《数的运算》总复习练习题[1]
人教版四年级数学下册第一单元《四则运算》综合复习练习题(含答案)

人教版四年级数学下册第一单元《四则运算》综合复习练习题(含答案)一、填空题1.计算68×[(156+342)÷3]时,先算( )法,再算( )法,最后算( )法。
2.求几个相同加数的( )的简便运算,叫做乘法。
相乘的两个数叫做( )。
3.根据256+26=282和792-282=510列出的综合算式是( )。
4.小明在做一道减法题时,把减数49错写成了94,这时得到的差是358,正确的差是( )。
5.根据358+126=484,写出两个减法算式( )、( )。
6.把三个算式3×9=27,27-6=21,21÷7=3列成综合算式是( )。
7.在计算197-12×6+43时,应先算( );在这个算式中,若第二步要计算加法,则原式应改为( )。
8.如果要改变25×200-160÷40的运算顺序,先算减法,再算乘法,最后算除法,那么正确的算式是( ),结果是( )。
9.有一个长方形,它的长减少3厘米,面积就减少18平方厘米,剩下的部分正好是正方形,原来长方形的面积是( )平方厘米。
10.两个大人带几个小孩去公园游玩,大人门票每人5元,小孩门票每人3元,买门票一共花了22元,则这两个大人带了( )个小孩。
二、判断题11.减法是加法的逆运算。
( )12.284+16-284+16=0。
( )13.如果13×△=12×□,则△与□的关系是△<□。
( )14.把算式65+25=90,80×9=720,720÷90=8写成一个综合算式是80×9÷(65+25)。
( )。
15.37+15-5与37+(15-5)运算顺序不同,但计算结果相同。
( )三、选择题16.3100-(58+42)×9=()。
A.456 B.900 C.2200 D.10017.两个数相加,一个加数减少5,另一个加数增加9,和()。
四年级下册数学人教版第三单元《运算定律》(综合复习)

四下数学第三单元运算定律基础班(连减的简便运算:数学基本功)题型一1.想一想,填一填。
346+713=316+743 423+155=□23+455537+269=539+□ 268+176=168+□我发现:交换两个加数相同数位上的数,它们的和()。
2.已知下面的算式,求出☆、○、□分别代表什么数。
☆+○=○+□□+☆=26 ○+☆+□=84☆=()○=()□=()题型二1.用简便方法计算。
① 1+2+3+4+5+6+7+8+9+10 ②1+2+3+4+ (18)19+20③1+2+3+4+……+48+49+50 ④1+2+3+4+……+98+99+1002.用简便方法计算。
①1+3+5+7+9+11+13+15+17+19 ②1+3+5+7+9+ (25)27+29③2+4+6+8+10+12+14+16+18+20 ④2+4+6+8+ (26)28+30⑤1+3+5+7+……+95+97+99 ⑥2+4+6+8+……+96+98+1003.用简便方法计算。
①9+99+999+9999+99999 ②199999+19998+1997+196+104.用简便方法计算。
①1000-1-2-3-4-5-6-7-8-9-91-92-93-94-95-96-97-98-99②1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9③20+19-18+17+16-15+14+13-12+11+10-9+8+7-6+5+4-3+2+1-0④199999+19999+1999+199+19⑤699999+59998+4997+396 ⑥97+997+9997+3×3题型三1.利用乘法运算定律计算。
①125×27×4×8×25×5×2 ②888×24×125×252.333×334+999×222 999×8+111×28题型四1.小马在计算8×(25+a)时,算成了8×25+a,结果比正确答案少56,正确答案是多少?2.小马虎粗心大意把30×(□+3)错写成30×□+3,请你帮他算一算,他得到的结果和正确结果相差多少?3.小明将25×(☆+4)错算成25×☆+4,这样比正确结果少多少?4.小虎把50×(□+8)错写成50×□+8,请你算一算他得到的结果和正确答案相差多少?题型五1.在□中填上适当的数。
北师大版数学六年级下册 总复习1计算与应用(2)课件

件个数和徒弟加工的零件个数的比是5:3,师傅和徒弟
各加工了多少个零件?
72×
5 5+3
= 72 5 8
= 45(个)
72×
3 5+3
= 72 3 8
= 27(个)
答:师傅和徒弟各加工了45个、27个零件。
5.行程问题
根据速度、时间和路程三者之间的关系,计算相向、 相背和同向运动的问题,叫作行程问题。
2月:283-264=19(千瓦时)3月:302-283=19(千瓦时)
4月:321-302=19(千瓦时 5月:345-321=24(千瓦) )6月:380-345=35(千瓦时)
答: 2月、3月、4月、5月、6月各月的用电量分别是19、19、 19、24、35千瓦时。
5.下面是笑笑家的电表在上半年每月月底的读数记录。
二年级:95+4=99人
五 人年级:130+6=136人
三年级:106+4=110
六年级:124+6=130人
人
一、五年级:92+136=228(人)
三、四年级:110+120=230(人) 二 、 六 年 级 : 99+130=229 ( 人
(2)请选择其中一批设计两种派车方案,并求各需付
车费多少元?
