《生物化学》蛋白质结构与功能的关系
生物化学第八版第一章蛋白质的结构与功能

Database)
收集了大量最新的蛋白质一级结构及其他资料, 为蛋白质结构与功能的深入研究提供了便利。
目录
二、多肽链的局部主链构象为蛋白质 二级结构
目录
(二)α -螺旋结构是常见的蛋白质二级结构
目录
(三)-折叠使多肽链形成片层结构
目录
目录
(四)-转角和无规卷曲在蛋白质分子中 普遍存在
-转角
无规卷曲是用来阐述没有确定规律性的那部 分肽链结构。
目录
(五)二级结构可组成蛋白质分子中的模体
在许多蛋白质分子中,可发现二个或三个具 有二级结构的肽段,在空间上相互接近,形成一 个有规则的二级结构组合,被称为超二级结构。
蛋白质分子中20种氨基酸残基的某些基团还可被 甲基化、甲酰化、乙酰化、异戊二烯化和磷酸化 等。
这些翻译后修饰,可改变蛋白质的溶解度、稳定 性、亚细胞定位和与其他细胞蛋白质相互作用的 性质等,体现了蛋白质生物多样性的一个方面。
目录
三、20种氨基酸具有共同或特异的理化性质
(一)氨基酸具有两性解离的性质
能基因组与蛋白质组计划的展开 ,使蛋白 质结构与功能的研究达到新的高峰 。
目录
第一节 蛋白质的分子组成
The Molecular Component of Protein
目录
蛋白质的生物学重要性 1. 蛋白质是生物体重要组成成分 分布广:所有器官、组织都含有蛋白质;细 胞的各个部分都含有蛋白质。 含量高:蛋白质是生物体中含量最丰富的生 物大分子,约占人体固体成分的45%,而在 细胞中可达细胞干重的70%以上。
第二章 蛋白质的结构与功能(中职护理 《生物化学》)

氨基酸的结构
亚氨基酸
脯氨酸 Proline
H N C OH O
2,根据R侧链的极性分类
非极性疏水性氨基酸 极性中性氨基酸 酸性氨基酸 碱性氨基酸
1,非极性疏水性氨基酸
特点:含有非极性的侧链,具有疏水性(在中性水 溶液中的溶解度较小),共7种。
甘氨酸 丙氨酸 缬氨酸 亮氨酸 异亮氨酸 苯丙氨酸 脯氨酸
3, β-转角
定义: 在肽链进行180° 回折时的转角上,通 常由四个氨基酸残基 构成,其中第二个残 基常为脯氨酸。
作用力:氢键
4,无规卷曲
定义: 是指多肽链中没有确定规 律性的那部分肽链构像。
(二)三级结构
定义:
蛋白质的多肽链在各种二级结构的基础上再 进一步盘曲或折叠形成具有一定规律的三维空间 结构,称为蛋白质的三级结构。
含硫氨基酸
O H2N CH C CH2 SH OH
氨基酸的结构
天冬氨酸 Aspartate
酸性氨基酸
O H2 N CH C CH2 C OH O OH
氨基酸的结构
天冬氨酸 Aspartate
谷氨酸 Glutamate
酸性氨基酸
O H2N CH C CH2 CH2 C OH O OH
氨基酸的结构
证明:氨基酸是蛋白质的基本组成单位
۶ 组成人体蛋白质的20种氨基酸均 属于L--氨基酸
• 存在自然界中的氨基酸有300余种, 但组成人体蛋白质的氨基酸仅有20种, 且均属 L-氨基酸(甘氨酸除外)。
۶ 组成蛋白质的氨基酸
(一)氨基酸的结构
1、结构通式
侧链基团
氨基 羧基
2、结构特点:
① 每种氨基酸分子中至少都含有一个氨基和一个羧 基,并且连接在同一个碳原子上,故称α -氨基酸 (脯氨酸除外:亚氨基——NH2+)。 ②除甘氨酸的R为H外,其他氨基酸的Cα 是不对称 碳原子,因此具有L型与D型两种不同的构型,组成 人体的都是L型。 ③不同氨基酸的R侧链各异,它 们的分子量、解离程度和化学反 应性质也不相同。
生物化学与分子生物学蛋白质的结构和功能

蛋白质的结构与功能
§2.1 蛋白质的分子组成 §2.2 蛋白质的分子结构 §2.3 蛋白质结构与功能的关系 §2.4 蛋白质的理化性质及其应用 §2.5 蛋白质组和功能蛋白质组
§2.1 蛋白质的分子组成
Protein (蛋质)的元素组成
碳(C) 50%
氢(H) 氧(O) 氮(N) 硫(S) 磷(P) 金属元素
