二阶常微分方程的级数解法及本征值问题

合集下载

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用

二阶微分方程的常见求解方法和应用二阶微分方程是一类重要的数学模型,在物理和工程学科中得到广泛应用。

本文将介绍几种常见的二阶微分方程求解方法,并探讨其在科学研究和工程实践中的应用。

一、常系数齐次二阶微分方程常系数齐次二阶微分方程形式为:$$ y''+ay'+by=0 $$其中,a和b是常数。

该方程的通解可以用特征方程求解。

特征方程为:$$ r^2+ar+b=0 $$如果特征方程有两个不同的实根$r_1$和$r_2$,通解为:$$ y=c_1e^{r_1x}+c_2e^{r_2x} $$如果特征方程有一个重根$r_1$,通解为:$$ y=(c_1+c_2x)e^{r_1x} $$如果特征方程有两个共轭复根$\alpha\pm\beta i$,通解为:$$ y=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x) $$二、非齐次二阶线性微分方程非齐次二阶线性微分方程形式为:$$ y''+ay'+by=f(x) $$其中,f(x)是已知的函数。

我们可以通过猜测特解的形式,利用常数变易法求解。

通常,特解的形式取决于f(x)的形式。

常见的特解形式包括:1. f(x)是常数:特解形式为$y=k$,其中k是常数。

2. f(x)是mx+n型函数:特解形式为$y=mx+n$,其中m和n是常数。

3. f(x)是$e^{ax}$型函数:特解形式为$y=Ae^{ax}$,其中A是常数。

4. f(x)是三角函数型函数:特解形式为$y=A\cos bx+B\sin bx$,其中A和B是常数。

5. f(x)是多项式型函数:特解形式为$y=P_n(x)$,其中P_n(x)是n次多项式。

特解计算出来后,将通解与特解相加即可得到非齐次线性微分方程的通解。

三、应用二阶微分方程在科学研究和工程实践中有着广泛的应用。

以下是一些例子:1. 振动问题:二阶微分方程可以用来描述物体的振动状态。

二阶常微分方程的数值求解 ppt课件

二阶常微分方程的数值求解 ppt课件

zk 1
zk
h 6
( L1
2 L2
2 L3
L4 ),
K1 zk , L1 f ( xk , yk , zk ),
K
2
zk
h 2
L1 ,
h
h
h
L2 f ( xk 2 , yk 2 K1 , zk 2 L1 ),
Байду номын сангаас
K3
zk
h 2
L2 ,
h
h
h
L3 f ( xk 2 , yk 2 K 2 , zk 2 L2 ),
%***** R-K4 Method*****% K1=RK_z(i); L1=rightf_sy二s1阶(x常(i微),分R方K程_y的(数i),值R求K解_z(i)); K2=RK_z(i)+0.5*h*L1;
% K1 and L1
L2=rightf_sys1(x(i)+0.5*h,RK_y(i)+0.5*h*K1,RK_z(i)+0.5*h*L1); % K2 and L2
clc;clear; h=0.1; a=0;b=2; x=a:h:b; y(1)=1; z(1)=-1; for i=1:length(x)-1
y(i+1)=y(i)+h*z(i); z(i+1)=z(i)+h*y(i); end plot(x,y,'r+',x,exp(-x),'k-'); xlabel('Variable x'); ylabel('Variable y');
二阶常微分方程的数值求解
二阶常微分方程的数值求解
一. 教学要求

二阶常系数微分方程解法

二阶常系数微分方程解法

二阶常系数微分方程解法微分方程是数学中一个非常重要的部分,它描述了很多现实生活和科学问题。

其中,二阶常系数微分方程是应用广泛的一种类型的微分方程,其解法也相对较为简单,下面将详细介绍解这类微分方程的方法。

一、二阶常系数微分方程的定义和形式二阶常系数微分方程指的是形如 y''+ay'+by=f(x) 的微分方程,其中 y、f(x)均为函数,a和b均为常数。

这类微分方程中,y”表示 y 对自变量 x 的二次导数,y'表示 y 对 x 的一次导数。

二、特征方程法解二阶常系数微分方程最常用的方法是特征方程法。

根据 y=Ae^{mx} 这种形式,我们可以将 y" 和 y' 带入 y 中,得到以下等式:(Ae^{mx})''+a(Ae^{mx})'+bAe^{mx}=0化简后可得:m^2+am+b=0以上所得到的方程式称为特征方程,解特征方程的根 m_{1}, m_{2} 就可以得到二阶常系数微分方程的通解。

1、特征方程有两个不相等的实根如果特征方程有两个不相等的实根 m_{1} 和 m_{2},那么通解为:y=C_{1}e^{m_{1}x}+C_{2}e^{m_{2}x}其中,C_1、C_2 为任意常数,分别由初始值条件所决定。

2、特征方程有两个相等的实根如果特征方程有两个相等的实根 m,那么通解为:y=(C_1+C_2x)e^{mx}其中,C_1、C_2 为任意常数。

3、特征方程有两个共轭复根如果特征方程有两个共轭复根α+iβ 和α-iβ,那么通解为:y=e^{αx}(C_1\cos βx+C_2\sin βx)其中,C_1、C_2为任意常数。

三、拉普拉斯变换法除了特征方程法外,拉普拉斯变换法也可以用来求解二阶常系数微分方程。

我们将 y、y' 和 y" 进行拉普拉斯变换,得到:L\{y''\}=s^2Y(s)-sy(0)-y'(0)L\{y'\}=sY(s)-y(0)L\{y\}=Y(s)将以上三个式子带入二阶常系数微分方程中,消去 Y(s),就可以得到:s^2Y(s)-sy(0)-y'(0)+a(sY(s)-y(0))+bY(s)=F(s)其中 F(s) 为右侧函数的拉普拉斯变换。

二阶常微分方程的求解方法和应用

二阶常微分方程的求解方法和应用

二阶常微分方程的求解方法和应用二阶常微分方程是指包含了二阶导数或者二次项的一类微分方程。

解决这类微分方程是理应掌握的技能,因为它们在许多自然科学和工程学科中都有着广泛的应用。

在本文中,我们将讨论二阶常微分方程的求解方法以及它们的常见应用。

一、二阶常微分方程的基本形式二阶微分方程的一般形式是:$f''(x)+p(x)f'(x)+q(x)f(x)=g(x)$其中,函数f是要求解的未知函数,x是自变量,p(x)和q(x)是已知函数,g(x)是已知的函数或常数。