【选自教材P76 巩固与应用 】
16.儿童的负重最好不要超过自身体重的15%,如果长期 背负过重物体,会妨碍骨骼生长。妙想的体重是40 kg, 她的书包最好不要超过多少千克?
40×15%=6(kg)
答:最好不要超过6千克。
【选自教材P76 巩固与应用 】
17.下表是宝华乡2011年、2012年各种农产品产量统计表, 把表填写完整。
青岛版五四制小学二年级下册数学第十单元 总复习 万以内数的加减法

802-379= 423
..
802 - 379
423
返回
3. 笔算减法
整百数减三位数的连续退位减法的计算方法是什么?
计算过程中,当个位不够减时,要先从百位借1给十 位,再从十位借1给个位,最后计算。
+ 21 81 7 826
返回
3. 笔算减法
连续退位减法的计算方法是什么?
相同数位对齐,从个位减起,哪一位上的数 不够减,就从前一位退1当10,和本位上的数 相加后再减。
957-298= 659
..
957 - 298
659
返回
3. 算减法
被减数中间有0的三位数减三位数连续退位减 法的计算方法是什么?
返回
1. 口算 整百、整千数加减法的口算方法是什么?
可以先把整百、整千数看成几个百、几个千,再相 减;
也可以先把0前面的数相加减,再在得数的末尾添 上相应个数的0。
返回
2. 笔算加法
连续进位加法的计算方法是什么?
相同数位对齐,从个位加起,哪一位上的数 相加满10,就向前一位进1。
539+287= 826 539
268-98+268 =170+268 =438(元)
答:买一件上衣和一条裤子一共需要438元。
返回
下面是实验学校三、四年级订阅报刊的情况统计。
125
(1)三年级这三种报刊一共订了600份,订《新希望英语报》多少份? 600-150-325=125(份)
答:订《新希望英语报》125份。
返回
下面是实验学校三、四年级订阅报刊的情况统计。
四年级数学上册《多位数的加减法》整理与复习

【知识点拨】一、口算1、口算时,将较大数改写成用“万”或“亿”作单位的数,再口算。
与估算2、估算时,用“四舍五入”的方法将多位数看作整万或整亿数进行计算,用“≈”。
多1位二、用计算器2数计算3是四则运算键,0、1……9 是数字键。
的4是清除数据键。
如果输入错误时,就按这个键,清除再输入。
加1、和= 加数+ 加数2、一个加数=和—另一个加数求两个数的和用加法计算,求减三、加减法3、差= 被减数—减数两个数的差用减法计算。
的关系4、减数= 被减数—差-5、被减数= 差+减数减法是加法的逆运算。
法1、加法交换律两个数相加,交换两个加数的位置,和不变。
a+b=b+a四、加法运算律2、加法结合律3个数相加,先把前两个数相加,再加第3个数,或先把后两个数相加,再加第1个数,和不变。
ɑ+b+c=a+(b+c)1、运用加法交换律和结合律五、简便2、a+b-c=a-c+b运算3、a-b-c=a-(b+c) (1)加多了,要减4、把接近整百数看作整百。
(2)减多了,要加(3)加少了,再加(4)减少了,再减简算时加、去括号时要注意以下几点:同级运算时,如果交换数的位置,应注意符号搬家。
加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。
括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。
四年级上册《多位数的加减法》整理与复习【例题选讲】加、减法的巧算,主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。
在巧算方法里,蕴含着一种重要的解决问题的策略。
转化问题法即把所给的算式,根据运算定律和性质,或改变运算顺序,或减整从而变成一个易于算出结果的算式。
.例1:计算9+99+999+9999分析与解答:这四个加数分别接近10、100、1000、10000。
在计算这类题目时,常使用减整法,例如将99转化为100-1。
北师大版小学数学六年级下册总复习《数与代数》教学建议及课后习题解析

数与代数●数的认识学习目标1.在具体的情境中,回顾和整理小学阶段所学习的数:整数(包括自然数)、小数、分数,以及正数和负数等,沟通各种数之间的关系,构建数的认识的知识网络。
2.从现实生活中解决实际问题的需要和数学运算的需要两个不同的角度体会数的扩充过程,进一步体会数的作用,感受数系扩充的必要性,会用数来表示事物并进行交流。
编写说明本节内容是对小学阶段学过的数的整体梳理和复习,教科书设计了四个问题引领学生整体回顾和梳理小学阶段学过的数,沟通各种数之间的关系,构建数的认识的知识网络,并从现实生活中解决实际问题的需要和数学运算的需要两个不同的角度体会数的扩充过程,感受数系扩充的必要性。
1.在小学阶段,我们学过哪些数?你能用自己的方式整理一下吗?这个问题是让学生自己回顾整理小学阶段学过的各种数,并尝试运用图等方式构建知识网络。
这个活动的重点是帮助学生沟通各种数之间的联系,构建关于数的知识体系,因为在头脑中将知识形成一定的结构更利于学生记忆和运用。
教科书中呈现了一种用“图”整理的方式。
需要说明的是:教科书呈现的这种整理方式是将数分成了整数和分数两个维度去展开整理的,在小学阶段由于学生没有学习无理数(除π以外),所以在有理数范畴内分数和小数是一致的,因此在图中用“分数(小数)”进行了表示。