Peptide bond
H3N+
amino group
HO
H
CCNC
R1
H R2
peptide
bond
COO-
carboxyl group
Peptide unit (肽单元)
构成肽键的四个原子与其相邻的碳原子称为一个肽单元 (peptide unit),又称酰胺平面或肽平面
2、多肽(polypeptide)和蛋白质(protein)
The three-dimensional arrangement of atoms determined by the amino acid sequence
蛋白质的结构层次 four levels of structure in proteins:
Primary structure (一级结构) Secondary structure (二级结构) Tertiary structure (三级结构) Quaternary structure (四级结构)
多肽链的左端有自由的氨基称氨基末端 (amino terminal) 或N末端
多肽链的右端有自由的羧基称羧基末端 (carboxyl terminal)或C末端
4、氨基酸残基(amino acid residue)
(整理)生物化学简答题

2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用。
4 热变性DNA具有什么特征?5 试说明DNA双螺旋结构模型的要点及与DNA生物学功能的关系。
6 核酸杂交技术的基础是什么?有哪些应用价值?7 简述蛋白质的一、二、三、四级结构。
8 固定化酶的概念、优点、制备方法。
9 酶的特点及其高效作用机理。
10 酶的活性中心和必需基团及其关系。
11 辅酶与辅基有何不同?维生素(3种以上)与辅酶(辅基)的关系?在代谢中的应用。
12 简述蛋白质酶和修饰酶在新药研究中的应用以及核酶和抗体酶对新药设计的指导意义。
13 请从各个方面比较糖酵解和糖的有氧氧化的异同。
14 比较糖酵解和糖的有氧氧化的异同。
15 比较DNA、RNA在化学组成、结构、功能上各有何特点、16 比较原核细胞的mRNA和真核细胞的mRNA的结构特点。
17 比较哺乳动物脂肪酸β氧化和合成的主要区别。
18 脂肪酸β氧化和合成。
19 糖酵解和糖的有氧氧化。
20 糖在机体内主要代谢途径及重要生物学意义。
21 酮体的生成、利用和意义。
22 简述乙酰CoA的体内来源与去路及其细胞定位。
23 什么是尿素循环、过程?有什么生理意义?24 大肠杆菌DNA复制过程。
25 蛋白质生物合成过程。
26 何谓抗代谢物?简述磺胺药、氨甲喋呤等药物作用机制。
27 生物技术主要研究内容及在现代药学新药研究应用。
28 简述基因工程的基本原理和一般过程及在制药领域应用。
29 有哪些生物化学研究成果被用于新药设计和筛选研究?试分别举例说明之。
30 简述蛋白质纯化的常用方法及其基本原理。
31 利用蛋白质电离性质可采用哪些方法将其分离纯化?举例说明。
2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用。
4 热变性DNA具有什么特征?5 试说明DNA双螺旋结构模型的要点及与DNA生物学功能的关系。
大学生物化学简答题 [生物化学问答题和计算题]
![大学生物化学简答题 [生物化学问答题和计算题]](https://img.taocdn.com/s3/m/c54c0666a6c30c2259019eb2.png)
大学生物化学简答题 [生物化学问答题和计算题]蛋白质化学 1、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。
蛋白质的结构决定功能。
一级结构决定高级结构的形成,高级结构则与蛋白质的功能直接对应。
1.一级结构与高级结构及功能的关系:氨基酸在多肽链上的排列顺序及种类构成蛋白质的一级结构,决定着高级结构的形成。
