九年级函数中考复习检测试卷
人教版九年级数学中考复习二次函数真题专练(解析版)

二次函数----真题专练一、选择题1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A. B.C. D.2.若二次函数的图象经过,,三点则关于,,大小关系正确的是A. B. C. D.3.将抛物线平移,得到抛物线,下列平移方式中,正确的是A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位4.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a-b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个5.在二次函数的图象中,若y随x的增大而减少,则x的取值范围是A. B. C. D.6.2下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当-1<x<5时,y<0.其中正确的有()A. 1个B. 2个C. 3个D. 4个8.抛物线y=(x-2)2-3的顶点坐标是()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴如图所示,则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.B.C.D.二、填空题11.函数y=-中自变量x的取值范围是______.12.已知抛物线y=x2-(k+2)x+9的顶点在坐标轴上,则k的值为______.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=-1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论是______ (填写序号).14.二次函数y=-x2+2x+2图象的顶点坐标是______.15.若二次函数y=mx2+x+m(m-2)的图象经过原点,则m的值为______ .16.如图,抛物线C1:y=x2经过平移得到抛物线C2:y=x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______三、解答题17.如图,抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.18.如图,抛物线经过A(-1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.20.如图,二次函数y=-x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.22.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.答案和解析1.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2-bx 来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选C.2.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.【解答】解:二次函数对称轴为直线x=-=3,3-(-1)=4,3-1=2,3+-3=,∵a=1>0,开口向上,离对称轴越远,y值越大,又∵4>2>,∴y1>y2>y3.故选A.3.【答案】D【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=-3x2的顶点坐标为(0,0),y=-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y=-3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=-3(x-1)2-2.故选D.4.【答案】B【解析】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:-1<x<0,∴当x=-1时,y=a-b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.5.【答案】B【解析】【分析】本题考查了二次函数的性质有关知识,先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.【解答】解:y=-x2+2x+1=-(x-1)2+2,抛物线的对称轴为直线x=1,∵a=-1<0,开口向下,∴当x>1时,y随x的增大而减少.故选B.6.【答案】B【解析】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选:B.根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.7.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系有关知识,根据函数图象可得各系数的关系:a>0,b<0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=-=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=2,∴-=2,∴b=-4a<0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴-=2,∴b=-4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(-1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当-1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.8.【答案】B【解析】【分析】此题考查了二次函数顶点式的性质有关知识,已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为的是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,-3).故选B.9.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=-=1,∴b=-2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-=1,∴b=-2a,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,所以④错误.故选:C.由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴->0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(-1,0),∴a-b+c=0,故②正确;③∵a-b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a-b+c=0,∴c=b-a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b-a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(-1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b-a代入即可判断④正确.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】-2<x≤3【解析】【分析】本题考查的是函数自变量取值范围,分式有意义的条件,二次根式的概念.根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:-2<x≤3,则自变量x的取值范围是-2<x≤3.故答案为-2<x≤3.12.【答案】4,-8,-2【解析】解:当抛物线y=x2-(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2-4×9=0,解得k=4或k=-8;当抛物线y=x2-(k+2)x+9的顶点在y轴上时,x=-==0,解得k=-2.故答案为:4,-8,-2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.13.【答案】①②④【解析】解:∵抛物线对称轴是直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=-1时,y=a-b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2-4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a-b+c的符号是解题关键.14.【答案】(1,3)【解析】解:∵y=-x2+2x+2=-(x2-2x+1)+3=-(x-1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.15.【答案】2【解析】【分析】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.本题中已知二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m-2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m-2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案为2.16.【答案】4【解析】解:抛物线C1:y=x2的顶点坐标为(0,0),∵y=x2+2x=(x+2)2-2,∴平移后抛物线的顶点坐标为(-2,2),对称轴为直线x=-2,当x=-2时,y=×(-2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:(2+2)×2=4,故答案为:4.确定出抛物线y=x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.【答案】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),∴,解得,,即此抛物线的解析式是y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴此抛物线顶点D的坐标是(1,-4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=-,即点P的坐标为(1,-);当DA=DP时,=,解得,y=-4±,即点P的坐标为(1,-4-2)或(1,-4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,-)或(1,-4-2)或(1,-4+)或(1,4).【解析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.18.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c (a≠0),∵A(-1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2-2x-;(2)∵抛物线的解析式为:y=x2-2x-,∴其对称轴为直线x=-=-=2,连接BC,如图1所示,∵B(5,0),C(0,-),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x-,当x=2时,y=1-=-,∴P(2,-);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2-2x-=,解得x=2+或x=2-,∴N 2(2+,),N3(2-,).综上所述,符合条件的点N的坐标为(4,-),(2+,)或(2-,).【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.19.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,-4),∴D(0,-2),∴P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,-2);(3)∵点P在抛物线上,∴可设P(t,t2-3t-4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,-4),∴直线BC解析式为y=x-4,∴F(t,t-4),∴PF=(t-4)-(t2-3t-4)=-t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(-t2+4t)×4=-2(t-2)2+8,∴当t=2时,S△PBC最大值为8,此时t2-3t-4=-6,∴当P点坐标为(2,-6)时,△PBC的最大面积为8.【解析】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF 的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.20.【答案】解:(1)将B(4,0)代入y=-x2+3x+m,解得,m=4,∴二次函数解析式为y=-x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=-x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2-4x+b=0,∴△=16-4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,-m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=-m2+3m+4,∴m=1±,∴P(1+,1+)或P(1-,1-),②如图,设点P(t,-t2+3t+4),过点P作y轴的平行线l交BC于点D,交x轴于点E,过点C作l的垂线交l于点F,∵点D在直线BC上,∴D(t,-t+4),∵PD=-t2+3t+4-(-t+4)=-t2+4t,BE+CF=4,∴S四边形PBQC=2S△PBC=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=-4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=16【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.21.【答案】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=-x2+4x+5;(2)①设P(x,-x2+4x+5),则E(x,x+1),D(x,0),则PE=|-x2+4x+5-(x+1)|=|-x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|-x2+3x+4|=2|x+1|,当-x2+3x+4=2(x+1)时,解得x=-1或x=2,但当x=-1时,P与A重合不合题意,舍去,∴P(2,9);当-x2+3x+4=-2(x+1)时,解得x=-1或x=6,但当x=-1时,P与A重合不合题意,舍去,∴P(6,-7);综上可知P点坐标为(2,9)或(6,-7);②设P(x,-x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x-4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x-4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x-4|=,解得x=4+或x=4-,此时P点坐标为(4+,-4-8)或(4-,4-8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,-4-8)或(4-,4-8)或(0,5).【解析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.22.【答案】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x-1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3-1)2+4,解得a=-1,∴抛物线解析式为y=-(x-1)2+4,即y=-x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=-1,∴直线BD解析式为y=-x+3;(2)设P点横坐标为m(m>0),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,-x2+2x+3),则G(x,-x+3),∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|-x2+3x|=4,当-x2+3x=4时,△=9-16<0,方程无实数根,当-x2+3x=-4时,解得x=-1或x=4,∴Q(-1,0)或(4,-5),综上可知存在满足条件的点Q,其坐标为(-1,0)或(4,-5).【解析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
精品 九年级数学 中考专题 函数专题 二

9 2
D.5
2.如图,一只蚂蚁从
点出发,沿着扇形
的边缘匀速爬 , 则
行一周, 设蚂蚁的运动时间为, 蚂蚁到 关于的函数图象大致为( )
点的距离 为 ..