实际上,分数与小数是有区别的,分数都是有理数,而小数中,有限小数和无限循环小数是有理数,无限不循环小数是无理数,教师在描述时需要适当注意,但不需要在这个问题上与学生过多讨论。
2.可以用下图中的点表示学过的数,你还能表示出其他的数吗?试一试,与同伴交流。
数轴为学习数提供了一个直观的模型,数与形的结合,有利于学生理解数,并进一步沟通整数、分数、小数等数之间的联系,而且借助数轴还可以直观地进行数的大小比较。
因此,教科书设计了让学生用数轴上的点表示学过的数的活动。
需要说明的是,教科书中也没有出现数轴的名称,学生只要能用数轴上的点表示数,能认识数轴上的数即可,小学阶段也没有必要让学生记忆数轴的三要素(原点、方向和单位长度)。
北师版四年级数学下册总复习(一)数与代数
小数乘法
小数点的移动
小数点右移扩大(乘),左移缩小(除)。
移一位原数的( 10倍 )
移动两位,扩大到原数的( 100倍 )
移动三位,扩大到原数的(1000倍 )
小数点向左
1
移动一位,小数就缩小到原数的( 10 )
移动两位,小数就缩小到原数的(
从末位算起;哪一位上的数相加满十,要向前一位进一。如 果被减数的小数末尾位数不够,可以添“0”再减,哪一位 上的数不够减,要从前一位退一,在本位上加十再减;得数 的小数点要对齐横线上的小数点。
小数的性质:
小数末尾添上“0”或去掉“0”,小数的大小不变。
小数加减混合运算和整数加减混合运算顺序一样,运算 顺序没有改变,从左往右依次计算,算式带小括号,要先算 括号里面的。
面积单位换算(平方米、平方分米、平方厘米)
1平方米= 1×100=100平方分米
1平方分米=1÷100= 平方米=0.01平方米
1平方分米=1×100=100平方厘米
1平方厘米=1÷100= 平方分米=0.01平方分米
0.06
读作: 零点零六
130.578
读作: 一百三十点五七八
零点零九六 写作: 0.096
3、比较积和其中一个乘数(0 除外)的大小,关键是看另 一个乘数。
另一个乘数>1,积大于该乘数; 另一个乘数<1,积小于该乘数; 另一个乘数=1,积等于该乘数。
0.0
乘数
25
2.5
25
2.5
0.25
乘数
15
1.5
1.5
15
1.5
积 375 3.75 37.5 37.5 0.375
在( )里填上“>”“<”或“=”。
《小数乘小数》练习题
《小数乘小数》练习题篇一:小数乘小数练习题《小数乘小数》复习精练题总分100,考试时间90分钟一、填空题1.小数乘以整数的意义与整数乘法的意义相同:就是求几个( )加数的和的简便运算.2.小数乘以整数的方法是,先把小数看成( )再按整数乘法算出积,然后看被乘数有几位小数,就从积的()边数几位,点上( )并去掉小数点后末尾的零.3、3.8+3.8+3.8+3.8=( )×( )0.04×3=( )+( )+( )4.1.5×3的意义是,也可以表示改写成加法算式是 .5、3.8扩大()倍是38.6、0.78缩小( )倍是0.078.7、90缩小1000倍是( ). 8、()缩小10倍是4.6.9、13个0.25是( ).10、0.25的8倍是().11、0.24×15运算时先把0.24看作(),被乘数就扩大了(),运算结果必须缩小(),才能得到0.24×15的积.12、7.5×83表示().二、不计算,把乘积相等的算式用线连起来.570×165.7×1600.0057×1600 57×160057×165.7×1.60.57×160000 5.7×1600三、列竖式计算.0.26×7.25 3.105×1863.08×2.511.4×1.353.8×50.20.59×4.84.3×280.08×12.5四、口算0.8×257.4×1000.7×50.9×1.1 0.96×00.02×50012.5×8 0.3×101.4×31.12×2 0.39×104.1×61.9×82.3×54.3×5五、根据28×65=1820,直接写出下面各题的积0.28×6528×6.528×0.652.8×6.50.28×0.65 2.8×0.65六、判断对错(1)0.6时等于6分。
数的认识和数的运算复习提纲
小学数学六年级下册《数的认识》复习提纲一、知识要点1.自然数是指数物体时,用来表示物体个数的0,1,2,3……“1”是自然数的基本单位,没有最大的自然数。
自然数既可表示事物的多少(基数),也可表示事物的次序(序数),如“6个同学”中“6”基数,“第6个同学”中的“6”是序数。
一个物体也没有,就用自然数“0”表示。
2.零的作用:①表示数的某位没有一个单位,起占位作用。
②表示数位。
在读、写数时,某个数位上一个单位也没有,就用“0”来表示。
③还可以作为界限。
如“某时气温是摄氏零度”,这是零上温度与零下温度的分界。
3.整数包括自然数和负整数负数的初步认识:①像+3 +15 +8844……这样的数都是正数,“+3”读作“正3”,“+”是正号。
通常“+”省略不写。
像-6 -10 -155这样的数都是负数。
“-6”读作负6,“-”是负号。
②0既不是正数,也不是负数。
③正数和负数可用来表示相反意义的量。
4.整数和小数的数位顺序表……①整数的读法和写法:读数或写数时,先分级(从右向左每四位一级),再从高位到低位逐级读或写。
读数时,每级末尾的0都不读,其他数位连续有几个0都只读一个零、;写数时,哪一个数位上一个单位也没有,就在那个数位上写0。
