结含答案解析

法拉第电磁感应定律压轴题知识归纳总结含答案解析一、高中物理解题方法:法拉第电磁感应定律1.光滑平行的金属导轨MN 和PQ,间距L=1.0m,与水平面之间的夹角α=30°,匀强磁场磁感应强度B=2.0T,垂直于导轨平面向上,MP 间接有阻值R=2.0Ω的电阻,其它电阻不计,质量m=2.0kg 的金属杆ab 垂直导轨放置,如图(a)所示.用恒力F 沿导轨平面向上拉金属杆ab,由静止开始运动,v−t 图象如图(b)所示.g=10m/s 2,导轨足够长.求:(1)恒力F 的大小;(2)金属杆速度为2.0m/s 时的加速度大小;(3)根据v−t 图象估算在前0.8s 内电阻上产生的热量.【答案】(1)18N(2)2m/s 2(3)4.12J【解析】【详解】(1)由题图知,杆运动的最大速度为4/m v m s =, 有22sin sin m B L v F mg F mg Rαα=+=+安,代入数据解得F=18N . (2)由牛顿第二定律可得:sin F F mg ma α--=安 得222222212sin 182100.52/2/2B L v F mg R a m s m s m α⨯⨯----⨯⨯===, (3)由题图可知0.8s 末金属杆的速度为1 2.2/v m s =,前0.8s 内图线与t 轴所包围的小方格的个数约为28个,面积为28×0.2×0.2=1.12,即前0.8s 内金属杆的位移为 1.12x m =, 由能量的转化和守恒定律得:211sin 2Q Fx mgx mv α=--, 代入数据解得: 4.12J Q =.【点睛】本题电磁感应与力学知识的综合,抓住速度图象的两个意义:斜率等于加速度,“面积”等于位移辅助求解.估算位移时,采用近似的方法,要学会运用.2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L2的矩形匀强磁场区域,磁感应强度大小均为B,方向如图。

法拉第电磁感应定律习题知识归纳总结附答案解析

法拉第电磁感应定律习题知识归纳总结附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。

一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。

已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:(1)金属棒匀速运动的速度大小;(2)金属棒与金属导轨间的动摩擦因数μ;(3)金属棒经过efgh区域时定值电阻R上产生的焦耳热。

第4节 法拉第电磁感应定律(附详细答案)

