2021年新高考一轮复习函数的奇偶性、对称性、周期性

合集下载

高考数学一轮总复习第三章函数与基本初等函数指点迷津二课件

高考数学一轮总复习第三章函数与基本初等函数指点迷津二课件
的最大值为M,最小值为m,则
M+m=
.
答案 2
2 +cos-sin+1
-sin
-sin
解析 f(x)= 2
=1+ 2
,令 g(x)= 2
, 易知 g(x)为奇
+cos+1
+cos+1
+cos+1
函数.因为 f(x)=g(x)+1,所以 f(x)的最大值与最小值之和等于 2,即 M+m=2.
2sin
对点训练4若对∀x,y∈R,有f(x+y)=f(x)+f(y)-4,函数g(x)= cos + 1 +f(x)在区
间[-2 021,2 021]上存在最大值和最小值,则其最大值与最小值的和为( B
A.4
B.8
C.12 D.16
)
二、应用周期性的二级结论解题
对f(x)定义域内任一自变量的值x(a,b为非零常数):
对点训练5(2023广西南宁三中一模)已知函数f(x),g(x)的定义域均为R,且
f(x)+f(2-x)=4,g(x)=f(x-1)+1,若g(x+1)为偶函数,且f(2)=0,则g(2 022)+
g(2 023)=(
A.5
)
B.4
C.3
D.0
答案 B
解析∵f(x)+f(2-x)=4,∴f(x)的图象以点(1,2)为对称中心,且f(1)=2.∵g(x+1)为
)
例2.已知函数f(x)=aln(x+ 1 + 2 )+bsin x+2,若f(-3)=7,则f(3)的值(

高考数学一轮复习讲练测(新教材新高考)专题3-3函数的奇偶性与周期性-教师版

高考数学一轮复习讲练测(新教材新高考)专题3-3函数的奇偶性与周期性-教师版

专题3.3函数的奇偶性与周期性练基础1.(2021·海南海口市·高三其他模拟)已知函数()(0)f x kx b k =+≠,则“(0)0f =”是“函数()f x 为奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】化简“(0)0f =”和“函数()f x 为奇函数”,再利用充分必要条件的定义判断得解.【详解】(0)0f =,所以0b =,函数()f x 为奇函数,所以()()0f x kx b f x kx b -=-+=-=--=,所以0b =.所以“(0)0f =”是“函数()f x 为奇函数”的充分必要条件.故选:C2.(2021·福建高三三模)若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1xf x x =-B .()1x f x x=-C .()21x f x x =-D .()21x f x x =-【答案】C 【解析】利用排除法,取特殊值分析判断即可得答案解:由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112(101212f ==>-,所以排除B ,对于D ,1122()012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C3.(2021·广东高三其他模拟)下列函数中,既是奇函数又在区间()0,1上单调递增的是()A.y =B .1y x x=+C .xx y ee =-﹣D .2log y x=【答案】C 【解析】利用函数奇偶性的定义和函数的解析式判断.【详解】A.函数y =的定义域是[0,)+∞,所以函数是非奇非偶函数,故错误;B.1y x x=+在()0,1上单调递减,故错误;C.因为()()()xx x x f x ee e ef x --=---=-=﹣,所以函数是奇函数,且在()0,1上单调递增,正确;D.因为()()22log =log f x x x f x -=-=,所以函数是偶函数,故错误;故选:C .4.(2021·湖南高三月考)定义函数1,()1,x D x x ⎧=⎨-⎩为有理数,为无理数,则下列命题中正确的是()A .()D x 不是周期函数B .()D x 是奇函数C .()yD x =的图象存在对称轴D .()D x 是周期函数,且有最小正周期【答案】C 【解析】当m 为有理数时恒有()()D x m D x +=,所以()D x 是周期函数,且无最小正周期,又因为无论x 是有理数还是无理数总有()()D x D x -=,所以函数()D x 为偶函数,图象关于y 轴对称.当m 为有理数时,()1,1,x D x m x ⎧+=⎨-⎩为有理数为无理数,()()D x m D x ∴+=,∴任何一个有理数m 都是()D x 的周期,()D x ∴是周期函数,且无最小正周期,∴选项A ,D 错误,若x 为有理数,则x -也为有理数,()()D x D x ∴=-,若x 为无理数,则x -也为无理数,()()D x D x ∴=-,综上,总有()()D x D x -=,∴函数()D x 为偶函数,图象关于y 轴对称,∴选项B 错误,选项C 正确,故选:C5.【多选题】(2021·淮北市树人高级中学高一期末)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD 【解析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-= ,()f x 的图象关于(1,1)对称,正确.故选:ACD.6.【多选题】(2020·江苏南通市·金沙中学高一期中)已知偶函数()f x 在区间[)0,+∞上是增函数,则满足1(21)()3f x f -<的x 的取值是()A .0B .12C .712D .1【答案】BC 【解析】根据偶函数和单调性求得不等式的解,然后判断各选项..