很多蛋白质在合成后经过复杂加工而形成天然高级结构和构象,就其本质来讲,高级结构的加工形成是以一级结构为依据和基础的。
有些蛋白质可以自发形成天然构象,如牛胰RNA酶,尿素变性后,空间构象发生变化,活性丧失,逐渐透析掉尿素后可自发形成天然三级结构,恢复95%生物活性。
这个例子说明了两点:一级结构决定特定的高级结构;特定的空间构象产生特定的生物功能。
一级结构中,特定种类和位置的氨基酸出现,决定着蛋白质的特有功能。
例如同源蛋白中所含的不变氨基酸残基,一但变化后会导致功能的丧失;而可变氨基酸残基在不同物种的变化则不影响蛋白质功能的实现。
又如人类的镰刀型贫血,就是因为一个关键的氨基酸置换突变后引发的。
某些一级结构的变化会导致功能的明显变化,如酶原激活过程,通过对酶原多肽链局部切除而实现酶的天然催化功能。
2.高级结构与功能的关系:任何空间结构的变化都会直接影响蛋白质的生物功能。
一个蛋白质的各种生物功能都可以在其分子表面或内部找到相对应的空间位点。
环境因素导致的蛋白质变性,因天然构象的解体而活性丧失;结合变构剂导致的蛋白质变构效应,则是因空间构象变化而改变其活性 2、参与维持蛋白质空间结构的力有哪些?蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的) 4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。
1.测定蛋白质分子中多肽链的数目。
通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。
第一章 蛋白质的结构与功能【生物化学与分子生物学 9版原版】

生物化学与分子生物学(第9版)
2. 蛋白质具有重要的生物学功能(功能蛋白质)
物质运输 催化功能 信息交流 免疫功能 氧化供能 维持机体酸碱平衡 维持正常血浆渗透压
生物化学与分子生物学(第9版)
通过肽键(peptide bond)相连形成的高分子含氮化合物。
生物化学与分子生物学(第9版)
蛋白质研究的历史
1833年 Payen和Persoz分离出淀粉酶。 1838年 荷兰科学家 G. J. Mulder引入“protein”(源自希腊字
proteios,意为primary)一词。 1864年 Hoppe-Seyler从血液分离出血红蛋白,并将其制成结晶 19世纪末 Fischer证明蛋白质是由氨基酸组成的,并将氨基酸合成了
多种短肽。
生物化学与分子生物学(第9版)
1951年 Pauling采用X(射)线晶体衍射发现了蛋白质的二级结 构——α-螺旋(α-helix)。
1953年 Frederick Sanger完成胰岛素一级序列测定。 1962年 John Kendrew和Max Perutz确定了血红蛋白的四级结构。 20世纪90年代以后 随着人类基因组计划实施,功能基因组与蛋白质
生物化学与分子生物学(第9版)
体内也存在若干不参与蛋白质合成但具有重要生理作用的
L-α-氨基酸,如参与合成尿素的鸟氨酸(ornithine)、瓜氨酸
(citrulline)和精氨酸代琥珀酸(argininosuccinate)。
生物化学与分子生物学(第9版)
二、氨基酸可根据侧链结构和理化性质进行分类
熟悉
生物化学名词解释与问答题
↓举例说明蛋白质一级结构与功能的关系。
1)一级结构是空间结构的基础例:经变性后又复性的核糖核酸酶分子中二硫键的配对方式与天然分子相同。
说明蛋白质一级结构是其高级结构形成的基础和决定性的因素。
2)一级结构与功能(1)一级结构相似的多肽或蛋白质,其空间结构、功能亦相似。
如哺乳动物的胰岛素分子等。
(2)有些蛋白质分子中起关键作用的氨基酸残基缺失或被替代都会影响空间构象及生理功能。
如镰刀型血红蛋白贫血病。
(3)蛋白酶原的激活↓试述蛋白质二级结构的形成基础及几种构象特点。
二级结构的基础是肽平面,其构象包括α-螺旋、β折叠、β转角、无规则卷曲。