通常,二阶微分方程左侧的三项可以看作是二阶导数f''(x)、一阶导数f'(x)和f(x)对自变量x的线性组合。

这个线性组合中的系数p(x)和q(x)通常是自变量x的函数。

二、二阶微分方程的解法1.特解法特解法适用于在右侧有特殊类型函数的情况下,比如方程右侧是常数、指数函数、三角函数等。

因为这种情况下函数在取微分后与自身的形式变化不大,因此我们可以借助类似的解来猜测:如果右侧的g(x)是Acos(ax)+Bsin(ax),那么我们可以尝试将函数f(x)猜测为Ccos(ax)+Dsin(ax)的形式,其中C和D是待求解的常数。

特解法的主要优点是简单易懂,特别是对于初学者而言。

但是,它有一个缺点:并不能解决更复杂的情况,比如右侧是分段函数的情况,因此需要用到其他解法。

2.变量分离法变量分离法是二阶微分方程求解的一种另类方法,它将原方程转换成一个含有单个未知函数但双变量的方程。

比如:$y''+y=0$方程左边的两项y''和y可以看作是函数y和y'的函数。

将方程拆开成两个修正的一阶方程,使用变量分离法来解决,得到:$\frac{dy}{dx}=u$$\frac{du}{dx}=-y$求解上述方程后,我们可以得到原始二阶微分方程的一般解:$y=Acos(x)+Bsin(x)$在实际应用中,变量分离法非常实用,例如在电工电子工程学里,它被用于模拟LC振荡器、无源滤波器等等。

09 - 二阶ODE级数解法、本征值问题

09 - 二阶ODE级数解法、本征值问题

数学物理方法
2010-5-23
3 / 54
. 特殊函数 ODE . .1 . 常点邻域上的级数解法 . .2 . 正则奇点邻域上的级数解法 . .3 . Sturm-Liouville 本征值问题 . .4
齐海涛 (山东大学威海分校)
数学物理方法
2010-5-23
4 / 54
柱坐标系与球坐标系
z . (x, y, z) . r . θ . . φ . x .
数学物理方法 2010-5-23
(1.1)
(1.2) (1.3)
齐海涛 (山东大学威海分校)
5 / 54
球坐标系下的 Laplace 方程
(1.2) 为 Euler 型 ODE, 其解为 R(r) = Crl + D 1 . rl+1 (1.4)
以 Y(θ, φ) = Θ(θ)Φ(φ) 代入球函数方程 (1.3), 进一步分离变数得 ( ) Φ d dΘ Θ d2 Φ sin θ + + l(l + 1)ΘΦ = 0. sin θ dθ dθ sin2 θ dφ2 ( ) sin θ d dΘ 1 d2 Φ ⇒ sin θ + l(l + 1) sin2 θ = − = λ. Θ dθ dθ Φ dφ2 这就分解为两个 ODE Φ′′ + λΦ = 0, Φ(φ + 2π) = Φ(φ). ( ) d dΘ sin θ sin θ + [l(l + 1) sin2 θ − λ]Θ = 0. dθ dθ
(1.21)
(1.22)
此式叫作 m 阶虚宗量 Bessel 方程.
齐海涛 (山东大学威海分校) 10 / 54
波动方程

幂级数解法

幂级数解法

n =1
由于正交关系(12.2.12),上式右边除 n = m 的一项之外全为零,
ò ò b
a f (x ) ym (x )r(x )dx
=
fm
b a
[
ym
(x
)]2
r
(x
)dx

ò N
2 m
=
b a
[
ym
(x
)]2
r
(x
)dx
(12.2.9)
把积分(12.2.15)的平方根 Nm 叫作 ym (x) 的模.于是
dx (1­ x2 )[Pl (x)]2
综合可得如下结论:
(12.1.9)
(1)当 l 不是整数时,勒让德方程在区间[-1,1] 上无有界的解.
(2)当 l = n 为整数时,勒让德方程的通解为 y(x) = c1Pn (x) + c2Qn (x) ,其中 Pn (x) 称为第
一类勒让德函数(即勒让德多项式), Qn (x) 称为第二类勒让德函数.
dx
dx
. (12.2.2)
施图姆-刘维尔型方程(12.2.1)附加以齐次的第一类、第二类或第三类边界条件,或
自然边界条件,就构成施图姆-刘维尔本征值问题.
讨论
(1) a = -1,b = +1; k(x) = 1 - x2 , q(x) = 0, r(x) = 1.
或 a = 0,b = π ,k(q ) = sinq , q(q ) = 0, r (q ) = sinq .再加上自然边界条件:y(±1)
ò 1
fm
=
N
2 m
b
a f (x ) ym (x )r (x )dx
(12.2.10)

数理方法资料1

课程介绍数学物理方法是物理类专业的必修课和重要基础课,也是一门公认的难道大的课程。

该课程通常在本科二年级开设,既会涉及到先行课高等数学和普通物理的内容,又与后续课程密切相关。

故这门课学习情况的好坏,将直接关系到后继课四大力学和专业课程的学习问题,也关系到学生分析问题解决问题的能力的提高问题。

如何将这门“难教、难学、难懂”的课变为“易教、易学、易懂”的课,一直是同行教师十分关注的问题。

本课程包括复变函数论、数学物理方程、特殊函数、非线性方程和积分方程共四篇的内容。

其中,第一篇复变函数论又含解析函数、解析函数积分、无穷级数、解析延拓·Г函数和留数理论五章;第二篇数理方程又包括:定解问题、行波法、分离变量法、积分变换法和格林函数法五章;第三篇特殊函数又包括勒让德多项式、贝塞耳函数、斯特姆-刘维本征值问题三章;而第四篇包括非线性方程、积分方程两章。

第一、二、三篇为传统数学物理方法课程所含内容,而第四篇是为了适应学科发展需要所引入的传统同类教材中没有的与前沿科学密切相关的新内容。

《数学物理方法》是物理系本科各专业学生必修的重要基础课,是在"高等数学"课程基础上的又一重要的基础数学课程,它将为进行下一步的专业课程学习提供基础的数学处理工具。

所以,本课程受到物理系学生和老师的重视。

对一个物理问题的处理,通常需要三个步骤:一、利用物理定律将物理问题翻译成数学问题;二、解该数学问题;三、将所得的数学结果翻译成物理,即讨论所得结果的物理意义。

因此,物理是以数学为语言的,而"数学物理方法"正是联系高等数学和物理专业课程的重要桥梁。

本课程的重要任务就是教会学生如何把各种物理问题翻译成数学的定解问题,并掌握求解定解问题的多种方法,如分离变数法、付里叶级数法、幂级数解法、积分变换法、保角变换法、格林函数法、电像法等等。