【详解】由题意1213x -<,解得1233x <<,只有BC 满足.故选:BC .7.【多选题】(2021·广东高三二模)函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,则下列说法正确的是()A .()f x 是周期为2的周期函数B .()f x 是周期为4的周期函数C .()2f x +为奇函数D .()3f x +为奇函数【答案】BD 【解析】AB 选项,利用周期函数的定义判断;CD 选项,利用周期性结合()1f x -,()1f x +为奇函数判断.【详解】因为函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,所以()()11f x f x --=--,()()11f x f x -+=-+,所以()()2f x f x =---,()()2f x f x =--+,所以()()22f x f x --=-+,即()()4f x f x +=,故B 正确A 错误;因为()()()3341f x f x f x +=+-=-,且()1f x -为奇函数,所以()3f x +为奇函数,故D 正确;因为()2f x +与()1f x +相差1,不是最小周期的整数倍,且()1f x +为奇函数,所以()2f x +不为奇函数,故C 错误.故选:BD.8.(2021·吉林高三二模(文))写出一个符合“对x R ∀∈,()()0f x f x +-=”的函数()f x =___________.【答案】3x (答案不唯一)【解析】分析可知函数()f x 的定义域为R ,且该函数为奇函数,由此可得结果.【详解】由题意可知,函数()f x 的定义域为R ,且该函数为奇函数,可取()3f x x =.故答案为:3x (答案不唯一).9.(2021·全国高三二模(理))已知()y f x =为R 上的奇函数,且其图象关于点()2,0对称,若()11f =,则()2021f =__________.【答案】1【解析】根据函数的对称性及奇函数性质求得函数周期为4,从而()2021(1)1f f ==.【详解】函数关于点()2,0对称,则()(4)f x f x =--,又()y f x =为R 上的奇函数,则()(4)(4)f x f x f x =--=-,因此函数的周期为4,因此()2021(1)1f f ==.故答案为:1.10.(2021·上海高三二模)已知函数()f x 的定义域为R ,函数()g x 是奇函数,且()()2x g x f x =+,若(1)1f =-,则(1)f -=___________.【答案】32-【解析】通过计算(1)(1)g g +-可得.【详解】因为()g x 是奇函数,所以(1)(1)0g g +-=,即1(1)2(1)02f f ++-+=,所以53(1)122f -=-=-.故答案为:32-.练提升1.(2021·安徽高三三模(文))若把定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,则关于函数()f x 的性质叙述一定正确的是()A .()()0f x f x -+=B .()()11f x f x -=-C .()f x 是周期函数D .()f x 存在单调递增区间【答案】C 【解析】通过举例说明选项ABD 错误;对于选项C 可以证明判断得解.【详解】定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,∴()f x 的图象既有对称中心又有对称轴,但()f x 不一定具有奇偶性,例如()sin 3f x x π⎛⎫=+⎪⎝⎭,由()()0f x f x -+=,则()f x 为奇函数,故选项A 错误;由()()11f x f x -=-,可得函数()f x 图象关于0x =对称,故选项B 错误;由()0f x =时,()f x 不存在单调递增区间,故选项D 错误;由已知设()f x 图象的一条对称抽为直线x a =,一个对称中心为(),0b ,且a b ¹,∴()()2f a x f x +=-,()()2f x f b x -=-+,∴()()22f a x f b x +=-+,∴()()()2222f a x b f b x b f x +-=-+-=-,∴()()()()442222f x a b f b x b f x a b f x +-=-+-=-+-=,∴()f x 的一个周期()4T a b =-,故选项C 正确.故选:C2.(2021·天津高三二模)已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为()A .a b c >>B .c b a >>C .b a c >>D .c a b>>【答案】B 【解析】根据对数运算性质和对数函数单调性可得331log log 9.1210->>,根据指数函数单调性可知0.822<;利用()f x 为减函数可知()()0.8331log log 9.1210f f f ⎛⎫-<< ⎪⎝⎭,结合()f x 为奇函数可得大小关系.【详解】33331log log 10log 9.1log 9210-=>>= ,0.822<即:0.8331log log 9.1210->>又()f x 是定义在R 上的减函数()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>.