9.如图,若点 M 是 x 轴正半轴上的任意一点,过点 M 作 PQ∥y 轴,分别交函数 y 3.若双曲线 y k 与直线 y 2 x 1 一个交点的横坐标为-1, 则
43.如图,二次函数 y=x -ax+a-5 的图象交 x 轴于点 A 和 B,交 y 轴于点 C, 当线段 AB的长度最短时, 点 C 的坐标为________.
2
44.二次函数 点
y
2 2 x 的图象如图所示,点 A0 位于坐标原点, 3
k 36.如图,已知函数 y=2x 和函数 y= 的图象交于 A、B 两点, x
)
1 14.若 A( 13 , y1 ),B( 5 , y2 ),C( , y3 )为二次函数 4 4 4
则 y x 2 4 x 5 的图象上的三点, 是( ) B. y2 y1 y3 C. y3 y1 y2 D. y1 y3 y2 ※19.已知二次函数 y
2
y =ax 2 bx c ,且 a <0,a b c >
)
过点 A 作平行四边形 ABCD,使点 B、C 在 x 轴上,点 D 在 上,则平行四边形 ABCD 的面积为( A.1 B.3 C.6 ) D.12
y轴
B. b2 4ac =0
2 C. b 4ac <0 D. b2 4ac c≤0
1 1
32.直线
与双曲线
九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

代数推理题11.B(2019·温州改编)已知抛物线y=-x2+2x+6与x轴交于A,B两点(点A在点B的左侧).把点B向上2平移m(m>0)个单位得点B1,若点B1向左平移n(n>0)个单位,将与该抛物线上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数上的点B3重合.求m,n的值.2.B(2019·如皋)已知二次函数y=-x2+bx-c的图象与x轴的交点坐标为(m-2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y=1时,自变量x有唯一的值,求二次函数的解析式.3.B(2018·南通)在平面直角坐标系xOy中,将抛物线y=x2-2(k-1)x+k2-5k(k为常数)向右平移12个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值3,求k的值.2-3)和B(3,0).4.B(2019·海淀一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,(1)若抛物线在A,B两点间,从左到右上升,求a的取值范围;(2)结合函数图象判断:抛物线能否同时经过点M(-1+m,n),N(4-m,n)?若能,写出一个符合要求的抛物线的表达式和n的值;若不能,请说明理由.5.B(2019·南通)已知在同一直角坐标系中,若该二次函数=x2-4x+3a+2(a为常数)的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.6.B如图,平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═关于点O对称,一次函数y2=k(x>0)的图象上,点A′与点Ax1x+n的图象经过点A′.过点A作AD⊥x轴,与函数y2的图象相交于点D,2以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.7.B(2020·顺义区期末)在平面直角坐标系xOy中,抛物线y=1x2+nx-m与y轴交于点A,将点A向左m平移3个单位长度,得到点B,点B在抛物线上.(1)求抛物线的对称轴;(2)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.8.C(2019·通州区期中)已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)求证:am+b=0;(2)若该二次函数的最大值为-1,当x=1时,y≥3a,求a的取值范围.4。
2022年九年级中考复习数学函数综合 试题

中考试题之函数综合题1. 如图,已知点A (tan α,0),B (tan β,0)在x 轴正半轴上,点A 在点B 的左边,α、β 是以线段AB 为 斜边、顶点C 在x 轴上方的Rt △ABC 的两个锐角.(1)若二次函数y =-x 2-25kx +(2+2k -k 2)的图象经过A 、B 两点,求它的解析式;(2)点C 在(1)中求出的二次函数的图象上吗?请说明理由.2.已知抛物线2y x kx b =++经过点(23)(10)P Q --,,,. (1)求抛物线的解析式.(2)设抛物线顶点为N ,与y 轴交点为A .求sin AON ∠的值. (3)设抛物线与x 轴的另一个交点为M ,求四边形OANM 的面积.yxN3.如图9,抛物线y=ax 2+8ax+12a 与x 轴交于A 、B 两点(点A 在点B 的左侧),抛物线上另有一点C 在第一象限,满足∠ ACB 为直角,且恰使△OCA ∽△OBC. (1) 求线段OC 的长.(2) 求该抛物线的函数关系式.(3) 在x 轴上是否存在点P ,使△BCP 为等腰三角形? 若存在,求出所有符合条件的P 点的坐标;若不存在,请说明理由.4.已知函数y=x2和y=kx+l(k≠O). (1)若这两个函数的图象都经过点(1,a),求a 和k 的值;(2)当k 取何值时,这两个函数的图象总有公共点?5.已知如图,矩形OABC 的长OA=3,宽OC=1,将△AOC 沿AC 翻折得△APC 。
(1)填空:∠PCB=____度,P 点坐标为( , );(2)若P ,A 两点在抛物线y=-34 x 2+bx+c 上,求b ,c 的值,并说明点C 在此抛物线上;(3)在(2)中的抛物线CP 段(不包括C ,P 点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.6.如图,二资助函数c bx x y ++=2的图象经过点M (1,—2)、N (—1,6). (1)求二次函数c bx x y ++=2的关系式.(2)把Rt △ABC 放在坐标系内,其中∠CAB = 90°,点A 、B 的坐标分别为(1,0)、(4,0),BC = 5。
九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习6期函数(二)同步练习

中考一轮复习:函数(二)同步练习 二次函数图象与性质同步练习(答题时间:30分钟)1. 已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )xyO -3A. 无实根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根2. 下图中,哪个是二次函数y =2x 2-4x +3的图象( )123-1-2-3-1-21234yx 123-1-2-3-1-21234yx123-1-2-3-1-21234yx 123-1-2-3-1-21234yxA B C D3. (山东泰安)已知函数y =(x -m )(x -n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =xnm 的图象可能是( )A. B.C. D.*4. 已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是x =1,则下列结论中正确的是( )xyOA. ac >0B. b <0C. b 2-4ac <0D. 2a +b =05. 已知二次函数y =ax 2+bx +c 的图象如图所示,则a ______0,b ______0,c ______0。
(填“>”“<”或“=”)xyO**6. (浙江杭州)设抛物线y =ax 2+bx +c (a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为__________.*7. (北京)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值。