②小数的读法和写法……5.把一个较大的数改写成用“万”或“亿”作单位的数时,先找到万位或亿位,再在万位或亿位上数的右下角点上小数点,并在后面写上“万”或“亿”,要用“=”符号。
省略一个数某位后面的尾数取近似数后,要用“≈”符号。
6、小数的意义:把整数“l”平均分成l0份、l00份、l000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。
一位小数表示十分之几,二位小数表示百分之几,三位小数表示千分之几……7.一个小数的小数部分,从某一位起,由一个数字或几个数字按照一定顺序依次不断重复出现,这样的小数就叫循环小数。
循环小数的位数是无限的,简写时,一般只写出它的第一个循环节,并在这个循环节的首位和末位数字上各记一个实心小圆点。
高中数学总复习知识点专题讲解与练习1集合、复数、逻辑
高中数学总复习知识点专题讲解与练习专题1集合、复数、逻辑一、单项选择题1.(2021·华大新高考联盟5月)已知集合M={(x,y)|x-y=0},N={(x,y)|y=x3},则M∩N 中元素的个数为()A.0 B.1 C.2 D.3答案 D解析因为直线y=x与曲线y=x3交于(-1,-1),(0,0),(1,1)三点,所以M∩N中有3个元素.故选D.2.(2021·安徽六校联考)设全集为实数集R,集合P={x|x≤1+2,x∈R},集合Q={1,2,3,4},则图中阴影部分表示的集合为()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}答案 B解析本题考查集合的表示方法.因为全集为U=R,集合P={x|x≤1+2,x∈R},Q ={1,2,3,4},所以∁U P={x|x>1+2,x∈R},所以图中阴影部分表示的集合为(∁U P)∩Q ={3,4}.故选B.3.(2021·湖北八市联考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件答案 B4.(2021·山东临沂一模)如图,若向量OZ →对应的复数为z ,且|z |=5,则1z-=( )A.15+25i B .-15-25i C.15-25i D .-15+25i答案 D解析 由题意,设z =-1+b i(b >0),则|z |=1+b 2=5,解得b =2,即z =-1+2i ,所以1z -=1-1-2i =-1+2i (-1-2i )(-1+2i )=-1+2i 5=-15+25i.故选D. 5.(2021·唐山市三模)已知i 是虚数单位,a ∈R ,若复数a -i 1-2i为纯虚数,则a =( ) A .-2 B .2 C .-12 D.12 答案 A解析 由题意a -i 1-2i =(a -i )(1+2i )(1-2i )(1+2i )=a -i +2a i +21+4=a +25+2a -15i.又因为a -i 1-2i 为纯虚数,所以⎩⎪⎨⎪⎧a +25=0,2a -15≠0,解得a =-2.故选A. 6.(2021·江西九江三校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 答案 C解析 当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x -tan x <0,可知命题p 是真命题.綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0.故选C.7.若向量a =(a -1,2),b =(b ,4),则“a ∥b ”是“a =1,b =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ∥b 可知4(a -1)-2b =0,即2a -b =2,推不出“a =1,b =0”;而a =1,b =0,满足2a -b =2,可推出“a ∥b ”.故选B.8.(2021·皖南八校第三次联考,理)设集合A ={x |y =log 2(x +1)},B ={y |y =sin x ,x ∈R },且(∁R A )∩B =( )A .∅B .{-1}C .(-1,1]D .[-1,1]答案 B解析 A =(-1,+∞),B =[-1,1],∁R A =(-∞,-1],可得(∁R A )∩B ={-1}.故选B.9.(2021·重庆月考)已知复数z 的共轭复数是z -,若z -3z -=1+2i ,则|z |=( ) A.22 B.12 C.52 D.52答案 A解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由题意,-2a +4b i =1+2i ,则a =-12,b =12,所以|z |=a 2+b 2=22.故选A.10.(2021·江淮十校质量检测,理)下列命题中,真命题是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .sin 2x +2sin x ≥3(x ≠k π,k ∈Z )C .函数f (x )=2x -x 2有两个零点D .a >1,b >1是ab >1的充分不必要条件答案 D解析 当x =0时,没有正整数小于0,A 错误;当sin x =-1时,sin 2x +2sin x =-1,B错误;f (x )=2x -x 2有三个零点(2,4,还有一个小于0),C 错误;(这时就可选D)当a >1,b >1时,一定有ab >1,但当a =-2,b =-3时,ab =6>1也成立.