故选:B.3.(2021·陕西高三三模(理))已知函数f (x )为R 上的奇函数,且()(2)f x f x -=+,当[0,1]x ∈时,()22x xaf x =+,则f (101)+f (105)的值为()A .3B .2C .1D .0【答案】A 【解析】根据函数为奇函数可求得函数的解析式,再由()(2)f x f x -=+求得函数f (x )是周期为4的周期函数,由此可计算得选项.【详解】解:根据题意,函数f (x )为R 上的奇函数,则f (0)=0,又由x ∈[0,1]时,()22xx a f x =+,则有f (0)=1+a =0,解可得:a =﹣1,则有1()22xxf x =-,又由f (﹣x )=f (2+x ),即f (x +2)=﹣f (x ),则有f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,则1313(101)(1)2,(105)(1)22222f f f f ==-===-=,故有f (101)+f (105)=3,故选:A .4.(2021·上海高三二模)若()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,则下列结论:①|()|y f x =是偶函数;②对任意的x ∈R 都有()|()|0f x f x -+=;③()()y f x f x =-在(,0]-∞上单调递增;④反函数1()y fx -=存在且在(,0]-∞上单调递增.其中正确结论的个数为()A .1B .2C .3D .4【答案】C 【解析】根据奇函数定义以及单调性性质,及反函数性质逐一进行判断选择.【详解】对于①,由()f x 是R 上的奇函数,得()()f x f x -=-,∴|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,故①正确;对于②,由()f x 是R 上的奇函数,得()()0f x f x -+=,而()|()|f x f x =不一定成立,所以对任意的x ∈R ,不一定有()|()|0f x f x -+=,故②错误;对于③,因为()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,所以()f x 在(,0]-∞上单调递增,且()(0)0f x f £=,因此2()()[()]y f x f x f x =-=-,利用复合函数的单调性,知()()y f x f x =-在(,0]-∞上单调递增,故③正确.对于④,由已知得()f x 是R 上的单调递增函数,利用函数存在反函数的充要条件是,函数的定义域与值域是一一映射,且函数与其反函数在相应区间内单调性一致,故反函数1()y f x -=存在且在(,0]-∞上单调递增,故④正确;故选:C5.【多选题】(2021·全国高三专题练习)已知函数()f x 是偶函数,(1)f x +是奇函数,并且当[]1,2x ∈,()1|2|f x x =--,则下列选项正确的是()A .()f x 在(3,2)--上为减函数B .()f x 在(3,2)--上()0f x <C .()f x 在(3,2)--上为增函数D .()f x 在(3,2)--上()0f x >【答案】CD 【解析】根据题意,分析可得(4)()f x f x +=,结合函数的解析式可得当(3,2)x ∈--时函数的解析式,据此分析可得答案.【详解】解:根据题意,函数(1)f x +为奇函数,则有(1)(1)f x f x +=--+,即(2)()f x f x +=--,又由()f x 为偶函数,则()()f x f x -=,则有(2)()f x f x +=-,即有(4)()f x f x +=,当[1x ∈,2]时,()1|2|1f x x x =--=-,若(3,2)x ∈--,则4(1,2)x +∈,则(4)(4)13f x x x +=+-=+,则当(3,2)x ∈--时,有()3f x x =+,则()f x 为增函数且()(3)0f x f >-=;故()f x 在(3,2)--上为增函数,且()0f x >;故选:CD .6.【多选题】(2021·全国高三专题练习)若函数()f x 对任意x ∈R 都有()()0f x f x +-=成立,m R ∈,则下列的点一定在函数()y f x =图象上的是()A .(0,0)B .(,())m f m --C .(,())m f m --D .(,())m f m -【答案】ABC 【解析】根据任意x ∈R 满足()()0f x f x +-=,得到()f x 是奇函数判断.【详解】因为任意x ∈R 满足()()0f x f x +-=,所以()f x 是奇函数,又x ∈R ,所以令0x =,则(0)(0)f f -=-,得(0)0f =,所以点(0,0),且点(,())m f m --与(,())m f m --也一定在()y f x =的图象上,故选:ABC .7.【多选题】(2021·浙江高一期末)已知函数()y f x =是定义在[1,1]-上的奇函数,当0x >时,()(1)f x x x =-,则下列说法正确的是()A .函数()y f x =有2个零点B .当0x <时,()(1)f x x x =-+C .不等式()0f x <的解集是(0,1)D .12,[1,1]x x ∀∈-,都有()()1212f x f x -≤【答案】BCD 【解析】根据函数奇偶性定义和零点定义对选项一一判断即可.