例如,如图中的函数是有界函数,其边界值是1。
(1)分别判断函数 y =x1(x >0)和y =x +1(-4≤x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足43≤t ≤1?二次函数图象与性质同步练习参考答案1. D 解析:方程ax 2+bx +c +2=0即ax 2+bx +c =-2。
新课标九年级数学中考复习强效提升分数精华版二次函数测试题

二次函数测试题一、选择题(每题5分,共50分) 姓名-------------------------1. sin30°值为( )A .1/3B .1/2 C. 1 D. 02. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax 2+bx+c 的图象如图所示,则顶点在第___象限( )A. 一B. 二C. 三D. 四7、面积为2的△ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是( )8.已知变量y 与x 成反比,当x =3时,y =-6,则当y = 3时,x 的值是( )A .6B 。
-6C 。
9D 。
-99、若m <-1,则下列函数:①()0 x xm y = ② y =-mx+1 ③ y = mx ④ y =(m + 1)x 中,y 随x 增大而增大的是( )A .①②B 。
②③C 。
①③D 。
③④10、在同一直角坐标系中,函数y = 3x 与y 1-=的图象大致是( )11、在函数x y 2-=的图象上有三点(-1,y 1),(2,41y -),(3,21y ),则函数值y 1,y 2,y 3的大小关系是( )A .y 2<y 3<y 1B 。
y 3<y 2<y 1C 。
y 1<y 3<y 2D 。
y 3<y 1<y 212、在Rt △ABC 中,∠C =90°,a =1,c =4,则sinA 的值是……………………………………( )A. 1515B. 13C. 14D. 15413、已知△ABC 中,∠C=90°,tanA ·tan 50°=1,那么∠A 的度数是………………………( )A. 50°B. 40°C. (150 )°D. (140)° 14、在直角三角形中,若各边的长度都缩小5倍,那么锐角∠A 的正弦值 ( )A. 扩大5倍B. 缩小5倍C. 没有变化D. 不能确定15、在Rt △ABC 中,∠C=90°,已知a 和A ,则下列关系式中正确的是…………………………( )A. c =α·sinAB. c =α sinAC. c =α·cosBD. c =α cosA16、、李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是……………( )A.40°B.30°C.20°D.10°17、1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是………………………………………………………………( )A .80米 B. 85 C. 120米 D. 125米18、化简(1-sin50°)2 -(1-tan50°)2 的结果为……………………………………………( )A. tan50°-sin50°B. sin50°-tan50°C. 2-sin50°-tan50°D. -sin50°-tan50°19、在Rt△ABC 中,∠C=90°,tan A =3,AC 等于10,则S △ABC 等于……………………………( )A. 3B. 300C. 503D. 150 20、已知∠A+∠B=90°,且cosA=15 ,则cosB 的值为………………………………………………( )A. 15B. 45C. 265D. 25二填空题1下列函数:① y =;② ()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =2、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 3抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是4、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .5、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .5、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.6、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关8已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是 9抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .10、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于 .11.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________.12.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.第14题图 第15题图13.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.14.反比例函数y =21039n n x --的图象每一象限内,y 随x 的增大而增大,则n =_______.15.已知一次函数y =3x +m 与反比例函数y =3m x -的图象有两个交点,当m =_____时,有一个交点的纵坐标为6.16.若一次函数y =x +b 与反比例函数y =k x图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空)(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.第25题图18、某船向正东航行,在A 处望见灯塔C 在东北方向,前进到B 处望见灯塔C 在北偏西30o,又航行了半小时到D 处,望灯塔C 恰在西北方向,若船速为每小时20海里,求A 、D 两点间的距离。
九年级数学中考专题练习二次函数50题(含答案)
九年级数学中考专题练习⼆次函数50题(含答案)20XX年九年级数学中考专题练习⼆次函数50题⼀、选择题:1.若⼆次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或12.若为⼆次函数的图象上的三点,则的⼤⼩关系是()A. B.C. D.3.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列三个判断中,①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;正确的是()A.①B.②C.③D.①②③都不对4.已知⼀条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点⽤待定系数法能求出抛物线解析式的为()A.E,FB.E,GC.E,HD.F,G5.已知⼆次函数y=ax2-1的图象开⼝向下,则直线y=ax-1经过的象限是( )A.第⼀、⼆、三象限B.第⼀、⼆、四象限C.第⼀、三、四象限D.第⼆、三、四象限6.⽣产季节性产品的企业,当它的产品⽆利润时就会及时停产.现有⼀⽣产季节性产品的企业,其⼀年中获得的利润y和⽉份n之间函数关系式为y=-n2+14n-24,则该企业⼀年中利润最⾼的⽉份是( )A.5⽉B.6⽉C.7⽉D.8⽉7.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.48.⼀次函数y=ax+b(a≠0)与⼆次函数y=ax2+bx+c(a≠0)在同⼀平⾯直⾓坐标系中的图象可能是()A. B.C. D.9.