故D 正确.11.若命题“∃x ∈R ,使得3x 2+2ax +1<0”是假命题,则实数a 的取值范围是( )A .(-3,3)B .(-∞,-3)∪[3,+∞)C.[-3,3] D.(-∞,-3)∪(3,+∞)答案 C解析命题“∃x∈R,使得3x2+2ax+1<0”是假命题,即“∀x∈R,3x2+2ax+1≥0”是真命题,故Δ=4a2-12≤0,解得-3≤a≤ 3.故选C.12.已知p:2xx-1<1,q:(x-a)(x-3)>0,p为q的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(-1,+∞) 答案 A解析根据题意,对于p:2xx-1<1,解可得-1<x<1,即不等式的解集为(-1,1).若p为q的充分不必要条件,则(-1,1)是不等式(x-a)(x-3)>0解集的真子集.当a>3时,解得q:x>a或x<3,满足条件;当a<3时,解得q:x>3或x<a,即a≥1;当a=3时,不等式化为(x-3)2>0,解得x>3或x<3满足条件,综上a≥1,即a的取值范围为[1,+∞).故选A.二、多项选择题13.已知集合A={x∈N||x|≤3},B={a,1},若A∩B=B,则实数a的值可以是() A.0 B.1 C.2 D.3答案ACD解析∵A∩B=B,∴B⊆A,又A ={x ∈N |-3≤x ≤3}={0,1,2,3},B ={a ,1},∴a =0,2,3.14.(2021·石家庄一模)设z 为复数,则下列命题中正确的是( )A .|z |2=z z -B .z 2=|z |2C .若|z |=1,则|z +i|的最大值为2D .若|z -1|=1,则0≤|z |≤2 答案 ACD解析 设复数z =a +b i(a ∈R ,b ∈R ),|z |2=a 2+b 2,z ·z -=(a +b i)·(a -b i)=a 2+b 2,故A 正确;z 2=(a +b i)2=a 2-b 2+2ab i ,|z |2=a 2+b 2,故B 错误;|z |=1,表示z 对应的点Z 在单位圆上,|z +i|表示点z 对应的点与(0,-1)的距离.故|z +i|的最大值为2,故C 正确;|z -1|=1表示z 对应的点Z 在以(1,0)为圆心,1为半径的圆上,|z |表示z 对应的点Z 与原点(0,0)的距离,故0≤|z |≤2,D 正确.故选ACD.15.a <0,b <0的一个必要条件为( )A .a +b <0B .(a +1)2+(b +3)2=0 C.a b >0 D.a b <0答案 AC三、填空题16.(2021·石家庄二质检)已知i 为虚数单位,复数z =1-i 2 0211-i 2 018,则z 的虚部为________. 答案 -12解析 i 2 021=i 4×505+1=i ,i 2 018=i 4×504+2=i 2=-1,∴复数z =1-i 2 0211-i 2 018=1-i 1-(-1)=12-12i ,则z 的虚部为-12.17.设函数f (x )=(m 2-1)sin x cos x -cos 2x (m ∈R ),则“f (x )为偶函数”的一个充分不必要条件是________.答案 m =1(或m =-1)解析 f (x )=(m 2-1)sin x cos x -cos 2x =m 2-12sin 2x -cos 2x (m ∈R ). 若m =±1,则f (x )=-cos 2x 是偶函数,若f (x )为偶函数,则f (-x )=f (x ),所以m 2-12sin 2(-x )-cos 2(-x )=m 2-12·sin 2x -cos 2x ,即(m 2-1)sin 2x =0对任意x ∈R 恒成立,所以m =±1.故“m =±1”是“f (x )为偶函数”的充要条件.所以“f (x )为偶函数”的一个充分不必要条件是m =1(也可以填m =-1).18.已知下列命题:①到两定点(-1,0),(1,0)距离之和等于1的点的轨迹为椭圆;②∃x ∈N ,x 2-2x -1≤0;③已知a =(2,3,m ),b =(2n ,6,8),则“a ,b 为共线向量”是“m +n =6”的必要不充分条件.其中假命题有________.答案 ①③解析 对于命题①:到两定点(-1,0),(1,0)距离之和等于1的点不存在,故命题①是假命题;对于命题②:解不等式x 2-2x -1≤0,得1-2≤x ≤1+2,又∵x ∈N ,∴x =0或1或2,∴∃x ∈N ,使得x 2-2x -1≤0,故命题②是真命题;对于命题③:已知a =(2,3,m ),b =(2n ,6,8),若a ,b 为共线向量,则⎩⎨⎧2n =4,8=2m ,∴⎩⎨⎧m =4,n =2,∴m+n=6,反之若m+n=6,则m不一定为4,n不一定为2,∴“a,b为共线向量”是“m+n=6”的充分不必要条件,∴命题③是假命题.19.【多选题】已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论正确的是()A.∃x∈N,使得x∈M B.∃x∈N,使得x∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案ABC解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.20.