近十几年来,负责厦门大学物理系"数学物理方法"课程教学的教师共有三位(朱梓忠教授,张志鹏,李明哲副教授),他们都是中青年教师,均获得物理方面的理学博士学位。

二阶常微分方程解

第七节 二阶常系数线性微分方程的解法在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解.本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法.先讨论二阶常系数线性齐次方程的求解方法.§ 二阶常系数线性齐次方程及其求解方法设给定一常系数二阶线性齐次方程为22dx y d +p dxdy +qy =0 其中p 、q 是常数,由上节定理二知,要求方程的通解,只要求出其任意两个线性无关的特解y 1,y 2就可以了,下面讨论这样两个特解的求法.我们先分析方程可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,dx dy,y 各乘以常数因子后相加等于零,如果能找到一个函数y,其22dx y d ,dxdy ,y 之间只相差一个常数因子,这样的函数有可能是方程的特解,在初等函数中,指数函数e rx,符合上述要求,于是我们令y =e rx其中r 为待定常数来试解将y =e rx,dxdy=re rx,22dx y d =r 2e rx代入方程得 r 2e rx +pre rx +qe rx=0或 e rxr 2+pr +q =0因为e rx≠0,故得r 2+pr +q =0由此可见,若r 是二次方程r 2+pr +q =0的根,那么e rx 就是方程的特解,于是方程的求解问题,就转化为求代数方程的根问题.称式为微分方程的特征方程.特征方程是一个以r 为未知函数的一元二次代数方程.特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论.1若特证方程有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程的两个特解.因为 x r xr 21e e =e x)r r (21-≠常数所以e r1x ,e r2x 为线性无关函数,由解的结构定理知,方程的通解为y =C 1e r1x +C 2e r2x2若特征方程有两个相等的实根r 1=r 2,此时p 2-4q =0,即有r 1=r 2=2p-,这样只能得到方程的一个特解y 1=e r 1x,因此,我们还要设法找出另一个满足12y y ≠常数,的特解y 2,故12y y 应是x 的某个函数,设12y y =u,其中u =ux 为待定函数,即 y 2=uy 1=ue r 1x对y 2求一阶,二阶导数得dx dy 2=dxdu e r1x+r 1ue r1x=dx du +r 1uer1x 222dx y d =r 21u +2r 1dx du +22dx ud e r1x将它们代入方程得r 21u +2r 1dx du +22dxu d e r1x+p dxdu +r 1uer1x+que r1x =0或22dx u d +2r 1+p dxdu+r 21+pr 1+que r1x =0因为e r1x ≠0,且因r 1是特征方程的根,故有r 21+pr 1+q =0,又因r 1=-2p故有2r 1+p =0,于是上式成为 22dxu d =0 显然满足22dxud =0的函数很多,我们取其中最简单的一个 ux =x则y 2=xe rx 是方程的另一个特解,且y 1,y 2是两个线性无关的函数,所以方程的通解是y =C 1e r1x +C 2xe r1x =C 1+C 2xe r1x3若特征方程有一对共轭复根 r 1=α+i β,r 2=α-i β此时方程有两个特解y 1=eα+i βxy 2=eα-i βx则通解为y =C 1e α+i βx +C 2e α-i βx其中C 1,C 2为任意常数,但是这种复数形式的解,在应用上不方便.在实际问题中,常常需要实数形式的通解,为此利用欧拉公式e ix =cosx +isinx,e -ix =cosx -isinx有 21e ix+e -ix=cosxi 21e ix-e -ix=sinx21 y 1+y 2=21e αxe i βx+e -i βx=e αxcos βxi 21 y 1-y 2=i21e αxe i βx-e -i βx=e αxsin βx由上节定理一知,21 y 1+y 2,i21y 1-y 2是方程的两个特解,也即eαxcosβx,e αx sin βx 是方程的两个特解:且它们线性无关,由上节定理二知,方程的通解为y =C 1e αx cos βx +C 2e αx sin βx或 y =e αx C 1cos βx +C 2sin βx其中C 1,C 2为任意常数,至此我们已找到了实数形式的通解,其中α,β分别是特征方程复数根的实部和虚部.综上所述,求二阶常系数线性齐次方程的通解,只须先求出其特征方程的根,再根据他的三种情况确定其通解,现列表如下特征方程r 2+pr +q =0的根微分方程22dx y d +p dx dy+qy =0的通解有二个不相等的实根r 1,r 2y =C 1e r1x+C 2e r2x有二重根r 1=r 2y =C 1+C 2xe r1x有一对共轭复根β-α=β+α=i r i r 21y =e αx C 1cos βx +C 2sin βx例1. 求下列二阶常系数线性齐次方程的通解1 22dx y d +3dx dy-10y =0 2 22dx y d -4dx dy +4y =0 3 22dx y d +4dxdy +7y =0 解 1特征方程r 2+3r -10=0有两个不相等的实根r 1=-5,r 2=2所求方程的通解 y =C 1e -5r+C 2e 2x2特征方程r 2-4r +4=0,有两重根 r 1=r 2=2所求方程的通解y =C 1+C 2xe 2x3特征方程r 2+4r +7=0有一对共轭复根r 1=-2+3i r 2=-2-3i所求方程的通解 y =e -2x C 1cos3x +C 2sin 3x§ 二阶常系数线性非齐次方程的解法由上节线性微分方程的结构定理可知,求二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 的通解,只要先求出其对应的齐次方程的通解,再求出其一个特解,而后相加就得到非齐次方程的通解,而且对应的齐次方程的通解的解法,前面已经解决,因此下面要解决的问题是求方程的一个特解.方程的特解形式,与方程右边的fx 有关,这里只就fx 的两种常见的形式进行讨论.一、fx =p n xe αx ,其中p n x 是n 次多项式,我们先讨论当α=0时,即当fx =p n x 时方程22dx y d +p dx dy +qy =p nx 的一个特解.1如果q ≠0,我们总可以求得一n 次多项式满足此方程,事实上,可设特解~y =Q nx =a 0x n+a 1xn -1+…+a n,其中a 0,a 1,…a n 是待定常数,将~y 及其导数代入方程,得方程左右两边都是n 次多项式,比较两边x 的同次幂系数,就可确定常数a 0,a 1,…a n .例1. 求22dx y d +dxdy+2y =x 2-3的一个特解. 