【详解】对A ,当0x >时,由()(1)0f x x x =-=得1x =,又因为()y f x =是定义在[1,1]-上的奇函数,所以()()()00,110f f f =-=-=,故函数()y f x =有3个零点,则A 错;对B ,设0x <,则0x ->,则()()()()11f x f x x x x x =--=----=-+⎡⎤⎣⎦,则B 对;对C ,当01x <≤时,由()(1)0f x x x =-<,得01x <<;当10x -≤≤时,由()(1)0f x x x =-+<,得x 无解;则C 对;对D ,12,[1,1]x x ∀∈-,都有()()()()12max min 1111122442f x f x f x f x f f ⎛⎫⎛⎫⎛⎫-≤-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则D 对.故选:BCD .8.【多选题】(2021·苏州市第五中学校高一月考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 3.5]4-=-,[2.1]2=.已知函数()[1]f x x x =+-,下列说法中正确的是()A .()f x 是周期函数B .()f x 的值域是[0,1]C .()f x 在(0,1)上是减函数D .x ∀∈R ,[()]0f x =【答案】AC 【解析】根据[]x 定义将函数()f x 写成分段函数的形式,再画出函数的图象,根据图象判断函数的性质.【详解】由题意可知[]1,210,1011,012,12x x x x x --≤<-⎧⎪-≤<⎪⎪+=≤<⎨⎪≤<⎪⎪⎩,()[]1,21,1011,012,12x x x x f x x x x x x x ---≤<-⎧⎪--≤<⎪⎪∴=+-=-≤<⎨⎪-≤<⎪⎪⎩,可画出函数图像,如图:可得到函数()f x 是周期为1的函数,且值域为(]0,1,在()0,1上单调递减,故选项AC 正确,B 错误;对于D ,取1x =-()11f -=,则()11f -=⎡⎤⎣⎦,故D 错误.故选:AC .9.【多选题】(2021·湖南高三月考)函数()f x 满足以下条件:①()f x 的定义域是R ,且其图象是一条连续不断的曲线;②()f x 是偶函数;③()f x 在()0,∞+上不是单调函数;④()f x 恰有2个零点.则函数()f x 的解析式可以是()A .2()2f x x x =-B .()ln 1f x x =-C .2()1f x x x =-++D .()2xf x e =-【答案】CD 【解析】利用函数图象变换画出选项A ,B ,C ,D 对应的函数图象,逐一分析即可求解.【详解】解:显然题设选项的四个函数均为偶函数,但()ln 1f x x =-的定义域为{}0x x R ≠≠,所以选项B 错误;函数2()2f x x x =-的定义域是R ,在(),1-∞-,()0,1单调递减,在()1,0-,()1,+∞单调递增,但()()()2020f f f -===有3个零点,选项A 错误;函数2()1f x x x =-++的定义域是R ,当()0,x ∈+∞时,2()1f x x x =-++的图象对称轴为12x =,其图象是开口向下的抛物线,故()f x 在1,2⎛⎫-∞- ⎪⎝⎭,10,2⎛⎫ ⎪⎝⎭单调递增,在1,02⎛⎫- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭单调递减,由图得()f x 恰有2个零点,选项C 正确;函数()2xf x e =-的定义域是R ,在(),ln 2-∞-,()0,ln 2单调递减,在()ln 2,0-,()ln 2,+∞单调递增,且()()ln 2ln 20f f -==有2个零点,选项D 正确.故选:CD.10.(2021·黑龙江大庆市·高三二模(理))定义在R 上的函数()f x 满足()2()f x f x +=,当[]1,1x ∈-时,2()f x x =,则函数()f x 的图象与()3x g x =的图象的交点个数为___________.【答案】7由题设可知()f x 的周期为2,结合已知区间的解析式及()3x g x =,可得两函数图象,即知图象交点个数.【详解】由题意知:()f x 的周期为2,当[1,1]x ∈-时,2()f x x =,∴()f x 、()g x 的图象如下:即()f x 与()g x 共有7个交点,故答案为:7.【点睛】结论点睛:()()f m x f x +=有()f x 的周期为||m .练真题1.(2020·天津高考真题)函数241xy x =+的图象大致为()A.B.C.D.【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·海南省高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]-- C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.4.(2018年理全国卷II)已知op 是定义域为(−∞,+ ∞)的奇函数,满足o1−p =o1+p .若o1)=2,则o1)+o2)+o3)+⋯+o50)=()A.−50B.0C.2D.50【答案】C 【解析】因为op 是定义域为(−∞,+ ∞)的奇函数,且o1−p =o1+p ,所以o1+p =−o −1)∴o3+p =−o +1)=o −1)∴=4,因此o1)+o2)+o3)+⋯+o50)=12[o1)+o2)+o3)+o4)]+o1)+o2),因为o3)=−o1),o4)=−o2),所以o1)+o2)+o3)+o4)=0,∵o2)=o −2)=−o2)∴o2)=0,从而o1)+o2)+o3)+⋯+o50)=o1)=2,选C.5.(2019·全国高考真题(文))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C.23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.6.(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e-=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.。