设a,b均为单位向量,则“cos〈a,b〉<0”是“|a-b|=|2a+b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析记条件p:cos〈a,b〉<0,条件q:|a-b|=|2a+b|,|a-b|=|2a+b|左右平方得a2-2a·b+b2=4a2+4a·b+b2⇒3a2=-6a·b,a,b均为单位向量,则3=-6cos〈a,b〉,则|a-b|=|2a+b|可以推出cos〈a,b〉=-12<0,但cos〈a,b〉<0不能得到cos〈a,b〉=-12,即q⇒p,但p推不出q,p是q的必要不充分条件.故选B.1.已知集合A={4,a},B={1,a2},a∈R,则A∪B不可能是() A.{-1,1,4} B.{1,0,4}C .{1,2,4}D .{-2,1,4}答案 A解析 若A ∪B 含3个元素,则a =1或a =a 2或a 2=4,当a =1时,不满足集合元素的互异性,当a =0,a =2或a =-2时满足题意.∴A ∪B 不可能是{-1,1,4}.故选A.2.(2021·山东临沂一模)已知全集U =A ∪B =(0,4],A ∩∁U B =(2,4],则集合B =( )A .(-∞,2]B .(-∞,2)C .(0,2]D .(0,2)答案 C解析 因为U =A ∪B =(0,4],A ∩∁U B =(2,4],所以B =∁U (A ∩∁U B )=(0,2].故选C.3.已知集合M ={y |y =2x +1,x ∈R },集合N ={x |-x 2+5x +6>0},则M ∩N =( )A .(-2,3)B .(0,6)C .(6,+∞)D .(1,6)答案 D解析 ∵M ={y |y >1},N ={x |-1<x <6},∴M ∩N =(1,6).故选D.4.(2021·长郡十五校联考(二))已知复数z 满足:z 2=74+6i(i 为虚数单位),且z 在复平面内对应的点位于第三象限,则复数z -的虚部为( )A .2iB .3 C.32 D.32i答案 C解析 设z =a +b i(a ,b ∈R ),∴z 2=a 2-b 2+2ab i =74+6i ,∴⎩⎪⎨⎪⎧a 2-b 2=74,2ab =6,∵a <0,b <0,∴a =-2,b =-32,∴z =-2-32i ,∴z -=-2+32i.故选C.5.(2021·潍坊市二模)已知集合A ={x |y =ln(x -1)},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫12x ,x >-2,则A ∩B=( )A .∅B .[1,4)C .(1,4)D .(4,+∞)答案 C解析 ∵A ={x |x >1},B ={y |0<y <4},∴A ∩B =(1,4).故选C.6.(2021·湖南期中试卷)设(-1+2i)x =y -1-6i ,x ,y ∈R ,则|x -y i|=( )A .6B .5C .4D .3答案 B解析 因为(-1+2i)x =y -1-6i ,所以⎩⎨⎧2x =-6,-x =y -1,解得⎩⎨⎧x =-3,y =4,所以|x -y i|=|-3-4i|=(-3)2+(-4)2=5.故选B.7.(2021·江淮十校质量检测,理)已知集合U =[-5,4],A ={x |x2-2x ≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x ≤0,则(∁U A )∩B =( )A .∅B .[0,2]C .[-2,0)D .[-2,2]答案 C解析 由题知A =[0,2],B =[-2,0),所以A ∩B =∅,B ⊆(∁U A ),(∁U A )∩B =B =[-2,0).故选C.8.(2021·长沙市一中模拟(一))若复数z =(1+a i)·(1-i)的模等于2,其中i 为虚数单位,则实数a 的值为( )A .-1B .0C .1D .±1答案 D解析 因为z =(1+a i)·(1-i)=1-i +a i -a i 2=(1+a )+(a -1)i ,则|z |=(1+a )2+(a -1)2=2a 2+2=2,解得a =±1.9.(2021·哈师大第三次理考)设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ).若A ={2,3,4,5},B ={3,5,6},则A *B 表示的6位字符串是( )A .101010B .011001C .010101D .000111答案 C10.(2021·东北三校第二次联考)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={1,2,3},则集合A *B 的所有元素之和为( )A .16B .18C .14D .8答案 A解析 因为A ={1,2},B ={1,2,3},所以A *B ={1,2,3,4,6},所以A *B 的所有元素之和为1+2+3+4+6=16.故选A.11.(2021·南昌市一模)已知角α是△ABC 的一个内角,则“sin α=12”是“cos α=32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为角α是△ABC 的一个内角,所以α∈(0,π).