第4节 法拉第电磁感应定律要点一 对比磁通量Φ、磁通量的变化量ΔΦ、磁通量的变化率ΔΦΔt物理量 单位 物理意义 公式磁通量Φ Wb 表示某时刻或某位置时穿过某一面积的磁感线条数的多少Φ=BS ⊥磁通量的 变化量ΔΦ Wb 表示在某一过程中穿过某一面积的磁通量变化的多少ΔΦ=Φ2-Φ1 磁通量的 变化率ΔΦΔtWb/s 表示穿过某一面积的磁通量变化的快慢 Φ2-Φ1Δt 1.E =Bl v sin θ是由E =n ΔΦΔt在一定条件下推导出来的,该公式可看作法拉第电磁感应定律的一个推论.2.式中的l 应理解为导线切割磁感线时的有效长度,如果导线不和磁场垂直,l 应是导线在磁场垂直方向投影的长度,式中v sin θ表示导体切割磁感线时,速度在垂直于磁感应强度方向的分量.3.E =Bl v sin θ适用于匀强磁场中导体切割磁感线时感应电动势的计算.通常用于计算某个时刻或某个位置感应电动势的瞬时值.4.列表对比一、怎样处理电磁感应和电路综合问题?解决与电路相联系的电磁感应问题的基本方法如下:1.明确哪一部分导体或电路产生感应电动势.该导体或电路就是电源,其他部分是外电路.2.用法拉第电磁感应定律或导体切割磁感线公式计算感应电动势大小.3.将电磁感应产生的电源与电路整合起来,作出等效电路.4.运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路性质及电压、电功率分配等公式进行求解.二、若导体棒绕其一侧端点以角速度ω匀速转动切割磁感线,则感应电动势的大小怎么计算?当导体绕其一端点以角速度ω做匀速转动切割磁感线时,公式E =Bl v 中的v 不能以rω来进行代替,而应该用导体中点处的速度,即导体棒不同点上的平均速度来代替,其感应电动势的表达式为:E =Bl ·12ωl =12Bl 2ω(平均速度取中点位置,此位置的线速度为12ωl ). 三、导体切割磁感线产生感应电动势的计算公式中的l 是不是一定为导体的实际长度?不一定.若导体是曲折的,则应为导体的有效切割长度.导线的有效切割长度为导体的两个端点在v、B所决定平面的垂线上的投影长度.如图所示的三种情况下的感应电动势相同.一、法拉第电磁感应定律的理解【例1】关于电磁感应产生感应电动势大小的正确表述是()A.穿过导体框的磁通量为零的瞬间,线框中的感应电动势有可能很大B.穿过导体框的磁通量越大,线框中感应电动势一定越大C.穿过导体框的磁通量变化量越大,线框中感应电动势一定越大D.穿过导体框的磁通量变化率越大,线框中感应电动势一定越大二、法拉第电磁感应定律的灵活应用【例2】如图所示,水平放置的平行金属导轨,相距l=0.50 m,左端接一电阻R=0.20 Ω,磁感应强度B=0.40 T的匀强磁场,方向垂直于导轨平面,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0 m/s的速度水平向右匀速滑动时,用两种方法求解ab棒中感应电动势的大小.1.穿过一个单匝线圈的磁通量始终保持每秒钟均匀地减少2 Wb,则()A.线圈中感应电动势每秒钟增加2 V B.线圈中感应电动势每秒钟减少2 VC.线圈中无感应电动势D.线圈中感应电动势保持不变2.有一个n匝的圆形线圈,放在磁感应强度为B的匀强磁场中,线圈平面与磁感线成30°角,磁感应强度均匀变化,线圈导线的规格不变,下列方法可使线圈中的感应电流增加一倍的是()A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.将线圈平面转至跟磁感线垂直的位置3.为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场所产生的感应电动势测水的流速.假设在某处地磁场的竖直分量为7.0×10-5 T,两个电极插入相距2.0 m的水流中,且两极所在的直线与水流的方向垂直,如果与两极相连的灵敏电压表的示数为7.0×10-5 V,则水的流速为________ m/s.4.一个200匝、面积20 cm2的圆线圈,放在匀强磁场中,磁场的方向与线圈平面成30°角,磁感应强度在0.05 s内由0.1 T增加到0.5 T.在此过程中,穿过线圈的磁通量变化量是________,磁通量的平均变化率是________,线圈中感应电动势的大小为________.题型①法拉第电磁感应定律和楞次定律的综合应用矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流i的正方向,下列各图中正确的是()思维步步高 楞次定律判断感应电流的基本步骤是什么?电流方向在哪一个时刻发生改变?为什么?电流是恒定的电流吗?拓展探究 一航天飞机下有一细金属杆,杆指向地心,若仅考虑地磁场的影响,则当航天飞机位于赤道上空( )A .由东向西水平飞行时,金属杆中感应电动势的方向一定由上向下B .由西向东水平飞行时,金属杆中感应电动势的方向一定由上向下C .沿经过地磁极的那条经线由南向北水平飞行时,金属杆中感应电动势的方向一定由下向上D .沿经过地磁极的那条经线由北向南水平飞行时,金属杆中一定没有感应电动势 题型 ② 导体切割磁感线时的电磁感应综合问题两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A .释放瞬间金属棒的加速度等于重力加速度gB. 金属棒向下运动时,流过电阻R 的电流方向为a →bC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .电阻R 上产生的总热量等于金属棒重力势能的减少拓展探究 如图所示,平行于y 轴的导体棒以速度v 向右做匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀强磁场区域,导体棒中的感应电动势E 与导体棒的位置x 关系的图象是( )1.条形磁铁放在光滑的水平面上,以条形磁铁的中央位置的正上方某点为圆心,水平固定一铜质圆环如图所示,不计空气阻力,以下判断中正确的是( )A .释放圆环,下落过程中环的机械能守恒B .释放圆环,环下落时磁铁对桌面的压力比磁铁的重力大C .给磁铁水平向右的初速度,磁铁向右运动的过程中做减速运动D .给磁铁水平向右的初速度,圆环将受到向左的磁场力2.穿过闭合回路的磁通量Φ随时间t 变化的图象分别如图所示.下列关于回路中产生的感应电动势的论述中正确的是( )A .图①中回路产生的感应电动势恒定不变B .图②中回路产生的感应电动势一直在变大C .图③中回路0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势D .图④中回路产生的感应电动势先变小再变大3.某同学在实验室里熟悉各种仪器的使用,他将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边.当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致.经过操作,该同学在计算机上得到了如图乙所示的图像.该同学猜测磁感应强度传感器内有一线圈,当测得磁感应强度最大时就是穿过线圈的磁通量最大时.按照这种猜测( )A .在t =0.1 s 时刻,线圈内产生的感应电流的方向发生了变化B.在t=0.15 s时刻,线圈内产生的感应电流的方向发生了变化C.在t=0.1 s时刻,线圈内产生的感应电流的大小达到了最大值D.在t=0.15 s时刻,线圈内产生的感应电流的大小达到了最大值4.闭合的金属环处于随时间均匀变化的匀强磁场中,磁场方向垂直于圆环平面,则()A.环中产生的感应电动势均匀变化B.环中产生的感应电流均匀变化C.环中产生的感应电动势保持不变D.环上某一小段导体所受的安培力保持不变5.关于感应电动势,下列说法中正确的是()A.电源电动势就是感应电动势B.产生感应电动势的那部分导体相当于电源C.在电磁感应现象中没有感应电流就一定没有感应电动势D.电路中有电流就一定有感应电动势6.如图所示,PQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别是PS和PQ的中点.关于线框中的感应电流,正确的说法是()A.当E点经过边界MN时,线框中感应电流最大B.当P点经过边界MN时,线框中感应电流最大C.当F点经过边界MN时,线框中感应电流最大D.当Q点经过边界MN时,线框中感应电流最大7.在图中MN、GH为平行导轨,AB、CD为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,则()A.如果AB和CD以相同的速度向右运动,则回路内一定有感应电流B.如果AB和CD以不同的速度向右运动,则回路内一定有感应电流C.如果AB和CD以相同的速度分别向右和向左运动,则回路内无感应电流D.如果AB不动,CD以一定的速度运动,则回路内一定有感应电流8.两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q.求:(1)ab运动速度v的大小.(2)电容器所带的电荷量q.。

