体育单招近十年数学集合专项
体育单招数学试题及答案2024

体育单招数学试题及答案2024一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)答案:C2. 已知等差数列的首项为a1=2,公差为d=3,求第10项a10的值。
A. 25B. 29C. 31D. 35答案:B3. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B4. 已知三角形ABC的三边长分别为a=3,b=4,c=5,判断三角形的形状。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B5. 函数f(x) = 2x - 3在区间[1,4]上的最大值和最小值分别是多少?A. 最大值:5,最小值:-1B. 最大值:5,最小值:-1C. 最大值:7,最小值:-1D. 最大值:7,最小值:-5答案:C6. 已知一个正方体的体积为27,求其边长。
A. 3B. 6C. 9D. 27答案:A7. 将一个圆分成4个相等的扇形,每个扇形的圆心角是多少度?A. 30°B. 45°C. 90°D. 360°答案:C8. 已知等比数列的首项为a1=2,公比为q=2,求第5项a5的值。
A. 32B. 64C. 128D. 256答案:A9. 抛物线y = x^2 - 4x + 4的顶点坐标是什么?A. (2,0)B. (2,2)C. (2,4)D. (0,4)答案:A10. 已知向量a = (3, 4)和向量b = (-1, 2),求向量a与向量b的点积。
A. 10B. 8C. 6D. 2答案:B二、填空题(每题3分,共15分)1. 若sinθ = 0.5,则cosθ的值为________。
答案:±√3/22. 一个直角三角形的两条直角边分别为3和4,其斜边的长度为________。
体育对口单招数学试卷(包含答案) (7)

体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,共60分)1.已知命题,命题恒成立。
若为假命题,则实数的取值范围为( )A 、B 、C 、D 、2.已知平面平面,=c ,直线直线c a ,不垂直,且c b a ..交于同一点,则“c b ⊥”是“a b ⊥”的( )A. 既不充分也不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. 函数)10()(≠>-⋅-=a a a x a a x y x且的图像可以是( )A B C D4.设函数3)(x x f =,若20πθ≤≤时,0)1()cos (>-+m f m f θ恒成立,则实数的取值范围为( )A .)1,0(B .)0,(-∞C .1,(-∞)D .)21,(-∞ 5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )A .6B .8C .2D .56.若tan θ=-2,则sin θ(1+sin2θ)sin θ+cos θ =( ) A.−65B.−25C.25 D.65 01,:≤+∈∃m R m p 01,:2>++∈∀mx x R x q q p ∧2≥m 2-≤m 22≥-≤m m 或22≤≤-m ⊥αββα ,α⊂a ,β⊂b7.若过点(a,b)可以作曲线y=ex 的两条切线,则( )A.eb<aB.ea<bC.0<a<ebD.0<b<ea8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立9.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为( )(A )43 (B )42 (C )423 (D )2310.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 ( )(A )5 (B )3 (C )2 (D )111. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( )A. BD ⃗⃗⃗⃗⃗B. DB ⃗⃗⃗⃗⃗C. AC ⃗⃗⃗⃗⃗D. CA ⃗⃗⃗⃗⃗12. 下列函数以π为周期的是( )A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是()A. 400B. 380C. 190D. 4014. 已知直线的倾斜角为60°,则此直线的斜率为( )A. −√33B. −√3C. √3D. √3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B. 第二象限C. 第三象限D.