年高考第一轮复习数学函数的奇偶性

年高考第一轮复习数学函数的奇偶性

函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内随意一个x,都有f(- x)=-f(x)〔或f (x) + f(- x) =0〕,则称f( x)为奇函数.2.偶函数:对于函数f( x)的定义域内随意一个x,都有f(- x) =f( x)〔或f ( x)- f(- x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)拥有奇偶性的函数,其定义域对于原点对称(也就是说,函数为奇函数或偶函数的必需条件是其定义域对于原点对称).(2)奇函数的图象对于原点对称,偶函数的图象对于y 轴对称 .(3)若奇函数的定义域包括数0,则 f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞, +∞)上的随意函数f(x)都能够独一表示成一个奇函数与一个偶函数之和 .●点击双基1.下边四个结论中,正确命题的个数是①偶函数的图象必定与y 轴订交②奇函数的图象必定经过原点③偶函数的图象对于 y 轴对称④既是奇函数,又是偶函数的函数必定是f( x)=0(x∈R)分析:①不对;②不对,由于奇函数的定义域可能不包括原点;③正确;④不对,既是奇函数又是偶函数的函数能够为f( x)=0〔x∈(- a, a)〕.答案: A2.已知函数 f(x)=ax2+bx+ c(a≠0)是偶函数,那么g(x) =ax3+bx2+cx 是A. 奇函数C.既奇且偶函数B.偶函数D.非奇非偶函数分析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx( a≠0)为奇函数.答案: A3.若偶函数f(x)在区间[-1, 0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则以下不等式中正确的选项是(cosα)> f(cosβ)(sinα)> f( cosβ)(sinα)> f(sinβ)(cosα)>f(sinβ)分析:∵偶函数f(x)在区间[- 1, 0]上是减函数,∴ f(x)在区间[ 0, 1]上为增函数 .由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ> 0.∴f(sinα)> f( cosβ) .答案: B4.已知 f( x)= ax2+ bx+ 3a+ b 是偶函数,且其定义域为[a-1,2a],则 a=___________,b=___________.分析:定义域应对于原点对称,故有 a-1=- 2a,得 a=1 .3又对于所给分析式,要使f(- x)= f( x)恒建立,应 b=0.答案:131( x≠ 0);②y=x25.给定函数+1;③y=2x;④y=log2;⑤y=log2(x+x 2 1 ):①y=x.x在这五个函数中,奇函数是_________,偶函数是 _________,非奇非偶函数是__________.答案:①⑤② ③④●典例分析【例 1】已知函数 y=f(x)是偶函数, y=f(x- 2)在[ 0,2]上是单一减函数,则(0)< f(- 1)< f( 2)(-1)<f(0)<f(2)(- 1)< f( 2)< f( 0)(2)<f(-1)<f(0)分析:由 f(x-2)在[ 0,2]上单一递减,∴f(x)在[- 2,0]上单一递减 .∵y=f(x)是偶函数,∴f(x)在[ 0, 2]上单一递加 .又 f(- 1) =f(1),故应选 A.答案: A【例 2】判断以下函数的奇偶性:(1)f(x)=|x+1|- |x- 1|;1x(2)f(x)=(x-1)·;(3)f(x)=1x 2;| x 2 | 2(4)f(x)=x(1x)( x0),x(1x)( x0).分析:依据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞, +∞),对称于原点 .∵f(- x)=|- x+1|- |- x- 1|=|x-1|- |x+1|=-( |x+1|-|x-1|) =- f( x),∴f(x)=|x+1|- |x- 1|是奇函数 .( 2)先确立函数的定义域 .由1x1 x≥0,得- 1≤x< 1,其定义域不对称于原点,所以 f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,依据定义判断.由1x20,1 x 1,得4. | x 2 | 2 0,x 0且x故 f(x)的定义域为[- 1,0)∪(0,1],对于原点对称,且有 x+2>0.进而有 f(x)221( x)22= 1 x= 1x=-1x =-f(x),故 f(x)为奇,这时有 f(- x)=xx22x x函数 .