(1)α-螺旋特征是:①以肽键平面为单位,右手螺旋;②每螺旋圈3.6个氨基酸残基,螺距0.54nm ;③氢键保持螺旋结构的稳定,氢键的方向与螺旋长轴基本平行;④氨基酸侧链伸向螺旋外侧,并影响α螺旋的形成和稳定。
(2)β-折叠的特征:①多肽链较伸展,呈锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方;②两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,两条肽链走向可相同,也可相反;③氢键稳固β—折叠结构。
↓蛋白质的三级结构的含义及维持其构象稳定的作用力。
整条肽链中全部氨基酸残基的相对空间位置。
即肽链中所有原子在三维空间的排布位置。
主要作用力为疏水键、离子键、氢键和 Van der Waals力↓蛋白质变性的机制、对理化性质的影响。
在某些物理和化学因素作用下,其特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。
如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等,本质为破坏非共价键和二硫键,不改变蛋白质的一级结构。
举例:临床医学上,变性因素常被应用来消毒及灭菌。
此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。
↓举例说明蛋白质空间结构与功能关系。
分子的构象与功能的关系1)蛋白质变性:一级结构不变,但空间构象改变,进而使蛋白质的生物学活性、理化性质也改变。
生物化学 第一篇 蛋白质的结构与功能
第一篇蛋白质的结构与功能(第一~四章小结)第一章氨基酸氨基酸是一类同时含有氨基和羧基的有机小分子。
组成多肽和蛋白质的氨基酸除Gly外,都属于L型的α- 氨基酸(Pro为亚氨基酸)。
氨基酸不仅可以作为寡肽、多肽和蛋白质的组成单位或生物活性物质的前体,也可以作为神经递质或糖异生的前体,还能氧化分解产生ATP。
目前已发现蛋白质氨基酸有22种,其中20种最为常见,而硒半胱氨酸和吡咯赖氨酸比较罕见。
非蛋白质氨基酸通常以游离的形式存在,作为代谢的中间物和某些物质的前体,具有特殊的生理功能。
22种标准氨基酸可使用三字母或单字母缩写来表示。
某些标准氨基酸在细胞内会经历一些特殊的修饰成为非标准蛋白质氨基酸。
氨基酸有多种不同的分类方法:根据R基团的化学结构和在pH7时的带电状况,可分为脂肪族氨基酸、不带电荷的极性氨基酸、芳香族氨基酸、带正电荷的极性氨基酸和带负电荷的极性氨基酸;根据R基团对水分子的亲和性,可分为亲水氨基酸和疏水氨基酸;根据对动物的营养价值,可分为必需氨基酸和非必需氨基酸。
氨基酸的性质由其结构决定。
其共性有:缩合反应、手性(Gly除外)、两性解离、具有等电点,以及氨基酸氨基和羧基参与的化学反应,包括与亚硝酸的反应、与甲醛的反应、Sanger反应、与异硫氰酸苯酯的反应和与茚三酮的反应等。
与亚硝酸的反应可用于Van Slyke定氮,与甲醛的反应可用于甲醛滴定,Sanger反应和与异硫氰酸苯酯的反应可用来测定N-端氨基酸。
只有脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余生成蓝紫色物质,利用此反应可对氨基酸进行定性或定量分析。
多数氨基酸的侧链可能发生特殊的反应,可以此鉴定氨基酸。
不同氨基酸在物理、化学性质上的差异可用来分离氨基酸,其中最常见的方法是电泳和层析。
第二章蛋白质的结构肽是氨基酸之间以肽键相连的聚合物,它包括寡肽、多肽和蛋白质。
氨基酸是构成肽的基本单位。
线形肽链都含有N端和C端,书写一条肽链的序列总是从N端到C端。
生物化学 第1章 蛋白质的结构与功能
第1章蛋白质的结构与功能学习要求1.掌握蛋白质的概念及其生物学意义、分子组成、结构与功能及其相互关系。
2.熟悉蛋白质的理化性质及其应用。
3.了解蛋白质的分离、纯化与结构分析。