第四象限16、 不等式0412>-+x x 的解集是( )A 、RB 、 (1,4)C 、 ),4()1,(+∞-∞D 、 )4,(-∞17、不等式()0)5(7≥-+x x 的解集是( )A 、 ()7,5-B 、 ),5()7,(+∞--∞C 、 ),5[]7,(+∞--∞D 、 []57,- 18、若ab<0,则( )A 、a>0,b>0B 、a<0,b>0C 、a>0,b<0或 a<0,b>0D 、a>0,b>0或 a<0,b<019、下列命题中,正确的是( )A 、a>-aB 、a a <2C 、b a b a >>那么如果,D 、22,0,c b c a c b a >≠>则如果 20、在等差数列{}n a 中,3,21=-=d a ,则=7a ( )A 、16B 、17C 、18D 、19二、填空题:(本题共5小题,每小题6分,共30分.)1.记Sn 为等比数列{an}的前n 项和.若214613a a a ==,,则S5=____________.2.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.3.已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 4.{}{},13),(,3),(=+==-=y x y x B y x y x A那么=B A _____;5、042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分)1、计算:sin π2−lg 1000+0.25−12÷√325−3!+√(−5)2. 2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
全国高校体育专业单招考试数学试题汇总(2015-2019)

2015年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试一、选择题:(本大题共10小题,每小题6分,共60分)(1)若集合的元素共有则A N x x x A },,270{∈<<=( ) A 、2个 B 、3个 C 、4个 D 、无穷多个62289072222D C B A y y x )的半径是()圆(=-++(3)下列函数中是减函数的是( ) A.x y = B.3x y -=C.x x x y sin 22+= D.2x x e e y -+=]1,0[]2,0[1812)(42D C B A x x x f ),(),()的值域是()函数(∞+∞--=︒︒︒︒===︒=∆----+-=306012013534,430632123123213114cos 34sin 35D C B A B AC BC A ABC DCB A x x y )(,则,钝角三角形,)已知(和和和和)分别是(的最小正周期和最小值)函数(ππππ))(())(())(())(()其中正确的命题是(∥,则∥∥)若;(∥则,)若(∥则∥,∥)若;(∥则,)若(个命题:为两个平面,有下面四为两条直线,,)设(42413231,2321,7D C B A m m n m n m n m n m n m n m βαβαβαβαββααβα⊥⊥⊥⊥(8)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案共有( )种。
A 165B 120C 75D 6042333231169922D C B A y x ),则它的离心率是(的一条渐近线的斜率为)双曲线(=-=>+++=>)(0),1ln()(0)(1022x f x x x x x f x x f 时,则当时,是奇函数,当)已知( A)1ln(22x x x +++- B )1ln(22x x x ++-- C )1ln(22x x x ++-+- D )1ln(22x x x +++ 二、填空题(本大题共6小题,每小题6分,共36分)(11)不等式的解集为0321>+-x x( )530,30,312)(的标准方程为,则该椭圆),离心率为)()若椭圆的焦点为((-)()4tan(,2)4tan(13=-=+πθπθ则)若()(,cos 322,14>=<-=•==b a b a b a ,则,满足,)(若向量()的系数是(的展开式中))((341215x x - )的取值范围是(则且)若(a a a a a a ,0)3(log )12(log ,10162<<+<<三、解答题(本大题共3小题,共54分)(17)某校组织跳远达标测验,已知甲同学每次达标的概率为3/4.他测试时跳了4次。
2019年体育单招数学真题及答案

2019年体育单招数学真题及答案2019年体育单招数学真题一、选择题(每小题3分,共30分)1.设集合A={1,2,3,4,5},B={2,5,6},则A∪B=______A. {1,2,3,4,5,6}B. {2,5}C. {1,3,4,6}D. {1,3,4}2.设两个随机变量X,Y服从区间[0,1]上的均匀分布,则Cov (X,Y)=______A. 0B. 0.25C. 0.5D. 13. 已知随机变量:E(lnX)=______A. lnXB. (lnX)^2C. e^(lnX)D. 14.设等比数列{an}的公比为q,前n项和为Sn,则下列关系式中正确的是______A. Sn = q^n /(q — 1)B. Sn = (q — 1) / q^nC. Sn = q^n - 1D. Sn = q^n + 15.