高考物理法拉第电磁感应定律-经典压轴题及答案

一、法拉第电磁感应定律l. 如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为£=0.1m, 磁场间距为21, —正方形金属线框质量为m = 0.1kg,边长也为[,总电阻为R=0.Q2 Q. 现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时be边始终与磁场边界平行.当h = 2L时,be边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.txxxxxxxX..X..X..X n(1)求磁感应强度B的人小;(2)若h>2L,磁场不变,金属线框be边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度力;(3)求在(2)情形中,金属线框经过前门个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1T (2) 0.3 m (3) 0.3nJ【解析】【详解】(1) 当h=2L时,be进入磁场时线框的速度v =(2gh = = 2m/ s此时金属框刚好做匀速运动,则有:mg=BIL又r E BLvI =—= -----R R联立解得叫浮代入数据得:3 = 1T(2)当h>2L时,be边第一次进入磁场时金属线框的速度即有mg < BI Q L又已知金属框be边每次出磁场时都刚好做匀速运动,经过的位移为L,设此时线框的速度为则有V2 = v2 + 2gL解得:v z = 5/6111 / S根据题意可知,为保证金属框be边每次出磁场时都刚好做匀速运动,则应有v' = v =』2gh即有力=0.3m(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Qo,则根据能量守恒有:丄mv2 + tng(2L)=丄mv2 + Q2代入解得:a=0.3J则经过前n个磁场区域时线框上产生的总的焦耳热Q=nQo=0.3nJo2. 如图(a)所示,间距为/、电阻不计的光滑导轨固定在倾角为/的斜面上。