(4)∵函数 f(x)的定义域是(-∞, 0)∪(0,+∞),而且当 x> 0 时,- x<0,∴f(- x)=(- x)[1-(- x)]=-x(1+x) =- f(x)(x> 0) .当 x< 0 时,- x>0,∴ f(- x) =- x( 1- x)=-f(x)( x< 0) .故函数 f(x)为奇函数 .评论:( 1)分段函数的奇偶性应分段证明 .(2)判断函数的奇偶性应先求定义域再化简函数分析式 .【例 3】(2005 年北京东城区模拟试题)函数f( x)的定义域为 D={ x|x≠0} ,且满足对于随意 x 、 x ∈D,有 f( x ·x )=f( x )+f(x ) .121212(1)求 f( 1)的值;(2)判断 f(x)的奇偶性并证明;(3)假如 f(4)=1, f(3x+1)+f( 2x-6)≤ 3,且 f( x)在( 0,+∞)上是增函数,求 x 的取值范围 .(1)解:令 x1 =x2=1,有 f(1×1)=f( 1) +f(1),解得 f(1)=0.(2)证明:令 x1 =x2=- 1,有 f[(- 1)×(- 1)]=f(- 1)+f(- 1) .解得 f(-1)=0.令 x1 =-1,x2=x,有 f(- x)=f(- 1)+f( x),∴ f(- x)=f( x) .∴f(x)为偶函数.(3)解: f ( 4× 4) =f (4)+f (4)=2,f ( 16×4)=f ( 16)+f (4) =3.∴ f (3x+1)+f (2x -6)≤ 3 即 f [(3x+1)( 2x -6)]≤ f (64) .(* )∵f (x )在( 0, +∞)上是增函数,∴( * )等价于不等式组或 (3x 1)( 2x 6) 0,(3x 1)(2 x 6) 64,x 3或x1 , 1 3,或3 或x 375x R.x3∴3<x ≤5 或- 7≤x <- 1或- 1<x <3.333∴x 的取值范围为 { x|- 7≤x <- 1或- 1<x <3 或 3< x ≤5}.33 3评论:解答此题易出现以下思想阻碍:(1)无从下手,不知怎样脱掉“ f ” .解决方法 :利用函数的单一性 .(2)没法获得另一个不等式 .解决方法:对于原点对称的两个区间上,奇函数的单调性同样,偶函数的单一性相反 .深入拓展已知 f ( x )、g (x )都是奇函数, f ( x )> 0 的解集是( a 2,b ), g ( x )> 0 的解集2是(a, b ), b>a 2,那么 f (x )· g ( x )> 0 的解集是 2 2 2A. ( a 2 , b)2)2 2 B.(- b ,- aC.( a 2, b)∪(- b,- a 2)222 D.(a,b )∪(- b 2,- a 2)2提示: f ( x )·g (x )> 0f (x) 0, 或 f ( x) 0,g( x) 0g ( x)0.∴x ∈( a 2, b )∪(- b,- a 2) .2 2答案: C【例 4】 (2004 年天津模拟试题)已知函数 f (x )=x+ px+m ( p ≠ 0)是奇函数 .(1)求 m 的值 .(2)(理)当 x ∈[ 1, 2]时,求 f (x )的最大值和最小值 .(文)若 p > 1,当 x ∈[ 1,2]时,求 f (x )的最大值和最小值 .解:(1)∵ f (x )是奇函数,∴ f (- x )=-f (x ).∴- x - p +m=-x - p-m.xx∴ 2m=0.∴m=0.(2)(理)(ⅰ)当 p < 0 时,据定义可证明 f (x )在[ 1, 2]上为增函数 .∴ f (x )max =f (2)=2+ p,f ( x ) min =f (1)=1+p.2(ⅱ)当 p > 0 时,据定义可证明 f (x )在( 0, p ]上是减函数,在[p ,+∞)上是增函数 .①当 p <1,即 0< p < 1 时, f (x )在[ 1,2]上为增函数,∴ f (x )max =f (2)=2+ p, f (x )min =f (1)=1+p.2②当 p ∈[ 1,2]时, f ( x )在[ 1,p ]上是减函数 .在[ p , 2]上是增函数 .f ( x ) min =f ( p )=2 p .f ( x ) max =max{ f ( 1),f (2) }=max{1+ p ,2+ p}.2当 1≤p ≤2 时,1+p ≤2+ p,f (x )max =f ( 2);当 2<p ≤4 时,1+p ≥2+ p,f (x )max =f22(1).③当p > 2,即 p > 4 时,f ( x )在[1,2]上为减函数, ∴ f ( x )max =f (1)=1+p ,f (x )min =f (2)=2+ p.2(文)解答略 .评论: f( x) =x+ p( p>0)的单一性是一重要问题,利用单一性求最值是重要方x 法.深入拓展f( x) =x+ p的单一性也可依据导函数的符号来判断,此题怎样用导数来解?x●闯关训练夯实基础1.定义在区间(-∞,+∞)上的奇函数 f ( x)为增函数,偶函数g( x)在区间[ 0, +∞)上的图象与f(x)的图象重合,设a< b< 0,给出以下不等式,此中建立的是①f(b)- f(- a)> g( a)- g(- b)②f(b)- f(- a)< g( a)- g(- b)③f(a)- f(- b)> g( b)- g(- a)④f(a)- f(- b)< g( b)- g(- a)A. ①④B.②③C.①③D. ②④分析:不如取切合题意的函数f(x)=x 及 g(x) =|x|进行比较,或一般地g(x)f ( x)x0, =x f(0)=0, f(a)< f(b)< 0.f ( x)0,答案: D2.