解 自由项fx =x 2-3是一个二次多项式,又q =2≠0,则可设方程的特解为~y =a 0x 2+a 1x +a 2求导数~'y =2a 0x +a1~"y =2a代入方程有2a 0x 2+2a 0+2a 1x +2a 0+a 1+2a 2=x 2-3比较同次幂系数⎪⎩⎪⎨⎧-=++=+=3a 2a a 20a 2a 21a 2210100 解得 47a 21a 21a 210-=-==所以特解~y =21x 2-21x -472如果q =0,而p ≠0,由于多项式求导一次,其次数要降低一次,此时~y =Q n x 不能满足方程,但它可以被一个n +1次多项式所满足,此时我们可设~y =xQ n x =a 0x n +1+a 1x n +…+a n x代入方程,比较两边系数,就可确定常数a 0,a 1,…a n .例2. 求方程22dx y d +4dxdy=3x 2+2的一个特解. 解 自由项 fx =3x 2+2是一个二次多项式,又q =0,p =4≠0,故设特解~y =a 0x 3+a 1x 2+a 2x求导数~'y =3a 0x 2+2a 1x +a2~"y =6a 0x +2a1代入方程得12a 0x 2+8a 1+6a 0x +2a 1+4a 2=3x 2+2,比较两边同次幂的系数⎪⎩⎪⎨⎧=+=+=2a 4a 20a 6a 83a 1221010 解得 3219a 163a 41a 210=-==所求方程的特解 ~y =41x 3-163x 2+3219x3如果p =0,q =0,则方程变为22dxyd =p nx,此时特解是一个n +2次多项式,可设~y =x 2Q nx,代入方程求得,也可直接通过两次积分求得.下面讨论当α≠0时,即当fx =p n xe αx 时方程22dx y d +p dxdy +qy =p nxe αx的一个特解的求法,方程与方程相比,只是其自由项中多了一个指数函数因子e αx ,如果能通过变量代换将因子e αx 去掉,使得化成式的形式,问题即可解决,为此设y =ue αx ,其中u =ux 是待定函数,对y =ue αx ,求导得dx dy =e αxdxdu+αue αx 求二阶导数 22dx y d =e αx22dx u d +2αe αxdxdu+α2ue αx代入方程得e αx22dx u d +2αdx du +α2u +pe αxdx du +αu +que αx=p n xeαx消去e αx得22dx u d +2α+p dxdu +α2+p α+qu =p nx 由于式与形式一致,于是按的结论有:1如果α2+p α+q ≠0,即α不是特征方程r 2+pr +q =0的根,则可设的特解u =Qn x,从而可设的特解为~y =Q n xe αx2如果α2+p α+q =0,而2α+p ≠0,即α是特征方程r 2+pr +q =0的单根,则可设的特解u =xQ n x,从而可设的特解为~y =xQ n xe αx3如果r 2+p α+q =0,且2α+p =0,此时α是特征方程r 2+pr +q =0的重根,则可设的特解u =x 2Q n x,从而可设的特解为~y =x 2Q n xe αx例3. 求下列方程具有什么样形式的特解122dx y d +5dx dy +6y =e 3x 2 22dx y d +5dx dy +6y =3xe -2x 3 22dx y d +αdxdy +y =-3x 2+1e -x解 1因α=3不是特征方程r 2+5r +6=0的根,故方程具有形如~y =a 0e3x 的特解.2因α=-2是特征方程r 2+5r +6=0的单根,故方程具有形如~y =xa 0x +a 1e -2x的特解.3因α=-1是特征方程r 2+2r +1=0的二重根,所以方程具有形如~y =x 2a 0x 2+a 1x +a 2e -x的特解.例4. 求方程22dxyd +y =x -2e 3x的通解.解 特征方程 r 2+1=0特征根 r =±i 得,对应的齐次方程22dxyd +y =0的通解为 Y =C 1cos x +C 2sin x由于α=3不是特征方程的根,又p n x =x -2为一次多项式,令原方程的特解为~y =a 0x +a 1e 3x此时u =a 0x +a 1,α=3,p =0,q =1,求ux 的导数dxdu =a 0,22dx u d =0,代入22dx u d +2α+p dxdu+α2+αp +qu =x -2得: 10a 0x +10a 1+6a 0=x -2比较两边x 的同次幂的系数有⎩⎨⎧-=+=2a 6a 101a 10010 解得 a 0=101,a 1=-5013于是,得到原方程的一个特解为~y =101x -5013e3x所以原方程的通解是y =Y +~y =C 1cosx +C 2sinx +101x -5013e 3x例5. 求方程22dx y d -2dxdy-3y =x 2+1e -x的通解. 解 特征方程 r 2-2r -3=0特征根 r 1=-1,r 2=3所以原方程对应的齐次方程22dx y d -2dxdy-3y =0的通解Y =C 1e -x +C 2e 3x ,由于α=-1是特征方程的单根,又p n x =x 2+1为二次多项式,令原方程的特解~y =xa 0x 2+a 1x +a 2e -x此时 u =a 0x 3+a 1x 2+a 2x,α=-1,p =-2,q =-3对ux 求导dx du=3a 0x 2+2a 1x +a 222dx ud =6a 0x +2a 1代入22dx u d +2α+p dxdu +α2+pr +qu =x 2+1,得-12a 0x 2+6a 0-8ax +2a 1-4a 2=x 2+1比较x 的同次幂的系数有⎪⎪⎩⎪⎪⎨⎧=--==-0a 8a 6121a 1a 121000 解得 329a 0a 4a 2161a 2011-==--=故所求的非齐次方程的一个特解为~y =-4x 3x 2+4x +89e-x二、fx =p n xe αx cos βx 或p n xe αx sin βx,即求形如22dx y d +p dx dy +qy =p nxe αx cos βx 22dx y d +p dx dy+qy =p nxe αx sin βx 这两种方程的特解.由欧拉公式知道,p n xe αx cos βx,p n xe αx sin x 分别是函数p n xe α+i βx 的实部和虚部.我们先考虑方程22dx y d +p dxdy +qy =p nxe α+i βx方程与方程类型相同,而方程的特解的求法已在前面讨论.由上节定理五知道,方程的特解的实部就是方程的特解,方程的特解的虚部就是方程的特解.因此,只要先求出方程的一个特解,然而取其实部或虚部即可得方程或的一个特解.注意到方程的指数函数e α+i βx 中的α+i ββ≠0是复数,而特征方程是实系数的二次方程,所以α+i β最多只能是它的单根.因此方程的特解形为Q n xeα+i βx或x Qn xeα+i βx.例6. 求方程22dxyd -y =e xcos2x 的通解. 解 特征方程 r 2-1=0特征根 r 1=1,r 2=-1于是原方程对应的齐次方程的通解为Y =C 1e x +C 2e -x为求原方程的一个特解~y .