在区域丨内有方向垂直于斜面的匀强磁场,磁感应强度为3;在区域II内有垂直于斜面向下的匀强磁场,其磁感应强度&的大小随时间r变化的规律如图(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名师总结 优秀知识点 第3讲 法拉第电磁感应定律及其应用

一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,

由磁通量的广义公式中BS·sin(是B与S的夹角)看,磁通量的变化可由面积的变化S引起;可由磁感应强度B的变化B引起;可由B与S的夹角的变化引起;也可由B、S、中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

二、法拉第电磁感应定律 公式一: tnE/ 注意: 1)该式普遍适用于求平均感应电动势。 2)E只与穿过电路的磁通量的变化率/t有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

公式tnE中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况:

1)回路与磁场垂直的面积S不变, 磁感应强度发生变化, 由BS, 此时StBnE, 此式中的Bt叫磁感应强度的变化率, 若Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则BS·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量, 磁通量的变化量B磁通量的变化率t, 磁通量BS·, 表示穿过研究平面的磁感

线的条数, 磁通量的变化量21, 表示磁通量变化的多少, 磁通量的变化率t表示磁通量变化的快慢,

公式二: sinBlvE 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(lB )。 2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。 公式BlvE一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l的导体杆AC绕A点在纸面内以角速度匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B, 求AC产生的感应电动势, 显然, AC各部分切割磁感线的速度不相等, vvlAC0,, 且AC上各点的线速度大小与半径成

正比, 所以AC切割的速度可用其平均切割速vvvvlACC222, 故221lBE。

22

1BLE——当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其

两端感应电动势为E。

公式三:···SBnEm——面积为S的纸圈,共n匝,在匀强磁场B中,以角速度匀速转坳,其转轴与磁 名师总结 优秀知识点 场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势mE。 如图所示,设线框长为L,宽为d,以转到图示位置时,ab边垂直磁场方向向纸外运动,切割磁感线,速度为vd·2(圆运动半径为宽边d的一半)产生感应电动势

····BSdBLvBLE212

,a端电势高于b端电势。

cd边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势BSE21。c端电势高于e端电势。

bc边,ae边不切割,不产生感应电动势,b.c两端等电势,则输出端M.N电动势为BSEm。

如果线圈n匝,则···SBnEm,M端电势高,N端电势低。 参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值mE,如从图示位置转过一个角度,则圆运动线速度v,在垂直磁场方向的分量应为vcos,则此时线圈的产生感应电动势的瞬时值即作最大值cos.mEE.即作最大值方向的投影,cos···SBnE(是线圈平面与磁场方向的夹角)。 当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。

●总结:计算感应电动势公式:

为平均感应电动势。是平均速度,则如为即时感应电动势。是即时速度,则如EvEvBLvE

22

1BLE(道理同上)

,为即时感应电动势。应电动势。为这段时间内的平均感是一段时间,otEttnE



cos···SBnE

(是线圈平面与磁场方向的夹角)。





夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··cosSBnEBSnE

m

注意:区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在t内迁移的电量(感应电量)为RnttRntREtIq, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。 例题分析

例1:如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边F L

1

L2 B

v 名师总结 优秀知识点 缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀速拉出磁场的过程中,⑴拉力的大小F; ⑵拉力的功率P; ⑶拉力做的功W; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。 解:这是一道基本练习题,要注意计算中所用的边长是L1还是L2 ,还应该思考一下这些物理量与速度v之间有什么关系。

⑴vRvLBFBILFREIvBLE22222,,,

⑵22222vRvLBFvP ⑶vRvLLBFLW12221 ⑷vWQ ⑸ RtREtIq与v无关 特别要注意电热Q和电荷q的区别,其中Rq与速度无关!