基本知识点蛋白质是重要的生物大分子,在体内分布广泛,含量丰富,种类繁多。
每一种蛋白质都有其特定的空间结构和生物学功能。
组成蛋白质的基本单位是L-α-氨基酸,共20种,根据其侧链的结构和理化性质可以分为:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸和碱性氨基酸。
氨基酸属于两性电解质,在溶液pH等于pI时,氨基酸呈兼性离子。
氨基酸可通过肽键相连成肽。
小于10个氨基酸组成的肽称为寡肽,大于10个氨基酸的肽称为多肽。
蛋白质的结构可以分为一级、二级、三级和四级结构四个层次。
蛋白质的一级结构即氨基酸的排列顺序,其连接键为肽键,还包括二硫键的位置;形成肽键的6个原子处于同一平面,构成肽单元。
二级、三级和四级结构统称为蛋白质的空间构象,二级结构是指蛋白质主链局部的空间构象,不涉及氨基酸残基侧链构象。
主要为α-螺旋、β-折叠、β转角和无规则卷曲,以氢键维持其稳定性;在蛋白质分子中,空间上相邻的两个或三个具有二级结构的肽段,完成特定的生物学功能,称为模体;三级结构是指多肽链主链和侧链的全部原子的空间排布位置。
三级结构的形成和稳定主要靠次级键;一些蛋白质的三级结构可形成一个或数个球状或纤维状的区域,各行其功能,称为结构域;四级结构是指蛋白质亚基之间的缔合,主要也靠次级键维系。
一级结构是空间结构的基础,也是功能的基础,一级结构相似的蛋白质,其空间构象与功能也相似,若蛋白质一级结构发生改变则影响其正常功能,由此引起的疾病称分子病。
生物体内蛋白质的合成、加工和成熟是一个复杂的过程,其中多肽链的正确折叠对其正确构象的形成和功能发挥至关重要。
蛋白质折叠成何种构象,除一级结构为决定因素外,还需要分子伴侣的参与。
若蛋白质折叠发生错误,虽然其一级结构不变,但蛋白质构象发生改变,仍可影响其功能,严重时可以导致疾病发生,该疾病被称为蛋白质构象病。
生物化学蛋白质的结构与功能
生物化学蛋白质的结构与功能嘿,朋友!想象一下,你走进一家热闹非凡的餐厅,菜单上琳琅满目的美食让人眼花缭乱。
这就好比我们身体这个奇妙的“大工厂”里,有着各种各样的“零部件”,而蛋白质就是其中至关重要的“明星产品”。
在我们的身体中,蛋白质就像一群默默无闻却又无比勤劳的小工匠,它们以独特的结构和神奇的功能,为我们的生命活动保驾护航。
先来说说蛋白质的结构吧。
蛋白质的结构就像是一座精心搭建的积木城堡。
它有着不同的层次,一级结构就像是一块块形状各异的积木,也就是组成蛋白质的氨基酸按照一定的顺序排列起来。
你看,这就像我们搭积木时,先把基础的小块按照特定顺序放好一样。
二级结构呢,则像是把这些小积木组成了一个个有规律的小模块,比如常见的α螺旋和β折叠。
这是不是有点像把一些相同的小零件组装成了特定的小组件?而三级结构呢,那就是这些小组件进一步组合、折叠,形成了一个有独特形状和功能的“小机器”。
四级结构呢,就是几个这样的“小机器”一起合作,共同完成一项大工程。
再说说蛋白质的功能,那可真是五花八门!有的蛋白质就像是勇敢的战士,组成了身体的防御系统,比如抗体,它们在身体里巡逻,一旦发现外敌入侵,就立刻冲上去奋勇作战。
有的蛋白质像勤劳的运输工人,比如血红蛋白,它们勤勤恳恳地运输着氧气,把生命的“燃料”送到身体的各个角落。
还有的蛋白质像神奇的魔术师,比如酶,它们能加速化学反应,把原本需要漫长时间才能完成的过程变得瞬间搞定。
就拿我们的肌肉来说吧,肌肉中的肌动蛋白和肌球蛋白,它们相互协作,就像两个默契的舞伴,一进一退,带动着我们的身体运动。
当你在操场上尽情奔跑时,难道不应该感谢这些小小的蛋白质吗?又比如说,我们的头发主要是由角蛋白构成的。
想象一下,如果没有角蛋白,我们的头发是不是就像失去了支撑的稻草,软塌塌的没有形状?再想想,我们吃进去的食物,要靠消化酶来分解,这些消化酶也是蛋白质呀。
如果没有它们,那食物在我们的肚子里岂不是要堆积如山,让我们难受得要命?总之,生物化学中的蛋白质,它们的结构和功能就像是一场精妙绝伦的舞蹈。