⼆次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或510.抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x-2)2+3C.y=3(x+2)2﹣3D.y=3(x-2)2﹣311.已知⼆次函数y=x2+2x﹣3,当⾃变量x取m时,对应的函数值⼩于0,设⾃变量分别取m﹣4,m+4时对应的函数值为y1,y2,则下列判断正确的是()A.y1<0,y2<0B.y1<0,y2>0C.y1>0,y2<0D.y1>0,y2>012.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到抛物线是( )A.y=(x+2)2+2B.y=(x+2)2-2C.y=x2+2D.y=x2-213.⽣产季节性产品的企业,当它的产品⽆利润时就会及时停产.现有⼀⽣产季节性产品的企业,其⼀年中获得的利润y和⽉份n之间函数关系式为y=﹣n2+14n﹣24,则该企业⼀年中应停产的⽉份是()A.1⽉、2⽉、3⽉B.2⽉、3⽉、4⽉C.1⽉、2⽉、12⽉D.1⽉、11⽉、12⽉14.⼆次函数y=-x2+bx+c的图象如图所⽰:若点A(x,y1),B(x2,y2)在此函数图象上,且x11系是( )A.y1≤y2B.y1C.y1≥y2D.y1>y215.⼆次函数y=x2﹣4x+5的最⼩值是( )A.﹣1B.1C.3D.516.在平⾯直⾓坐标系中,⼆次函数y=x2+2x﹣3的图象如图所⽰,点A(x,y1),B(x2,y2)是该⼆次函数图象上1的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2B.y1>y2C.y的最⼩值是﹣317.⼆次函数y=ax2+bx+c(a,b下列结论:①ac<0;②当x>1(b-1)x+c=0的⼀个根;④当-1<x<3时,ax2+(b-1)x+c>0.其中正确的个数为( )A.4个 B.3个 C.2个 D.1个18.如图,直线y=0.5x+2与y轴交于点A,与直线y=﹣0.5x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=-0.5x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤0.5B.﹣2≤h≤1C.﹣1≤h≤1.5D.﹣1≤h≤0.519.下列函数是⼆次函数的是( )A.y=2x+1B.y=-2x+1C.y=x2+2D.y=0.5x-220.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到抛物线是()A.y=3(x﹣1)2﹣2B.y=3(x+1)2﹣2C.y=3(x+1)2+2D.y=3(x﹣1)2+2⼆、填空题:21.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是22.⼆次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为23.对于⼆次函数,有下列说法:①如果当x≤1时随的增⼤⽽减⼩,则m≥1;②如果它的图象与x轴的两交点的距离是4,则;③如果将它的图象向左平移3个单位后的函数的最⼩值是-4,则m=-1;④如果当x=1时的函数值与x=2013时的函数值相等,则当x=2014时的函数值为-3.其中正确的说法是.24.如图,坐标平⾯上,⼆次函数y=-x2+4x-k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的⾯积⽐为1:4,则k值为何?25.如图,在Rt△ABC中,∠C=90°,AB= 5,AC= 4,则cos A= .A B C26.抛物线y=2(x﹣3)2+3的顶点在象限.27.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最⼤,每件的售价应为元.28.如图,点A是抛物线y=x2﹣4x对称轴上的⼀点,连接OA,以A为旋转中⼼将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为.29.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°,按以下步骤作图:①以点B为圆⼼,⼩于AB的长为半径画弧,分别交AB、BC于点M、N;②分别以点M、N为圆⼼,⼤于0.5MN的长为半径画弧,两弧相交于点G;③连结BG交AC边于点E,交⊙O于点D,连接CD.则△ABE与△CDE的⾯积之⽐为.30.将⼀条长为20cm的铁丝剪成两段,并以每⼀段铁丝的长度为周长各做成⼀个正⽅形,则这两个正⽅形⾯积之31.如图,⼆次函数y=ax2+bx+c(a≠0)与⼀次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则1使y1>y2成⽴的x的取值范围是__ _.32.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A,B,把抛物线在x轴及其上⽅的部分记作C,将C1向右平移得C2,1C2与x轴交于点B,D,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是.33.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(0.5,2.5)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.当△PAC为直⾓三⾓形时, 点P的坐标是____________________.34.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1.则关于x的⽅程ax2+bx+=0的解为.35.⼆次函数y=2(x﹣3)2﹣4的最⼩值为.36.如图,⼆次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>﹣1;④关于x的⽅程ax2+bx+c=0(a≠0)有⼀个根为 -a-1.其中正确的结论个数有(填序号)37.已知⼆次函数y=﹣x2+2x+m的部分图象如图所⽰,则关于x的⼀元⼆次⽅程﹣x2+2x+m=0的解为.38.如图,⼩明的⽗亲在相距2⽶的两棵树间拴了⼀根绳⼦,给⼩明做了⼀个简易的秋千.拴绳⼦的地⽅距地⾯⾼都是2.5⽶,绳⼦⾃然下垂呈抛物线状,⾝⾼1⽶的⼩明距较近的那棵树0.5⽶时,头部刚好接触到绳⼦,则绳⼦的最低点距地⾯的距离为⽶.39.若抛物线y=a1x2+b1x+c1与y2=a2x2+b2x+c2满⾜=k(k≠0,1),则1称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开⼝⽅向,开⼝⼤⼩不⼀定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).40.如图,是⼆次函数y=ax2+bx+c图象的⼀部分,其对称轴为直线x=1,若其与x轴⼀交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.三、解答题:41.已知⼆次函数y=x2+bx+c的图象经过点(0,2)和(1,﹣1),求图象的顶点坐标和对称轴.42.⼀元⼆次⽅程x2+2x-3=0的⼆根x,x2(x1< x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛1物线过点A(3,6).(1)求此⼆次函数的解析式.(2)⽤配⽅法求此抛物线的顶点为P对称轴(3)当x取什么值时,y随x增⼤⽽减⼩?43.某⽔渠的横截⾯呈抛物线形,⽔⾯的宽为AB(单位:⽶),现以AB所在直线为x轴,以抛物线的对称轴为y轴建⽴如图所⽰的平⾯直⾓坐标系,设坐标原点为O.已知AB=8⽶,设抛物线解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上⼀点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的⾯积. 44.