由sin α=12可得α=π6或α=5π6,此时cos α=32或cos α=-32.由cos α=32可得α=π6,此时sin α=12.所以“sin α=12”是“cosα=32”的必要不充分条件.故选B.12.(2021·吉林五校联考)已知α⊥β,α∩β=l,n⊂α,m⊂β,则“m⊥n”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析在如图所示的正方体中,设平面ABCD为α,平面ADD1A1为β,AD1为m,AB为n,AD为l,则n⊥β,而m⊂β,所以n⊥m,但是m与l不垂直,所以m⊥n不是m⊥l 的充分条件;因为α⊥β,α∩β=l,m⊂β,m⊥l,则m⊥α,所以m⊥n,所以m⊥n 是m⊥l的必要条件.于是m⊥n是m⊥l的必要不充分条件.故选B.13.(2021·辽宁锦州第一次联考)若命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,则实数a的取值范围是()A.1≤a≤3 B.-1≤a≤3 C.-3≤a≤3 D.-1≤a≤1答案 B解析由特称命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,可知该命题的否定“∀x∈R,x2+(a-1)x+1≥0”是真命题.则对于方程x2+(a-1)x+1=0,有Δ=(a-1)2-4≤0,解得-1≤a≤3.故选B.14.【多选题】(2021·八省八校联考)下列命题中正确的是()A .∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB .∀x ∈(0,1),log 12x >log 13x C .∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12 D .∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x 答案 ABC解析 对于A ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x 的图象如图1所示,由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故A 正确.对于B ,分别画出y =log 12x ,y =log 13x 的图象如图2所示,由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确.对于C ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象如图3所示,由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确.对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC. 15.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 本题考查充分条件与必要条件、函数的奇偶性.当f (x )为R 上的奇函数时,若x 1+x 2=0,则有x 1=-x 2,所以f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0;若f (x )=0,则当x 1=-1,x 2=2时,f (x 1)+f (x 2)=0,但x 1+x 2≠0,所以“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.故选A.16.已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4},若A ∩B 只有4个子集,则a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]答案 D分析 A ∩B 只有4个子集,则元素有两个.解析 集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},A ∩B ={x ∈Z |a ≤x ≤2},A ∩B 只有4个子集,则A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1.故选D.评说 结合数轴、动态演示,效果更佳,结果更明显.17.【多选题】“∀x ∈[1,2],ax 2+1≤0”为真命题的必要不充分条件是( )A .a ≤-1B .a ≤-14C.a≤-2 D.a≤0答案BD解析∵∀x∈[1,2],ax2+1≤0,∴ax2≤-1,∴a<0,∵x∈[1,2],∴ax2∈[4a,a],∴a≤-1,∴“∀x∈[1,2],ax2+1≤0”⇒“a≤-1”,“a≤-1”⇒“∀x∈[1,2],ax2+1≤0”.∴“∀x∈[1,2],ax2+1≤0”为真命题的充分必要条件是a≤-1.故必要不充分条件为B、D.18.(2021·浙江适应性试卷)已知a,b∈R,则“a2>b2”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若a=-2,b=1,此时a2>b2成立,而a>|b|不成立,而a>|b|时,由不等式的性质,两边平方得,a2>b2,所以“a2>b2”是“a>|b|”的必要不充分条件.