设向量a=(-3,1),b=(1,1),则a•b=______A. -2B. 0C. 2D. 4二、填空题(每小题4分,共16分)6.若函数f(x)=(1-x)^3+2x-2满足f'(x)=0,则x=________7. 一家公司在某月用电量为20000KW·h,电费为f(x)=2x,则电费为________8.若复数z满足z^2+2z+5=0,则z=________9.若有相关系数r=0.75,则X,Y的协方差Cov(X,Y)=________10.设非零向量a=(1,1,1), b=(-1,-2,-3),则a×b=_________三、解答题(每题16分,共32分)11. 令x>2,求函数f(x)=|-x|+2x定义域和值域定义域:D=(2,+∞)值域:R=(4,+∞)12.已知f(x)=2x^2-7x+5,求极值点解:f'(x)=4x-7=0,得x=7/4,此时f(7/4)=2-7/4+5=15/4.因此,函数y=2x^2-7x+5的极值点为(7/4,15/4). 2019年体育单招数学真题及答案一、选择题(每小题3分,共30分)1.A2.A3.C4.A5.A二、填空题(每小题4分,共16分)6.-17.400008.-1±2i9.150 10.(0,0,0)三、解答题(每题16分,共32分)11.定义域:D=(2,+∞);值域:R=(4,+∞)12.函数y=2x^2-7x+5的极值点为(7/4,15/4).。
2023年高校体育单招考试数学模拟试卷三(含答案详解)

2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学模拟试卷(三)一、选择题(本大题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2Z 230A x x x =∈+-≤,{|1}B x x =≥-,则集合A ∩B 的元素个数为()A.1B.2C.3D.42.下列函数中,在其定义域内既是奇函数又是减函数的是A .R x x y ∈-=,3B .Rx x y ∈=,sin C .Rx x y ∈=,D.R x x y ∈=,)21(3.不等式11x -≤的解集是()A.{}2x x ≤ B.{}02x x ≤≤ C.{}x x ≥ D.{}14.函数()()ln 11x f x x-=+的定义域是()A.(-1,1)B.()(),11,1-∞-⋃- C.(0,1) D.()()1,11,-⋃+∞5.已知向量()()2,4,2,a b m ==-,若a b + 与b的夹角为60°,则m =()A.33-B.33 C.233-D.336.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则()A .a n =2n ﹣5B .a n =3n ﹣10C .S n =2n 2﹣8nD .S n =21n 2﹣2n 7.若π3sin 45α⎛⎫-= ⎪⎝⎭,则sin 2α=()A.725-B.2425-C.725D.24258.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为AC ,A 1B 的中点,则下列说法错误的是()A .MN ⊥CDB .直线MN 与平面ABCD 所成角为45°C .MN ∥平面ADD 1A 1D .异面直线MN 与DD 1所成角为60°二、填空题(本大题共4小题,每小题8分,共32分.)9.记S n 为等比数列{a n }的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则4a =______.10.已知圆C :22850x y x ay +++-=经过抛物线E :24x y =的焦点,则抛物线E 的准线与圆C 相交所得弦长是__________.11.某班级计划从甲,乙,丙,丁,戊五位同学中选择三人作为代表参加师生座谈会,每人被选中的机会均等,则甲和乙同时被选中的概率为___________.12.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为.三、解答题(本题共3小题,每小题18分,共54分)13.某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A B 、两个题目,该学生答对A B 、两题的概率分别为12和13,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为12,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)(II)求该学生被公司聘用的概率.14.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin B +b cos A =c .(1)求B ;(2)设a =2c ,b =2,求c .15.已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1,F2为双曲线的左、右焦点,且|MF1|+|MF2|=63,试判断△MF1F2的形状.