某公司销售A,B两种产品,根据市场调研,确定两条信息:信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正⽐例函数关系y2=0.3x.根据以上信息,解答下列问题;(1)求⼆次函数解析式;(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最⼤是多少万元.45.已知抛物线y=x2﹣2x+1.(1)求它的对称轴和顶点坐标;(2)根据图象,确定当x>2时,y的取值范围.46.某种商品的进价为每件50元,售价为每件60元,每个⽉可卖出200件;如果每件商品的售价上涨1元,则每个⽉少卖10件(每件售价不能⾼于72元),设每件商品的售价上涨x元(x为整数),每个⽉的销售利润为y 元.(1)求y与x的函数关系式并直接写出⾃变量x的取值范围;(2)每件商品的售价定为多少时每个⽉可获得最⼤利润?最⼤利润是多少?47.如图,⼆次函数y=﹣x2+bx+c图象(抛物线)与x轴交于A(1,0),且当x=0和x=﹣2时所对应函数值相等.(1)求此⼆次函数的表达式;(2)设抛物线与x轴的另⼀交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最⼩?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第⼆象限,且在抛物线上,如果△MBC的⾯积最⼤,求此时点M的坐标及△MBC的⾯积.48.如图,已知⼆次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该⼆次函数的解析式;(2)设该⼆次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最⼩时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q 以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停⽌运动,设P、Q同时从点O出发t秒时,△OPQ的⾯积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出⾃变量t的取值范围;③设S0是②中函数S的最⼤值,直接写出S0的值.49.如图,直线y=0.5x﹣2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx﹣2经过A,B,C,点B坐标为(﹣1,0).(1)求抛物线的解析式;(2)若点D是线段AC上⼀个动点,DE⊥AC,交直线AC下⽅的抛物线于点E,EG⊥x轴于点G,交AC于点F,请求出DF长的最⼤值;(3)设抛物线对称轴与x轴相交于点H,点P是射线CH上的⼀个动点,当△ABP是直⾓三⾓形时,请直接写出点P的坐标.50.如图,在平⾯直⾓坐标系中,点A的坐标为(m,m),点B的坐标为(n,-n),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是⽅程x2-2x-3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的⼀个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连结OD、BD.①当△OPC为等腰三⾓形时,求点P的坐标;②求△BOD ⾯积的最⼤值,并写出此时点D的坐标.。
人教版九年级数学中考函数专项练习及参考答案
人教版九年级数学中考函数专项练习例1. 如图,已知1(4,)2A -,(1,2)B -是一次函数y kx b =+与反比例函数(0,0)m y m x x=≠<图象的两个交点,AC x ⊥轴于C ,BD y ⊥轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA ∆和PDB ∆面积相等,求点P 坐标.【解答】解:(1)由图象得一次函数图象在上的部分,41x -<<-,当41x -<<-时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y kx b =+,y kx b =+的图象过点1(4,)2-,(1,2)-,则 1422k b k b ⎧-+=⎪⎨⎪-+=⎩, 解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩ 一次函数的解析式为1522y x =+, 反比例函数m y x=图象过点(1,2)-, 122m =-⨯=-;(3)连接PC 、PD ,如图, 设15(,)22P x x +由PCA ∆和PDB ∆面积相等得11115(4)|1|(2)22222x x ⨯⨯+=⨯-⨯--,52x =-,155224y x =+=,P ∴点坐标是5(2-,5)4.例2. 如图,反比例函数(0,0)k y k x x=≠>的图象与直线3y x =相交于点C ,过直线上点(1,3)A 作AB x ⊥轴于点B ,交反比例函数图象于点D ,且3AB BD =.(1)求k 的值;(2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d MC MD =+最小,求点M 的坐标.【解答】解:(1)(1,3)A ,3AB ∴=,1OB =,3AB BD =,1BD ∴=,(1,1)D ∴将D 坐标代入反比例解析式得:1k =;(2)由(1)知,1k =,∴反比例函数的解析式为;1y x =, 解:31y xy x=⎧⎪⎨=⎪⎩,解得:x y ⎧=⎪⎨⎪=⎩x y ⎧=⎪⎨⎪=⎩,0x >,C ∴; (3)如图,作C 关于y 轴的对称点C ',连接C D '交y 轴于M ,则d MC MD =+最小,(3C ∴'-,设直线C D '的解析式为:y kx b =+,∴31k b k b =-+⎪=+⎩,∴32k b ⎧=-⎪⎨=-+⎪⎩,(32y x ∴=-+,当0x =时,2y =,(0M ∴,2).例3. 如图, 在直角坐标系中, 直线1(0)y kx k =+≠与双曲线2(0)y x x=>相交于点(1P ,m ). (1) 求k 的值;(2) 若点Q 与点P 关于直线y x =成轴对称, 则点Q 的坐标是(Q 2 , 1 );(3) 若过P 、Q 二点的抛物线与y 轴的交点为5(0,)3N ,求该抛物线的函数解析式, 并求出抛物线的对称轴方程 .【解答】解: (1)直线1y kx =+与双曲线2(0)y x x =>交于点(1,)A m ,2m ∴=,把(1,2)A 代入1y kx =+得:12k +=,解得:1k =;(2) 连接PO ,QO ,PQ ,作PA y ⊥轴于A ,QB x ⊥轴于B ,则1PA =,2OA =,点Q 与点P 关于直线y x =成轴对称,∴直线y x =垂直平分PQ ,OP OQ ∴=,POA QOB ∴∠=∠,在OPA ∆与OQB ∆中,PAO OBQPOA QOB OP OQ∠=∠⎧⎪∠=∠⎨⎪=⎩,POA QOB ∴∆≅∆,1QB PA ∴==,2OB OA ==,(2,1)Q ∴;故答案为: 2 , 1 ;(3) 设抛物线的函数解析式为2y ax bx c =++,过P 、Q 二点的抛物线与y 轴的交点为5(0,)3N , ∴214253a b c a b c c ⎧⎪=++⎪=++⎨⎪⎪=⎩, 解得:23153a b c ⎧=-⎪⎪=⎨⎪⎪=⎩,∴抛物线的函数解析式为22533y x x =-++, ∴对称轴方程132423x =-=-⨯.例4. 如图, 在平面直角坐标系中, 抛物线2y x ax b =-++交x 轴于(1,0)A ,(3,0)B 两点, 点P 是抛物线上在第一象限内的一点, 直线BP 与y 轴相交于点C .(1) 求抛物线2y x ax b =-++的解析式;(2) 当点P 是线段BC 的中点时, 求点P 的坐标;(3) 在 (2) 的条件下, 求sin OCB ∠的值 .