先求方程22dxyd -y =e 1+2ix的一个特解,由于1+2i 不是特征方程的根,且p n x 为零次多项式,故可设u =a 0,此时α=1+2i,p =0,q =-1代入方程22dx u d +2α+p dxdu+α2+αp +qu =1 得1+2i 2-1a 0=1 ,即4i -4a 0=1,得a 0=)1i (41 =-81i +1这样得到22dx y d -y =e 1+2ix的一个特解y =-81i +1e 1+2ix由欧拉公式y =-81i +1e 1+2ix=-81i +1e xcos 2x +isin2x=-81e xcos2x -sin2x +icos2x +sin2x取其实部得原方程的一个特解~y =-81e xcos 2x -sin2x故原方程的通解为y =Y +~y =C 1e x+C 2e-x-81e x cos2x -sin2x 例7. 求方程22dxyd +y =x -2e 3x+xsinx 的通解.解 由上节定理三,定理四,本题的通解只要分别求22dxyd +y =0的特解Y,22dxy d +y =x -2e 3x的一个特解~1y , 22dxy d +y =x sin x 的一个特解~2y 然而相加即可得原方程的通解,由本节例4有Y =C 1cosx +C 2sinx,~1y =101x -5013e3x下面求~2y ,为求~2y 先求方程22dxy d +y =xe ix由于i是特征方程的单根,且pn x=x为一次式,故可设u=xax+a1=a0x2+a1x,此时α=i,p=0,q=1,对u 求导dxdu=2ax+a1,22dxud=2a代入方程22dxud+2α+pdxdu+α2+pα+qu=x得 2a0+2i2ax+a1+0=x即 4iax+2ia1+2a=x比较x的同次幂的系数有:⎩⎨⎧=+=a2ia21ia41得41a41i41a1=-==即方程22dxyd+y=xe ix的一个特解~y=-4ix2+41xe ix=-4ix2+41cosx+isinx=41x2sinx+41xcosx+i-41x2cosx+41xsinx取其虚部,得~2y=-41x2cos x+41x sin x 所以,所求方程的通解y =Y+~1y+~2y=C 1cosx +C 2sinx +101-513e3x-41x 2cosx +41xsinx综上所述,对于二阶常系数线性非齐次方程22dx y d +p dxdy +qy =fx 当自由项fx 为上述所列三种特殊形式时,其特解~y 可用待定系数法求得,其特解形式列表如下:自由项fx 形式特解形式fx =p n x当q ≠0时~y =Q n x当q =0,p ≠0时~y =Q n x当q =0,p =0时~y =x 2Q n xfx =p n xeαx当α不是特征方程根时~y =Q nxeαx当α是特征方程单根时~y =xQ n xe αx当α是特征方程重根时~y =x 2Q n xe αxfx =p n xe αx cos βx 或fx =p n xe αx sin βx利用欧拉公式e i βx =cos βx +isin βx,化为fx =p n xe α+i βx 的形式求特解,再分别取其实部或虚部以上求二阶常系数线性非齐次方程的特解的方法,当然可以用于一阶,也可以推广到高阶的情况.例8. 求y+3y ″+3y ′+y =e x 的通解解 对应的齐次方程的特征方程为r 3+3r 2+3r +1=0 r 1=r 2=r 3=-1所求齐次方程的通解Y =C 1+C 2x +C 3x 2e -x由于α=1不是特征方程的根因此方程的特解~y =a 0e x代入方程可解得a 0=81故所求方程的通解为y =Y +~y =C 1+C 2x +C 3x 2e -x+81e x.§ 欧拉方程下述n 阶线性微分方程a 0xnn n ax y d +a 1x n -11n 1n dxyd --+…+a n -1x dxdy+a ny =fx 称为欧拉方程,其中a 0,a 1,…a n 都是常数,fx 是已知函数.欧拉方程可通过变量替换化为常系数线性方程.下面以二阶为例说明.对于二阶欧拉方程a 0x 222dx y d +a 1x dxdy +a 2y =fx 作变量替换令x =e t,即t =ln x引入新变量t,于是有dx dy =dt dy dx dt =dt dy x 1=x 1dtdy22dx y d =dx d x 1dt dy =x 1dx d dt dy +dt dy dx d x 1 =x 122dt y d dx dt -2x 1dt dy =2x 122dt y d -2x 1dt dy 代入方程得a 022dt y d -dt dy +a 2dtdy+a 1y =fe t即 22dty d +002a a a dt dy +01a a y =0a 1fe t它是yt 的常系数线性微分方程.例9. 求x 222dx y d +x dx dy =6lnx -x1的通解. 解 所求方程是二阶欧拉方程作变换替换,令x =e t ,则dx dy =x 1dxdy22dx y d =2x 122dt y d -2x 1dt dy 代入原方程,可得 22dty d =6t -e -t两次积分,可求得其通解为 y =C 1+C 2t +t 3-e -t代回原来变量,得原方程的通解y =C 1+C 2lnx +lnx3-x1第八节 常系数线性方程组前面讨论的微分方程所含的未知函数及方程的个数都只有一个,但在实际问题中常遇到含有一个自变量的两个或多个未知函数的常微分方程组.本节只讨论常系数线性方程组,并且用代数的方法将其化为常系数线性方程的求解问题.下面以例说明.例1. 求方程组⎪⎩⎪⎨⎧=--=--)2(0y 3x 4dtdy)1(e y 2x dtdx t的通解.解 与解二元线性代数方程组中的消元法相类似,我们设法消去一个未知函数,由1得y =21 dtdx -x -e t3将其代入2得 21 22dt x d -dt dx -e t-4x -23 dtdx -x -e t=0 化简得22dt x d -4dtdx -5x =-2e t它是一个二阶常系数非齐次方程它的通解为 x =C 1e 5t+C 2e -t+41e t代入3得 y =2C 1e 5t-C 2e -t-21e t即所求方程组的通解为⎪⎪⎩⎪⎪⎨⎧--=++=--t t 2t 51t t2t 51e 21e C e C 2y e 41e C e C x例2. 求解方程组⎪⎩⎪⎨⎧++=+-=+)2(t 2y x dtdy dt dx )1(yt dt dydt dx 2的通解解 为消去y,先消去dtdy,为此将1-2得dtdx +x +2y +t =0即有 y =-21 dtdx+x +t 3代入2得dt dx -21dt d dt dx +x +t -x +21 dtdx +x +t -2t =0 即 22dt x d -2dtdx+x =3t -1 这是一个二阶常系数线性非齐次方程,解得x =C 1e t +C 2te t -3t -7代入3得 y =-C 1e t-C 221+te t+t +5 所以原方程组的通解为⎪⎩⎪⎨⎧+++--=--+=5t e )t 21(C e C y 7t 3te C e C x t2t 1t 2t 1。