答案和解析1.C 【详解】∵{}{}{}2Z 230Z 313,2,1,0,1A x x x x x =∈+-≤=∈-≤≤=---,∴{}1,0,1A B =- ,即集合A ∩B 的元素个数为3.故选:C.2.A 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.3.B 【详解】不等式11111x x -≤⇔-≤-≤,解得:02x ≤≤,所以不等式的解集是{}02x x ≤≤.故选:B4.B 【详解】要使()()ln 11x f x x-=+有意义,则101101x x x x -><⎧⎧⇒⎨⎨+≠≠-⎩⎩,所以函数()f x 的定义域是()(),11,1x ∈-∞-⋃-.故选:B5.D 【详解】由题意得(0,4)a b m +=+,故2()(4)1cos ,2|||||4|4a b b a b b a b b m m +⋅〈+〉==+⋅+⨯+,解得233m =±,其中233m =-不合题意,舍去,故233m =,故选:D 6.A 解:设等差数列{a n }的公差为d ,由S 4=0,a 5=5,得,∴,∴a n =2n ﹣5,,故选:A .7.C 【详解】因为π3sin 45α⎛⎫-= ⎪⎝⎭,所以ππsin 2cos 2cos 224ααα⎡⎤⎛⎫⎛⎫=-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,22π3712sin 124525α⎛⎫⎛⎫=--=-⨯=⎪ ⎪⎝⎭⎝⎭,故选:C 8.D 解:如图,连结BD ,A 1D ,由M ,N 分别为AC ,A 1B 的中点,知MN ∥A 1D ,而MN ⊄平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴MN ∥平面ADD 1A 1,故C 正确;在正方体ABCD ﹣A 1B 1C 1D 1中,CD ⊥平面ADD 1A 1,则CD ⊥A 1D ,∵MN ∥A 1D ,∴MN ⊥CD ,故A 正确;直线MN 与平面ABCD 所成角等于A 1D 与平面ABCD 所成角等于45°,故B 正确;而∠A 1DD 1为异面直线MN 与DD 1所成角,应为45°,故D 错误.故选:D.9.27【详解】 13S ,22S ,3S 成等差数列,∴23143S S S =+即()13121243a a a a a a =++++,∴323a a =,∴等比数列{}n a 的公比323a q a ==,∴34127a a q ==.故答案为:27.【点睛】本题考查了等差数列、等比数列的综合应用,考查了运算求解能力,属于基础题.10.【详解】抛物线E:24x y =的准线为1y =-,焦点为(0,1),把焦点的坐标代入圆的方程中,得4a =,所以圆心的坐标为(4,2)--,半径为5,则圆心到准线的距离为1,所以弦长==.11.310【详解】从甲,乙,丙,丁,戊五位同学中选择三人,有3510C =种方法,甲和乙同时被选中的方法有133C =,所以甲和乙同时被选中的概率为310p =,故答案为:31012.解:由几何体的空间结构特征可知,正方体的体对角线为球的直径,设正方体的棱长为a ,则6a 2=24,∴a =2,设球的半径为R ,则:(2R )2=22+22+22=12,则,其体积:.故答案为:.13.解:记答对笔试A B 、两试题分别为事件11A B 、,记面试回答对甲、乙两个问题分别为事件C 、D ,则11111()()()()232P A P B P C P D ====,.(I)该学生没有通过笔试的概率为111()P A B - 1151236=-⨯=.答:该学生没有通过笔试的概率是56.(II)该学生被公司聘用的概率为11()1()P A B P C D ⎡⎤⋅-⎣⎦ 11111(123228=⨯-⨯=.答:该学生被公司聘用的概率为18.14.解:(1)由正弦定理得sin A sin B +sin B cos A =sin C ,因为sin C =sin[π﹣(A +B )]=sin (A +B )=sin A cos B +cos A sin B ,所以sin A sin B =sin A cos B ,又因为sin A ≠0,cos B ≠0,所以tan B =1,又0<B <π,所以.(2)由余弦定理b 2=c 2+a 2﹣2ac cos B ,,可得,解得c =2.15.解:(1)椭圆方程可化为92x +42y =1,焦点在x 轴上,且c =49-=5,故设双曲线方程为22a x -22b y =1(a >0,b >0),则有⎪⎩⎪⎨⎧=+=-,5,1492222b a b a 解得a 2=3,b 2=2,所以双曲线的标准方程为32x -22y =1.(2)不妨设M 点在右支上,则有|MF 1|-|MF 2|=23,又|MF 1|+|MF 2|=63,解得|MF 1|=43,|MF 2|=23,又|F 1F 2|=25,因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=||||2||||||2122122122F F MF MF F F MF -+<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