【解答】解: (1) 将点A 、B 代入抛物线2y x ax b =-++可得, 2201033a b a b ⎧=-++⎨=-++⎩, 解得,4a =,3b =-,∴抛物线的解析式为:243y x x =-+-;(2)点C 在y 轴上,所以C 点横坐标0x =,点P 是线段BC 的中点,∴点P 横坐标03322P x +==, 点P 在抛物线243y x x =-+-上,2333()43224P y ∴=-+⨯-=, ∴点P 的坐标为3(2,3)4;(3)点P的坐标为3(2,3)4,点P是线段BC的中点,∴点C的纵坐标为33 2042⨯-=,∴点C的坐标为3 (0,)2,BC∴==,sin52OBOCBBC∴∠===.例5. 如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】解:(1)将(0,3)-代入y x m =+, 可得:3m =-;(2)将0y =代入3y x =-得:3x =, 所以点B 的坐标为(3,0),将(0,3)-、(3,0)代入2y ax b =+中, 可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩, 所以二次函数的解析式为:2133y x =-;(3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则451560ODC ∠=︒+︒=︒,tan 30OD OC ∴=︒= 设DC 为3y kx =-,代入0),可得:k =联立两个方程可得:23133y y x ⎧=-⎪⎨=-⎪⎩,解得:12120,36x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩所以1M ,6);②若M 在B 下方,设MC 交x 轴于点E ,则451560OEC ∠=︒+︒=︒,tan 60OE OC ∴=︒=, 设EC 为3y kx =-,代入0)可得:3k =,联立两个方程可得:23133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120,32x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩所以2M ,2)-,综上所述M的坐标为6)或2)-.。
九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习5期函数(一)同步练习
中考一轮复习:函数(一)同步练习 函数和平面直角坐标系同步练习(答题时间:30分钟)1. (四川遂宁)点A (1,-2)关于x 轴对称的点的坐标是( ) A. (1,-2) B. (-1,2)C. (-1,-2)D. (1,2)2. (山东威海)已知点P (3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A.B.C. D.3. 小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图).若小亮上坡、平路、下坡的速度分别为v 1、v 2、v 3,且v 1<v 2<v 3,则小亮同学骑车上学时,离家的路程s 与所用时间t 的函数关系图象可能是( )学校小亮家Ost O st O st O st ABCD*4. (江西抚州)一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器.....,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是( )5. 如果点M (a +b ,ab )在第二象限,则点N (a ,b )在第__________象限.6. (山东烟台)在函数21+-=x xy 中,自变量x 的取值范围是__________. *7. 在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示:(1)填写下列各点的坐标:A1(_____,_____),A3(_____,_____),A12(_____,_____);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.**8. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回家里找到作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是_____,_____(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.函数和平面直角坐标系同步练习参考答案1. D 解析:点A(1,-2)关于x轴对称的点的坐标是(1,2),故选D.2. A 解析:已知点P(3-m,m-1)在第二象限,则3-m<0且m-1>0,解得m>3,m>1,故选A.3. C 解析:从总体上讲,t越大,s越大,呈上升趋势.从细节上来看,小亮从家到学校的第一段路是平路,离家路程s随时间t的变化均匀地(呈直线形)增加;第二段路是下坡路,速度变快,s随时间t的变化加剧,但仍呈直线形;第三段路是上坡路,变化放缓;第四段路与第一段路的变化趋势相同.故选C.*4. C 解析:∵桶口的半径是杯口半径的2倍,∴水注满杯口周围所用时间是注满杯子所用时间的3倍,∴C正确.5. 三解析:∵M(a+b,ab)在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴N(a,b)在第三象限.6. x≤1且x≠-2 解析:根据二次根式有意义,分式有意义得:1-x≥0且x+2≠0,解得:x≤1且x≠-2.*7. 解:(1)A1(0,1),A3(1,0),A12(6,0)(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0)(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.**8. 解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回家里找到作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)图②的情境是小芳离开家不久,休息了一会儿,又走回了家.一次函数的图象及应用同步练习(答题时间:30分钟)1. (四川巴中)已知直线y =mx +n ,其中m ,n 是常数且满足:m +n =6,mn =8,那么该直线经过( )A. 第二、三、四象限B. 第一、二、三象限C. 第一、三、四象限D. 第一、二、四象限2. (山东枣庄)将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A. x >4B. x >-4C. x >2D. x >-23. (娄底)一次函数y =kx -k (k <0)的图象大致是( )A. B.C. D.*4.(山东济南)如图,直线233+-=x y 与x 轴,y 轴分别交于A 、B 两点,把△AOB 沿着直线AB 翻折后得到△AO ’B ,则点O ’的坐标是( )ABOO'xyA. )3,3(B. )3,3(C. )32,2(D. )4,32(5. 已知关于x 的一次函数y =kx +4k -2(k ≠0),若其图象经过原点,则k =__________;若y 随x 的增大而减小,则k 的取值范围是________. **6. 如图所示,直线y =-43x +4与y 轴交于点A ,与直线y =45x +45交于点B ,且直线y =45x +45与x 轴交于点C ,则△ABC 的面积为__________.xyOA BCD**7.(镇江)在平面直角坐标系x O y 中,直线y =kx +4(k ≠0)与y 轴交于点A . (1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1、直线y =kx +4与y 轴所围成的△ABC 的面积等于__________;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.*8. 甲车由A 地出发沿一条公路向B 地行驶,3小时到达.