二阶常系数微分方程总结

二阶常系数微分方程总结二阶常系数微分方程的求解方法及应用引言:在数学中,微分方程是一个方程,该方程中包含了未知函数的导数,是研究自然界现象变化规律的重要工具。

其中,二阶常系数微分方程是一类常见的微分方程,它具有形如f''(x)+af'(x)+bf(x)=0的形式,其中a和b为常数。

本文将从求解方法和应用两个方面对二阶常系数微分方程进行总结。

一、求解方法:1. 特征方程法:特征方程法是求解二阶常系数微分方程的常用方法。

对于f''(x)+af'(x)+bf(x)=0,我们可以假设f(x)=e^(rx)为其解,代入方程后化简得到特征方程r^2+ar+b=0。

根据特征方程的解的不同情况,可以得到方程的通解。

2. 变量分离法:对于一些特殊的二阶常系数微分方程,可以通过变量分离法求解。

首先,我们将f(x)表示为f(x)=u(x)v(x),然后将f''(x)+af'(x)+bf(x)=0带入,得到一系列关于u(x)和v(x)的方程,通过求解这些方程可以得到方程的解。

3. 初值问题求解:对于二阶常系数微分方程的初值问题,可以通过给定初始条件来求解。

首先,将方程转化为标准形式,然后代入初始条件进行求解,得到满足初始条件的特解。

二、应用:1. 自由振动:二阶常系数微分方程广泛应用于描述自由振动现象。

例如,弹簧振子的运动可以用二阶常系数微分方程来描述,其中a和b分别代表弹簧的刚度和阻尼系数。

通过求解该微分方程,可以得到弹簧振子的运动规律。

2. 电路分析:在电路分析中,电感、电容和电阻的组合经常涉及到二阶常系数微分方程。

通过建立电路方程并转化为微分方程,可以求解电路中电流和电压随时间的变化规律,为电路设计和分析提供依据。

3. 指数增长和衰减:二阶常系数微分方程也可以应用于描述指数增长和衰减的过程。

在人口增长、物质衰变等领域中,经常需要通过求解二阶微分方程来预测趋势和变化。

二阶常系数线性微分方程的解法版共11页文档

第八章 8.4讲第四节 二阶常系数线性微分方程一、二阶常系数线形微分方程的概念形如 )(x f qy y p y =+'+''(1)的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数.如果0)(≡x f ,则方程式 (1)变成0=+'+''qy y p y(2)我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常系数非齐次线性方程. 本节我们将讨论其解法.二、二阶常系数齐次线性微分方程1.解的叠加性定理 1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有将2211y C y C y +=代入方程(2)的左边,得所以2211y C y C y +=是方程(2)的解.定理1说明齐次线性方程的解具有叠加性.叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解.2.线性相关、线性无关的概念设,,,,21n y y y Λ为定义在区间I 内的n 个函数,若存在不全为零的常数,,,,21n k k k Λ使得当在该区间内有02211≡+++n n y k y k y k Λ, 则称这n 个函数在区间I 内线性相关,否则称线性无关.例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使必须0321===k k k .对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠21y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则212211,(C C y C y C y +=为任意常数)是方程式(2)的通解.例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的两个解,且≠=x y y tan 21常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解.由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,使rx e y =满足方程(2).将rx e y =求导,得把y y y ''',,代入方程(2),得因为0≠rx e , 所以只有 02=++q pr r(3)只要r 满足方程式(3),rx e y =就是方程式(2)的解.我们把方程式(3)叫做方程式(2)的特征方程,特征方程是一个代数方程,其中r r ,2的系数及常数项恰好依次是方程(2)y y y ,,'''的系数.特征方程(3)的两个根为 2422,1q p p r -±-=, 因此方程式(2)的通解有下列三种不同的情形.(1) 当042>-q p 时,21,r r 是两个不相等的实根.x r x r e y e y 2121,==是方程(2)的两个特解,并且≠=-x r r e y y )(2121常数,即1y 与2y 线性无关.根据定理2,得方程(2)的通解为x r x r e C e C y 2121+=(2) 当042=-q p 时, 21,r r 是两个相等的实根. 221p r r -==,这时只能得到方程(2)的一个特解x r e y 11=,还需求出另一个解2y ,且≠12y y 常数,设)(12x u y y =, 即 将222,,y y y '''代入方程(2), 得 整理,得由于01≠x r e , 所以 0)()2(1211=+++'++''u q pr r u p r u 因为1r 是特征方程(3)的二重根, 所以从而有 0=''u因为我们只需一个不为常数的解,不妨取x u =,可得到方程(2)的另一个解那么,方程(2)的通解为即 x r e x C C y 1)(21+=. (3) 当042<-q p 时,特征方程(3)有一对共轭复根 于是 x i x i e y e y )(2)(1,βαβα-+==利用欧拉公式 x i x e ix sin cos +=把21,y y 改写为21,y y 之间成共轭关系,取方程(2)的解具有叠加性,所以-1y ,-2y 还是方程(2)的解,并且≠==--x x e x e y y x x βββααtan cos sin 12常数,所以方程(2)的通解为 综上所述,求二阶常系数线性齐次方程通解的步骤如下:(1)写出方程(2)的特征方程(2)求特征方程的两个根21,r r(3)根据21,r r 的不同情形,按下表写出方程(2)的通解.例1求方程052=+'+''y y y 的通解.解: 所给方程的特征方程为所求通解为 )2sin 2cos (21x C x C e y x +=-.例 2 求方程0222=++S dt dS dtS d 满足初始条件2,400-='===t t S S 的特解.解 所给方程的特征方程为通解为 t e t C C S -+=)(21 将初始条件40==t S 代入,得 41=C ,于是t e t C S -+=)4(2,对其求导得 将初始条件20-='=t S 代入上式,得所求特解为例3求方程032=-'+''y y y 的通解.解 所给方程的特征方程为 0322=-+r r其根为 1,321=-=r r所以原方程的通解为 x x e C e C y 231+=-二、二阶常系数非齐次方程的解法1.解的结构定理3 设*y 是方程(1)的一个特解,Y 是式(1)所对应的齐次方程式(2)的通解,则*+=y Y y 是方程式(1)的通解.证明 把*+=y Y y 代入方程(1)的左端:*+=y Y y 使方程(1)的两端恒等,所以*+=y Y y 是方程(1)的解.