2024年体育单招文化考试数学试题及答案

2024年体育单招文化考试数学试题及答案一、选择题(每题4分,共40分)1. 有七名同学站成一排拍毕业照,其中甲必须站在中间,则不同的站法一共有()A. 180种B. 360种C. 720种D. 1260种答案:B2. 已知函数$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f(-1)$的值为()A. -5B. -3C. 1D. 3答案:A3. 若$x^2 + y^2 = 4$,则$x + y$的最大值为()A. 2B. $\sqrt{2}$C. 4D. $\sqrt{8}$答案:D4. 若$a^2 + b^2 = 1$,则$a + b$的取值范围是()A. $[-1, 1]$B. $[-\sqrt{2}, \sqrt{2}]$C. $[-2, 2]$D. $[-\sqrt{3}, \sqrt{3}]$答案:B5. 若函数$f(x) = \sqrt{1 - 2x}$的定义域为$A$,函数$g(x) = \frac{1}{x - 2}$的定义域为$B$,则$A \cap B$的取值范围是()A. $(-\infty, 0]$B. $(-\infty, 1]$C. $(-\infty, 2]$D. $(-\infty, 1)$答案:D二、填空题(每题4分,共40分)6. 若$a = 3 + \sqrt{5}$,$b = 3 - \sqrt{5}$,则$a - b$的值为_________。
答案:$2\sqrt{5}$7. 已知$a$,$b$是方程$x^2 - (a + b)x + ab =0$的两根,则$a^2 + b^2$的值为_________。
答案:$a + b$8. 若$f(x) = 2x^3 - 3x^2 - 12x + 8$,则$f'(x)$的值为_________。
答案:$6x^2 - 6x - 12$9. 若$a$,$b$,$c$成等比数列,且$a + b + c = 14$,$abc = 48$,则$a$,$b$,$c$分别为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合
2009.1. 集合I={0,1,2,3,4,5},M={0,2,4},N={1,3,5},则IMCN=【 】
A.ϕ B. I C. M D. N
2010.1. 已知集合M={x|-23<x<23},N={x|x=2n,n∈Z},则M∩N=【 】
A. φ B.{0} C.{-1,1} D.{-1,0,1}
2011.1. 设集合M = {x|0
C. M∩N=N D. M∩N= M∪N
2012.1. 已知集合1,Mxx22,Nxx则MN【 】
A. 12xx B. 21xx
C. 2xx D.
2xx
2013.1. 已知集合Μ={x│-2 < x < 2},N={x│-3 < x < -1},则Μ∩N=【 】
A.{x│-3< x <2} B.{x│-3< x <-1}
C.{x│-2< x <-1} D.{x│-1< x <2}
2014.16. 已知集合A={x∣x=3n,n∈N},B={x∣x=3n+1,n∈N},C={x∣x=3n+2,n
∈N},有下列4个命题:
①AB=, ②ABC()
③ACB() ④NCAB=C()
其中是真命题的有____________(填写所有真命题的序号)。
2015.1. 若集合xA{∣0﹤x﹤},,27Nx则A的元素共有【 】
A. 2个 B. 3个 C. 4个 D. 无穷个
2016.1.已知集合2,4,6,8M,|15Nxx,则MN【 】
A.2,6 B.4,8 C.2,4 D.2,4,6,8
2017.1. 设集合1,2,3,4,5,1,3,6,MN则MN( )
A. 1,3 B. 3,6 C. 1,6 D. 1,2,3,4,5,6
2018.1. 设集合1,2,3,4,2,4,6,8MN,则MN( )
A. B. 1,3 C. 2,4 D. 1,2,3,4,6,8
第一部分答案
2009.1. C
解析:}4,2,0{NCI,则}4,2,0{NCMI,故选C
2010.1. B
解析:只有0符合
2011.1. B
解析:略
2012.
1. D
解析:集合N的解集{x∣-2≦x≦2},则MN2.xx
2013.
1. C
解析:本题考查集合的运算
223121MNxxxxx
2014.16. ①④
解析:集合A为3的倍数的自然数,集合B是被3除余1的自然数,集合C是
被3除余2的自然数,A与B没有公共元素,所以①正确;对于②,A与B∪C
也没有公共元素,所以②错误; ()ACB,所以③错误;∵A∪B∪C=N且集
合ABC两两交集为∅,∴CBACN)(,所以④正确。
2015.1. B
解析:N表示自然数,故A中的元素有1,2,3。共3个。
2016.1.C
解析:略
2017.1. A
解析:略
2018.1. C
解析:略