甲车行驶的路程y (千米)与所用时间x (时)之间的函数图象如图所示.(1)求y 与x 之间的函数关系式;(2)若乙车与甲车同时从A 地出发,沿同一条公路匀速行驶至B 地.乙车的速度与甲车出发1小时后的速度相同,在图中画出乙车行驶的路程y (千米)与所用时间x (时)的函数图象.0.51 1.52 2.53 3.54210180150120906030xy O一次函数的图象及应用同步练习参考答案1. B 解析:∵mn =8>0,∴m 与n 同号,∵m +n =6,∴m >0,n >0,∴直线y =mx +n 经过第一、二、三象限,故选B .2. B 解析:∵将一次函数y =12x 的图象向上平移2个单位,平移后解析式为y =12x +2,当y =0,则x =-4,x =0时,y =2,如图,∴y >0时x 的取值范围是x >-4,故选B .3. A 解析:∵k <0,∴-k >0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选A .*4. A 解析:连接OO ',由直线233+-=x y 可知23OB=,OA=故30BAO ∠=︒,点O '为点O 关于直线AB 的对称点,故60O AO '∠=︒,AOO ∆'是等边三角形,O '点的横坐标是OA 3,纵坐标则是AOO ∆'的高,即3,故选A .5.12,k <0 解析:把(0,0)代入y =kx +4k -2得k =12;若y 随x 的增大而减小,则k <0.**6. 4 解析:设直线y =45x +45与y 轴交于点D .则易求OD =45,OA =4,∴AD =165,在y =45x +45中,令y =0,可求出C (-1,0),即OC =1,而同样解方程组4434455y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩可求出B 点的横坐标为32,∴S △ABC =S △ADC +S △ADB =12×AD ×1+12×AD ×32=12×165+12×165×32=4. **7. 解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3, ∴B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1, ∴一次函数解析式为:y =x +4,∴A (0,4),∵y =-2x +1,∴C (0,1),∴AC =4-1=3,∴△ABC 的面积为21×1×3=23; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1, ∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4, 故k 的取值范围是:2<k <4.*8. 解:(1)当0≤x ≤1时,设y =k 1x (k 1≠0).∵图象过(1,90),∴k 1=90,∴y =90x .当1<x ≤3时,设y =k 2x +b (k 2≠0).∵图象过(1,90),(3,210),∴22903210k b k b +=⎧⎨+=⎩,∴26030k b =⎧⎨=⎩.∴y =60x +30.(2)图象如图所示反比例函数的应用同步练习 (答题时间:30分钟)1. 如图,反比例函数y =kx的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )O yxA-1-2A. y >1B. 0<y <1C. y >2D. 0<y <2*2. (贵州黔东南)如图,正比例函数y =x 与反比例函数y =1x的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )A. 1B. 2C. 3D. 4*3. (湖北咸宁)如图,双曲线y =mx与直线y =kx +b 交于点M 、N ,并且点M 的坐标为(1,3),点N 的纵坐标为-1.根据图象信息可得关于x 的方程mx=kx +b 的解为( )A. -3,1B. -3,3C. -1,1D. -1,3*4. 函数y =kx +b (k ≠0)与y =kx(k ≠0)在同一坐标系中的图象可能是( )5. 在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是__________米.)**6. (山东济南)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数xky在第一象限的图象经过点B ,若OA 2-AB 2=12,则k 的值为__________.**7. (河南)如图,在直角梯形OABC 中,BC//AO ,∠AOC =90°,点A 、B 的坐标分别为(5,0)、(2,6),点D 为AB 上一点,且BD =2AD .双曲线y =kx(x >0)经过点D ,交BC 于点E .(1)求双曲线的解析式; (2)求四边形ODBE 的面积.DE OBACxy MN第11页 版权所有 不得复制 反比例函数的应用同步练习参考答案1. D 解析:把A (-1,-2)代入y =k x 得k =2,即y =2x,当x >1时,0<y <2. *2. A 解析:∵正比例函数y =x 与反比例函数y =1x的图象相交于A 、B 两点,∴点A 与点B 关于原点对称,∴S △AOC =S △BOC ,∵BC ⊥x 轴,∴△ABC 的面积=2S △BOC =2×12×1×1=1.故选A .*3. A 解析:∵M (1,3)在反比例函数图象上,∴m =1×3=3,∴反比例函数解析式为:y =3x,∵N 也在反比例函数图象上,点N 的纵坐标为-1.∴x =-3,∴N (-3,-1),∴关于x 的方程3x=kx +b 的解为-3,1.故选A . *4. A 解析:根据图象看A 中一次函数k <0,反比例函数k <0符合要求,B 中y =kx +b的k >0,y =k x中k <0矛盾.类似方法,可以判断C 、D 错误,故选A . 5. 0.5 解析:设其反比例函数关系式是F =W s ,把P (5,1)代入得W =5,所以F =W x =5s ,当F =10牛时,s =510=0.5米. **6. 6 解析:设点B 的坐标为),(00y x B ,则DB OC AD AC y DB OC x -=-=+=00,,于是62121222200=-=-=-⋅+=⋅=AB OA DB OC DB OC DB OC y x k )()(,所以应填6. **7. 解:(1)过点B 、D 作x 轴的垂线,垂足分别为点M 、N .∵A (5,0)、B (2,6),∴OM =BC =2,BM =OC =6,AM =3.∵DN ∥BM ,∴△AND ∽△AMB ,∴13DN AN AD BM AM AB ===,∴DN =2,AN =1,∴ON =4,∴点D 的坐标为(4,2). 又∵双曲线y =k x (x >0)经过点D ,∴k =2×4=8,∴双曲线的解析式为y =8x. (2)∵点E 在BC 上,∴点E 的纵坐标为6.又∵点E 在双曲线y =8x上,∴点E 的坐标为(43,6),∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △AOD =12×(BC +OA )×OC -12×OC×CE -12×OA×DN =12×(2+5)×6-12×6×43-12×5×2=12,∴四边形ODBE 的面积为12.。
2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(含答案)