例2:如图所示,竖直放置的U形导轨宽为L,上端串有电阻R(其余导体部分的电阻都忽略不计)。磁感应强度为B的匀强磁场方向垂直于纸面向外。金属棒ab的质量为m,与导轨接触良好,不计摩擦。从静止释放后ab保持水平而下滑。试求ab下滑的最大速度vm 解:释放瞬间ab只受重力,开始向下加速运动。随着速度的增大,感应电动势E、感应电流I、安培力F都随之增大,加速度随之减小。当F增大到F=mg时,加速度变为零,这时ab达到最大速度。

由mgRvLBFm22,可得22LBmgRvm 这道题也是一个典型的习题。要注意该过程中的功能关系:重力做功的过程是重力势能向动能和电能转化的过程;安培力做功的过程是机械能向电能转化的过程;合外力(重力和安培力)做功的过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使电能全部转化为内能。这时重力的功率等于电功率也等于热功率。 进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab下落一段距离后再闭合电键,那么闭合电键后ab的运动情况又将如何?(无论何时闭合电键,ab可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。

例3:如图所示,U形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R。从t=0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B=kt,(k>0)那么在t为多大时,金属棒开始移动?

解:由tE= kL1L2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于

安培力F=BIL∝B=kt∝t,所以安培力将随时间而增大。当安培力增大到等于最大静摩擦力时,ab将开始向左移动。这时有:2212211,LLkmgRtmgRLkLLkt

例4:如图所示,xoy坐标系y轴左侧和右侧分别有垂直于纸面向外、向里的匀强磁场,磁感应强度均为B,一个围成四分之一圆形的导体环oab,其圆心在原点o,半径为R,开始时在第一象限。从t=0起绕o点以角速度ω逆时针匀速转动。试画出环

b a B L1

L2

R a b m L

y o x ω B a b 名师总结 优秀知识点 RvlBF22

内感应电动势E随时间t而变的函数图象(以顺时针电动势为正)。 解:开始的四分之一周期内,oa、ob中的感应电动势方向相同,大小应相加;第二个四分之一周期内穿过线圈的磁通量不变,因此感应电动势为零;第三个四分之一周期内感应电动势与第一个四分之一周期内大小相同而方向相反;第四个四分之一周期内感应电动势又为零。感应电动势的最大值为Em=BR2ω,周期为T=2π/ω,图象如右。

例5:如图所示,矩形线圈abcd质量为m,宽为d,在竖直平面内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d,线圈ab边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热? 解:ab刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q =2mgd。

例6:如图所示,水平面上固定有平行导轨,磁感应强度为B的匀强磁场方向竖直向下。同种合金做的导体棒ab、cd横截面积之比为2∶1,长度和导轨的宽均为L,ab的质量为m ,电阻为r,开始时ab、cd都垂直于导轨静

止,不计摩擦。给ab一个向右的瞬时冲量I,在以后的运动中,cd的最大速度vm、最大加速度am、产生的电热各是多少? 解:给ab冲量后,ab获得速度向右运动,回路中产生感应电流,cd受安培力作用而加速,ab受安培力而减速;当两者速度相等时,都开始做匀速运动。所以开始时cd的加速度最大,最终cd的速度最大。全过程系统动能的损失都转化为电能,电能又转化为内能。由于ab、cd横截面积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt∝R,所以cd上产生的电热应该是回路中产生的全部电热的2/3。又根据已知得ab的初速度为v1=I/m,

因此有:2/,,2,1mFaBLIFrrEIBLvEm ,解得rmILBam22232。最后的共同速度为vm=2I/3m,系统动能损失为ΔEK=I 2/ 6m,其中cd上产生电热Q=I 2/ 9m

例7:如图所示,水平的平行虚线间距为d=50cm,其间有B=1.0T的匀强磁场。一个正方形线圈边长为l=10cm,线圈质量m=100g,电阻为R=0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h=80cm。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g=10m/s2,求:⑴线圈进入磁场过程中产生的电热Q。⑵线圈下边缘穿越磁场过程中的最小速度v。⑶线圈下边缘穿越磁场过程中加速度的最小值a。 解:⑴由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过程中产生的电热Q就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q=mgd=0.50J ⑵3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有

相关文档
最新文档