定理4 设二阶非齐次线性方程(1)的右端)(x f 是几个函数之和,如)()(21x f x f qy y p y +=+'+'' (4)而*1y 与*2y 分别是方程 )(1x f qy y p y =+'+''与 )(2x f qy y p y =+'+''的特解,那么**+21y y 就是方程(4)的特解, 非齐次线性方程(1)的特解有时可用上述定理来帮助求出.2.)()(x P e x f m x λ=型的解法)()(x P e x f m x λ=,其中λ为常数,)(x P m 是关于x 的一个m 次多项式.方程(1)的右端)(x f 是多项式)(x P m 与指数函数x e λ乘积的导数仍为同一类型函数,因此方程(1)的特解可能为x e x Q y λ)(=*,其中)(x Q 是某个多项式函数.把 x e x Q y λ)(=*代入方程(1)并消去x e λ,得)()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ(5)以下分三种不同的情形,分别讨论函数)(x Q 的确定方法:(1) 若λ不是方程式(2)的特征方程02=++q pr r 的根,即02≠++q p λλ,要使式(5)的两端恒等,可令)(x Q 为另一个m 次多项式)(x Q m :代入(5)式,并比较两端关于x 同次幂的系数,就得到关于未知数m b b b ,,,10Λ的1+m 个方程.联立解方程组可以确定出),,1,0(m i b i Λ=.从而得到所求方程的特解为(2) 若λ是特征方程02=++q pr r 的单根, 即02,02≠+=++p q p λλλ,要使式(5)成立, 则)(x Q '必须要是m 次多项式函数,于是令用同样的方法来确定)(x Q m 的系数),,1,0(m i b i Λ=.(3) 若λ是特征方程02=++q pr r 的重根,即,02=++q p λλ 02=+p λ.要使(5)式成立,则)(x Q ''必须是一个m 次多项式,可令 用同样的方法来确定)(x Q m 的系数.综上所述,若方程式(1)中的x m e x P x f λ)()(=,则式(1)的特解为其中)(x Q m 是与)(x P m 同次多项式,k 按λ不是特征方程的根,是特征方程的单根或是特征方程的重根依次取0,1或2.例4 求方程x e y y 232-='+''的一个特解.解 )(x f 是x m e x p λ)(型, 且2,3)(-==λx P m对应齐次方程的特征方程为 022=+r r ,特征根根为2,021-==r r .λ=-2是特征方程的单根, 令x e xb y 20-=*,代入原方程解得故所求特解为 x xe y 223--=* .例5 求方程x e x y y )1(2-='-''的通解.解 先求对应齐次方程02=+'-''y y y 的通解. 特征方程为 0122=+-r r , 121==r r齐次方程的通解为 x e x C C Y )(21+=. 再求所给方程的特解由于1=λ是特征方程的二重根,所以把它代入所给方程,并约去x e 得比较系数,得于是 x e x x y )216(2-=* 所给方程的通解为 x e x x x C C y y y )6121(3221+-+=+=*3.x B x A x f ϖϖsin cos )(+=型的解法,sin cos )(x B x A x f ωω+=其中A 、B 、ω均为常数. 此时,方程式(1)成为x B x A q y p y ωωsin cos +=+'+'' (7)这种类型的三角函数的导数,仍属同一类型,因此方程式(7)的特解*y 也应属同一类型,可以证明式(7)的特解形式为 其中b a ,为待定常数.k 为一个整数.当ω±i 不是特征方程02=++q pr r 的根, k 取0; 当ω±i 不是特征方程02=++q pr r 的根, k 取1; 例6 求方程x y y y sin 432=-'+''的一个特解. 解 1=ω,ω±i i ±=不是特征方程为0322=-+r r 的根,0=k .因此原方程的特解形式为于是 x b x a y cos sin +-=*' 将*''*'*y y y ,,代入原方程,得解得 54,52-=-=b a原方程的特解为: x x y sin 54cos 52--=* 例7 求方程x e y y y x sin 32+=-'-''的通解.解 先求对应的齐次方程的通解Y .对应的齐次方程的特征方程为再求非齐次方程的一个特解*y .由于x e x x f -+=2cos 5)(,根据定理4,分别求出方程对应的右端项为,)(1x e x f =x x f sin )(2=的特解*1y 、*2y ,则**+=*21y y y 是原方程的一个特解.第 11 页 由于1=λ,ω±i i ±=均不是特征方程的根,故特解为 代入原方程,得比较系数,得解之得 51,101,41-==-=c b a . 于是所给方程的一个特解为所以所求方程的通解为希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m 0,1, 2, ; ( ) A cos m B sin m
记常数 k 2 2 ,即 k 2 2 ,(3)式可改写为:
d 2 R 1 dR m2 R 0 ,相应地作变量代换: x ,可以化为: 2 d2 d
本章习题
P237:1,3 题
10
E F ln (1) 0 , Z ( z ) C ; R m m E F
m0 m 1, 2,3,
(2) 0 , Z ( z ) Ce
z
De
z
d 2R dR 令 ,则方程(4)可化为 2 m 2 R 0 ,称为 m 阶贝塞 2 d d
2
塞尔方程,具体求解后面将具体介绍。 (b)柱坐标系中亥姆霍兹方程的分离变量
1 u 1 2u 2u 2 2 2 k 2v2 0 z
柱坐标系与球坐标系中的讨论类似,令 v( , , z ) R( ) ( ) Z ( z ) ,引入两个常数
d 2 R 1 dR m 2 y ' m2 , m 阶贝塞尔方程。 ( R y 1 0 " 1 2 R 0 ) dx 2 x dx x2 x x
7
第(2)式是偏微分方程,称为亥姆霍兹方程。 同样地,对于输运方程 ut a 2 u 0 同样作分离变量代换,可以得到:
d 2 R 1 dR m 2 1 R 0 d2 d 2
即: 2
d 2R dR 2 m 2 R 0 ,称为 m 阶贝塞尔方程。 2 d d
2
连带勒让德方程隐含 1 ( 0, )的自然边界条件构成本征值问题, 决定 l 只 能取整数值。 第(2)式即 r 2
d 2R dR 2r k 2 r 2 l (l 1) 2 R 0 ,叫做 l 阶球贝塞尔方程。 dr dr
9
上次课回顾: 在正交坐标系(球坐标和柱坐标系)中的拉普拉斯方程 u 0 的分离变量求解。
d 2 dR dr r dr l (l 1) R 0 2 1 sin Y 1 Y l (l 1)Y 0 sin 2 2 sin
第一式解为: R (r ) Cr l D
1 2 v 1 v 1 2v k 2v 0 r 2 sin 2 2 2 2 r r r r sin r sin
首先分离变量 r 和变量 , ,令 v(r , , ) R (r )Y ( , ) 代入上式,用 r 2 / RY 遍乘 并移项得:
1 2 u 1 u 1 2u sin r 0 r 2 r r r 2 sin r 2 sin 2 2
球坐标中: u
分离变量: u (r , , ) R(r )Y ( , ) ,可得:
(1) (2)
结合自然周期条件,解得: ( ) A cos m B sin m
Z " Z 0
(3) (4)
又,
d 2 R 1 dR m2 R 0 d2 d 2
8
对于 k 0 ,可以把自变量 r 和 R(r ) 分别用 x 和 y ( x) 做代换,
和 2 ,不难分离出三个方程:
" 0 , ( 2 ) ( )
(1) (2) (3)
Z " 2 Z 0 d 2 R 1 dR 2 k 2 2 R 0 2 d d
由(1)式易得, m 2 ,
x kr , R (r )