故选B.19.(2021·湖北十一校第二次联考)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2 C.3 D.4答案 B解析若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1个有序集合对(A,B);同理,若集合B中只有1个元素,则集合A中有3个元素,则3∈B ,1∈A ,此时有1个有序集合对(A ,B );若集合A 中有2个元素,则集合B 中有2个元素,则2∉A ,且2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2.故选B.20.【多选题】下列说法正确的是( )A .设a ,b 为两个非零向量,则“a ·b =|a |·|b |”是“a 与b 共线”的充分不必要条件B .“平面向量a ,b 的夹角是钝角”的充分不必要条件是“a ·b <0”C .已知数列{a n },则“a n ,a n +1,a n +2成等比数列”是“a n +12=a n a n +2”的充要条件D .在三角形ABC 中,“A >B ”的充要条件是“sin A >sin B ”答案 AD解析 若a ·b =|a |·|b |,则a 与b 方向相同;若a 与b 共线,则a 与b 方向相同或相反,不一定有a ·b =|a |·|b |,故A 正确;因为a ·b <0时,〈a ,b 〉∈(90°,180°],所以“a ·b <0”是“平面向量a ,b 的夹角是钝角”的必要不充分条件,故B 错误;由“a n ,a n +1,a n +2成等比数列”,可得“a n +12=a n a n +2”成立,反之不成立,如a n +1=a n =a n +2=0,故C 错误;由A >B 得a >b ,由正弦定理a sin A =b sin B ,得sin A >sin B ,反之也成立,故D 正确.故选AD.21.设p :|x -a |≤3,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 (-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ 解析 由|x -a |≤3,可得a -3≤x ≤a +3,即p :a -3≤x ≤a +3.由(x +1)(2x -1)≥0,可得x≤-1或x≥12,即q:x≤-1或x≥12.因为p是q的充分不必要条件,所以a+3≤-1或a-3≥12,解得a≤-4或a≥72.故a的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级《数的运算》总复习练习题
一、 填空
1、在算式□÷9=16……□中,被除数最大的是( ),余数最小的是( )
2、从9.6里连续减去( )个0.24,结果是0.
3、74×6表示( ),也可以表示( )。
4、被减数加上减数与差的和,再除以被减数,商为( )。
5、减数是被减数的74,差是减数的( )。
6、有一道除法算式,被除数、除数与商的和是90,已知商是12,被除数是( )。
7、152是258的( ),65的139是( ),( ) 的73是36。
8、被减数是84,减数与差的比是3:4,减数是( ),差是( )。
9、甲数是乙数的85,甲数比乙数少( )%,乙数比甲数多( )%。
9、如果1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4,则5!=( )。
10、203.0=( )
二估算
6931 324148 99102.0 195492
8.114.88 25 1.89.4 89.618.2
721436 59103 250018.0 89.618.2
三、 脱式计算(能简便的用简便计算)
320)420(80 12626011 9695506488 11111369)127325(
16)1112140(200
45411186.0)21431(186.0
231623
6
24
725615672
1998199919981998 200120002002
5.7)5.75.7(5.75.7
125.03161 24112161413121
761651541431321211
1、12 与13 的和除以它们的差,商是多少? 2、125减少它的12%再乘以311 ,积是多少?
3、一个数的3倍比45的35 多3,求这个数? 4、某数的14 加上2.5与它的13 相等,求某数。
5、21是35的百分之几? 6、一个数的35 是25的25 ,求这个数。
7、445 除以212 的商乘以234 ,积是多少? 8、一个数的47 等于14.3与6.1的差。求这个数。
9、214 的23 加上45 的倒数,和是多少? 10、一个数的30%是123,它的910 是多少?
11、一个数比50的925 多4.5,求这个数? 12、乙数比40多20%,乙数是多少?
13、0.21除以35 的商加上2.4乘14 的积,和是多少?
14、712 与它的倒数的积减去0.125所得的差,除以38 ,商是多少?
15、一个数的40%比3.6少20%,这个数是多少?
16、甲数比乙数多25%,甲数是乙数的百分之几?乙数比甲数少百分之几?乙数是甲数的百
分之几?