(2003 年北京海淀区二模题)函数f(x)是定义域为 R 的偶函数,又是以 2 为周期的周期函数 .若 f(x)在[- 1,0]上是减函数,那么 f( x)在[ 2,3]上是A. 增函数B.减函数C.先增后减的函数D.先减后增的函数分析:∵偶函数f(x)在[- 1,0]上是减函数,∴ f( x)在[ 0,1]上是增函数 .由周期为 2 知该函数在[ 2,3]上为增函数 .答案: A3.已知 f( x)是奇函数,当 x∈( 0,1)时, f(x)=lg1,那么当x∈(-1,0)1 x时, f( x)的表达式是 __________.分析:当 x∈(- 1,0)时,- x∈( 0,1),∴ f(x)=-f(- x)=-lg 1=lg(1 1 x-x) .答案: lg(1-x)x2x1,4.(2003 年北京)函数 f(x)=lg( 1+x2),g(x)= 0| x | 1, h(x)=tan2x中,x2x 1.______________是偶函数 .分析:∵ f(- x)=lg[1+(- x)2]=lg(1+x2) =f(x),∴f(x)为偶函数 .又∵ 1°当- 1≤x≤1 时,- 1≤- x≤1,∴g(- x) =0.又 g( x) =0,∴ g(- x)=g( x).2°当 x<- 1 时,- x> 1,∴g(- x) =-(- x)+2=x+2.又∵ g( x) =x+2,∴ g(- x)=g( x) .3°当 x> 1 时,-x<- 1,∴g(- x) =(- x)+2=-x+2.又∵ g( x) =- x+2,∴ g(- x)=g(x).综上,对随意 x∈ R 都有 g(- x) =g(x).∴g(x)为偶函数 .h(- x)=tan(- 2x) =-tan2x=- h( x),∴h(x)为奇函数 .答案: f( x)、g(x)5.若 f(x)= a 2x a 2为奇函数,务实数 a 的值 .2 x1解:∵x∈ R,∴要使 f(x)为奇函数,一定且只需 f( x)+f(- x)=0,即 a-2+2 x1 a-2=0,得 a=1.x216.(理)定义在[- 2, 2]上的偶函数 g(x),当 x≥0 时, g(x)单一递减,若 g (1- m)< g(m),求 m 的取值范围 .解:由 g(1-m)< g(m)及 g(x)为偶函数,可得g(|1- m|)< g( |m|).又 g(x)在(0,+∞)上单一递减,∴ |1-m|>|m|,且 |1-m|≤ 2,|m|≤2,解得- 1≤m<1 . 2说明:也能够作出g(x)的表示图,联合图形进行分析.(文)( 2005 年北京西城区模拟试题)定义在R 上的奇函数 f( x)在( 0,+∞)上是增函数,又 f(- 3)=0,则不等式 xf(x)< 0 的解集为A. (- 3,0)∪( 0, 3)B.(-∞,- 3)∪( 3,+∞)C.(- 3,0)∪( 3, +∞)D.(-∞,- 3)∪( 0,3)分析:由奇偶性和单一性的关系联合图象来解.答案: A培育能力已知()=(1+1).7.f xx2 x 1 2(1)判断 f(x)的奇偶性;(2)证明 f(x)> 0.(1)解:f(x)= x·2x1,其定义域为 x≠0 的实数 .又 f(- x)=- x·22( 2x1)2( 2xx11)=-x· 1 2x=x· 2 x 1=f(x),2(1 2 x )2(2 x1)∴f(x)为偶函数 .(2)证明:由分析式易见,当x>0 时,有 f(x)> 0.又 f(x)是偶函数,且当 x< 0 时- x>0,∴当 x<0 时 f(x)= f (- x)> 0,即对于 x≠0 的任何实数 x,均有 f( x)> 0.研究创新8.设 f(x)=log 1(1ax)为奇函数,a为常数,2x1(1)求 a 的值;(2)证明 f(x)在( 1, +∞)内单一递加;对于[ 3, 4]上的每一个x 的值,不等式 f( x)>(1)x+m 恒建立,求2实数 m 的取值范围 .(1)解: f( x)是奇函数,∴ f(- x)=-f(x).∴ log 11ax=- log 12x 12 a=1(舍),∴ a=-1.1 ax1 ax=x 1> 0 1- a2x2=1- x2a=± 1.查验x 1x 1 1 ax(2)证明:任取 x1> x2>1,∴ x1- 1> x2-1>0.220< 1+ x 21< 1+ x2x11x21x11∴0<x 1<x211210<x11<x21 log 1x11>12log 1x21,即 f(x1)> f( x2).∴f(x)在( 1, +∞)内单一递加 .2x21(3)解: f( x)-(1)x>m 恒建立 . 2令 g(x) =f(x)-(1)x.只需 g(x)min> m,用定义能够证 g( x)在[ 3, 4]2上是增函数,∴ g( x)min()-9∴<-9时原式恒建立 .=g 3 =. m88●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内随意取值 .2.有时可直接依据图象的对称性来判断函数的奇偶性.●教师下载中心教课点睛1.函数的奇偶性常常与函数的其余性质,如单一性、周期性、对称性联合起来考察.所以,在复习过程中应增强知识横向间的联系.2.数形联合,以形助数是解决本节问题常用的思想方法.3.在教课过程中应重申函数的奇偶性是函数的整体性质,而单一性是其局部性质 .拓展题例2【例 1】 已知函数 f (x )=ax1(a 、b 、c ∈ Z )是奇函数,又 f ( 1)=2,f (2)bx c<3,求 a 、b 、c 的值 .