2x
(注意 x 和 y ( x) 只是代换形式不是直角坐标) 。 y ( x) ,
2 1 2 l 阶球贝塞尔方程可以写成: x y " xy ' x l y 0 ,即得 l 1/ 2 阶的贝 2
(1) (2) (3)
Z " 2 Z 0 d 2 R 1 dR 2 k 2 2 R 0 2 d d
由(1)式易得, ( ) A cos m B sin m , m 0,1, 2, 记常数 k 2 2 ,并做代换 x (3)式可以化为:
1 d 2 dR 2 2 1 Y r k r sin R dr dr Y sin 1 2Y 2 2 Y sin
上式成立的条件为等于某一常数,令为 l (l 1) ,便可分解成两个方程:
1 Y 1 2Y l (l 1)Y 0 (1) sin sin sin 2 2
6
对于方程(4),通常先作代换: ,则
dR dR d dR , d d d d
d d d 2R d dR dR d 2R d2 d d d d2 d d
故方程(4)可化为:
对于 k 0 ,解为 R (r ) Cr l Dr (l 1) ; 对于 k 0 ,可令 x kr , R (r )

2x
y ( x) ,可以写成:
2 1 2 x y " xy ' x l y 0 ,即得 l 1/ 2 阶的贝塞尔方程。 2
在正交坐标系(球坐标和柱坐标系)中的亥姆霍兹方程的分离变量求解。 球坐标:对于 v k 2 v 0 ,代入球坐标的拉普拉斯表达式得:
1 2 v 1 v 1 2v sin k 2v 0 r r 2 sin 2 2 r 2 r r r 2 sin
d 2 R 1 dR m 2 y ' m2 , m 阶贝塞尔方程。 ( 1 R 0 " 1 2 R 0 ) y x x dx 2 x dx x2
综上所述,用球坐标和柱坐标对拉普拉斯方程、波动方程、输运方程进行分 离变量, 一般来说, 会得到一些特殊的变系数的常微分方程, 如关联勒让德方程、 勒让德方程、 贝塞尔方程和球贝塞尔方程等, 只有讨论了这些方程的解和本征值 问题,才能在正交曲线坐标系中将分离变量法进行到底。本书 9.2 节-9.4 节, 以及第十、十一章都是关于这些特殊常微分方程的求解问题,内容相对独立,而 且在求解具体的物理问题时,往往只需要用到这些特殊函数的结论,故我们将最 后进行简要介绍。
2
连带勒让德方程隐含 1 ( 0, )的自然边界条件构成本征值问题, 决定 l 只 能取整数值。 第(2)式即 r 2
d 2R dR 2r k 2 r 2 l (l 1) 2 R 0 ,叫做 l 阶球贝塞尔方程。 dr dr
对于 k 0 ,上式是欧拉方程,解为 R (r ) Cr l Dr (l 1) ;
令 v(r , , ) R (r )Y ( , ) ,可得:
1 Y 1 2Y l (l 1)Y 0 (1) sin sin sin 2 2
d 2 dR 2 2 r k r l (l 1) R0 dr dr
d 2 dR k 2 r 2 l (l 1) r R0 dr dr
(2)
第(1)式在前面对球坐标的拉普拉斯方程进行分离变量时已经得到,它可以进 一步分离变量得到: ( ) A cos m B sin m , m 0,1, 2,
d 2 d m2 和连带勒让德方程: (1 ) 2 l (l 1) 0 , cos 1 2 d2 d
2
(b)柱坐标系中亥姆霍兹方程的分离变量
1 u 1 2u 2u 2 2 2 k 2v2 0 z
令 v( , , z ) R( ) ( ) Z ( z ) ,分离出三个方程:
" 0 , ( 2 ) ( )
解得: ( ) A cos m B sin m
d 2 d m2 令 cos ,第二式为: (1 ) 2 l (l 1) 0 称为 l 阶关 1 2 d2 d
2
联(连带)勒让德方程。
柱坐标中: u
1 r l 1
第二式为球函数方程,进一步分离变量: Y ( , ) ( ) ( ) ,得:
( 2 ) ( ), '' 0, d d 2 sin d sin d l (l 1) sin 0
2
尔方程。 (3) 0 ,计 2 0 ,则方程(3)解得: Z ( z ) C cos z D sin z , 对于方程(4),并作代换: ,则方程(4)可化为 : 2
d 2R dR 2 m 2 R 0 ,称为虚宗量贝塞尔方程 2 d d
1 u 1 2u 2u 2 2 2 0 z
分离变量: u ( , , z ) R( )( ) Z ( z )
'' 0 2 2 d R dR 2 Z" Rd 2 R d Z
T ' k 2 a 2T 0 v k v 0
2
(3) (4)
2 2
第(3)式解为 T (t ) Ce k
a t
,第(4)式也是亥姆霍兹方程。
相关文档
最新文档