2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(1)求抛物线的解析式.3.如图,在平面直角坐标系中,顶点为(B、C两点(点B在点C的左侧),已知(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于A(-6,0),B(0,-8)两点(1)请写出直线AB的解析式(2)若有一抛物线的对称轴平行于Y轴且经过点M,顶点C在圆M上,开口向下且经过点B.求此抛物线的函数表达式(3)设(2)中的抛物线交X轴于D、E两点,在抛物线上是否存在点P,使得.若存在,请直接写出所有点P的坐标,若不存在,请说明理由5.如图,二次函数y=a +bx +c 的图象交x 轴于A 、B 两点,交y 轴于点C .且B (1,0),若将△BOC 绕点O 逆时针旋转90°,所得△DOE 的顶点E 恰好与点A 重合,且△ACD 的面积为3.(1)求这个二次函数的关系式.(2)设这个二次函数图象的顶点为M ,请在y 轴上找一点P ,使得△PAM 的周长最小,并求出点P 的坐标.(3)设这个函数图象的对称轴l 交x 轴于点N ,问:A 、M 、C 、D 、N 这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.6.如图,在直角坐标系中,以点A (,0 )为圆心,以2为半径的圆与x 轴相交于点B 、C ,与y 轴相交于点D 、E (1)若抛物线经过C 、D 两点,求抛物线的表达式,并判断点B 是否在该抛物线上(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小(3)设Q 为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形,若存在,求出点M 的坐标;若不存在,说明理由2x7.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B 两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.8.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.9.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(-8,0),B(0,-6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且(1)求该抛物线的函数关系式及顶点12.如图,已知在平面直角坐标系xOy 中,抛物线与x 轴交于点A (﹣1,0)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b 经过C 、M 两点,且与x 轴交于点D ,点C 关于直线的对称点为N ,试证明四边形CDAN 是平行四边形;(3)点P 在直线上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,求点P 的坐标.13.在平面直角坐标系中,直线交轴于点,交轴于点,抛物线经过点,与直线交于点.(1)求抛物线的解析式;(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交2y ax 2x c =++l l l直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;将绕坐标平面内的某一点按顺时针方向旋转,得到,点的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点2)(2)当△BOD为等边三角形时,求点B的坐标;(3)若以点B为圆心、r为半径作圆B,当圆B与两个坐标轴同时相切时,求点B的坐标.16.如图,已知抛物线y=ax2+bx﹣3(a≠0)经过点A(3,0),B(﹣1,0).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案:)((3)-;(,)(,;最大值为;(3≤m≤.﹣x+x+1=;(,)或(﹣,)185。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
学
校
班
级
座
号
姓
名
x y O A
P
B
九年级数学周考试卷
[ 测试范围:函数 时间:45分钟 满分:100分 ]
一.选择题(本题有10小题,每小题4分,共40分)
1.下列各点中,在反比例函数8yx图象上的是
A.(-1,8) B.(-2,4) C.(1,7) D.(2,4)
2. 点P关于y轴对称点为)4,3(1P,则点P的坐标为( )
A. )4,3( B. )4,3( C. )3,4( D. )4,3(
3. 抛物线52212xy的顶点是( )
A.(2,5) B.(2,5) C.(2,5) D.(2,5)
4. 若点 P(a,a-2)在第四象限,则a的取值范围是( ).
A.-2<a<0 B.0<a<2 C.a>2 D.a<0
5. 矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为( )
A. B. C. D.
6. 如图,P (x,y)是反比例函数y= 3x 的图象在第一象限分支上的
一个动点,PA⊥x轴于点A,PB⊥y轴于点B,
随着自变量x的增大,矩形OAPB的面积( )
A.不变 B.增大 C.减小 D.无法确定
7.已知一次函数bkxy,k从 2,2中随机取一个值,b从 ,1,1中随机取一个值,
则该一次函数的图像经过二、三、四象限的概率为( )
A. 31 B. 32 C . 61 D . 41
8. 直线bkxy与两坐标轴的交点如图所示,
当0y时,x的取值范围是( )
A.2x B.2x C.1x D.1x
y x O y x O y x O y
x
O
2
x
yODxyOCxyOBxy
O
A
(第17题图)
A
B
C
O
x
y
9. 下列图象中,能反映函数y随x增大而减小的是( )
10.已知二次函数y=ax2+bx+c(a≠0)的图象如图,
则下列结论中正确的是( )
A.abco B.当x>1时,y随x的增大而增大
C.0abc D.3是方程ax2+bx+c=0的一个根
一.选择题(每小题4分,共40分)
题号 1 2 3 4 5 6 7 8 9 10
答案
二.填空题(本题有6小题,每小题4分,共24分)
11.已知反比例函数y=kx 的图象经过点(2,5),则k=_ .
12.一次函数23yx与x轴的交点坐标是_______________.
13.将二次函数22xy的图像向右平移1个单位,再向下平移2个单位,所得二次函数的解析
式为
14.已知函数25(1)mymx是反比例函数,且图像在第二、四象限内,则m=______________
15.已知抛物线cbxaxy2的图象经过A(-1,0)、B(3,0)两点,则对称轴为________ __
16.如图17所示,反比例函数xky的图象与经过坐标原点的直线l相交于A、B两点,过点B
作x轴的垂线,垂足为C,若△ABC的面积为6,则这个反比例函数的解析式为______________。
3
三.解答题(12+12+12,共36分)
17.如图,四边形ABCD为菱形,已知A (0, 4),B(-3,0).
(1)求直线AB的函数解析式.
(2)求点D的坐标;
(3)求经过点C的反比例函数解析式.
18.某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高销售
价格,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,
问他涨价多少元时,才能使每天所赚的利润最大?并求出最大利润.
A
B
C
O
x
y
D
4
y
x
O
B
M
N
C
A
19题图
19.(注:其中第(1)(2)两小题为必做题,第(3)小题选做不计入总分)
如图,抛物线与x轴交于A(1x,0)、B(2x,0)两点,且12xx,与y轴交于点0,4C,
其中12xx,是方程24120xx的两个根。
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当
CMN△
的面积最大时,求点M的坐标;
(3)点4,Dk在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以
ADEF、、、
为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F的坐标,
若不存在,请说明理由。
装
订
线
内
请
不
要
答
题