解:由 f (- x )=-f (x ),得- bx+c=-( bx+c ).∴ c =0.由 f (1)=2,得 a+1=2b.由 f (2)< 3,得4a 1<3,a 1解得- 1<a <2.又 a ∈ Z ,∴a=0 或 a=1.若 a=0,则 b= 1,与 b ∈Z 矛盾 .∴a=1, b=1,c=0.2【例 2】 已知函数 y=f (x )的定义域为R ,对随意 x 、 x ′∈ R 均有 f (x+x ′) =f(x ) +f (x ′),且对随意 x >0,都有 f (x )< 0,f (3)=-3.(1)试证明:函数 y=f ( x )是 R 上的单一减函数;(2)试证明:函数 y=f ( x )是奇函数;(3)试求函数 y=f (x )在[ m , n ](m 、 n ∈ Z ,且 mn <0)上的值域 .分析:(1)可依据函数单一性的定义进行论证, 考虑证明过程中怎样利用题设条件 .(2)可依据函数奇偶性的定义进行证明,应由条件先获得f ( 0)=0 后,再利用条件 f (x 12)=f ( 1 ) +f ( 2)中 x 1、 2 的随意性,可使结论得证.+xx x x(3)由( 1)的结论可知 f ( m )、f (n )分别是函数 y=f (x )在[ m 、 n ]上的最大值与最小值,故求出 f (m )与 f (n )便可得所求值域 .(1)证明:任取 x 1、 x 2∈R ,且 x 1<x 2,f (x 2) =f [x 1+(x 2-x 1)],于是由条件f(x+x′) =f(x)+f( x′)可知 f(x2) =f(x1)+f(x2-x1) .∵x2> x1,∴ x2- x1>0.∴f(x2-x1)< 0.∴f(x2)=f(x1)+f( x2-x1)< f(x1) .故函数 y=f(x)是减函数 .(2)明:∵ 随意x、x′∈ R 均有 f(x+x′) =f(x) +f(x′),∴若令 x=x′ =0, f( 0) =f(0)+f(0).∴f(0)=0.再令 x′=-x,可得 f(0) =f(x)+f(- x) .∵f(0)=0,∴ f(- x)=-f( x) .故 y=f( x)是奇函数 .(3)解:由函数 y=f(x)是 R 上的减函数,∴y=f(x)在[ m,n]上也减函数 .∴y=f(x)在[ m,n]上的最大 f(m),最小 f(n).∴f(n)=f[1+(n-1)] =f(1)+f( n- 1) =2f( 1) +f(n-2)=⋯=nf(1).同理, f( m)=mf(1).∵f(3)=-3,∴ f(3)=3f(1)=-3.∴f(1)=-1.∴f(m)=-m, f(n)=-n.所以,函数 y=f(x)在[ m, n]上的域[- n,- m].述:( 1)足条件f( x+x′) =f(x)+f( x′)的函数,只需其定域是关于原点称的,它就奇函数.(2)若将条件中的x>0,均有 f( x)< 0 改成均有 f(x)> 0,函数 f(x)就是 R 上的增函数 .(3)若条件中的m、n∈Z 去掉,我就没法求出f(m)与 f(n)的,故 m、n∈Z 不行少 .。

2021届高三数学(理)一轮复习学案:第二章第三节 函数的奇偶性及周期性含解析

2021届高三数学(理)一轮复习学案:第二章第三节 函数的奇偶性及周期性含解析

第三节函数的奇偶性及周期性[最新考纲][考情分析][核心素养]1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.以理解函数的奇偶性、会用函数的奇偶性为主,其中与函数的单调性、周期性交汇的问题仍将是2021年高考考查的热点.题型以选择题、填空题为主,中等偏上难度,分值为5分到10分.1.逻辑推理2.数学抽象3.数学运算1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有1f(-x)=f(x),那么函数f(x)是偶函数关于2y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有3f(-x)=-f(x),那么函数f(x)是奇函数关于4原点对称►常用结论(1)函数奇偶性的几个重要结论①如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.②如果函数f(x)是偶函数,那么f(x)=f(|x|).③既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.④奇函数在两个关于原点对称的区间上具有相同的单调性;偶函数在两个关于原点对称的区间上具有相反的单调性.(2)有关对称性的结论①若函数y=f(x+a)为偶函数,则函数y=f(x)的图象关于直线x=a对称.若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)中心对称.②若对于R上的任意x都有f(x)=f(2a-x),则函数f(x)的图象关于直线x=a对称;若f(x)+f (2a -x )=2b ,则函数f (x )关于点(a ,b )中心对称.2.函数的周期性 (1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,+T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )f (x )的最小正周期.►常用结论定义式f (x +T )=f (x )对定义域内的x 是恒成立的.若f (x +a )=f (x +b ),则函数f (x )的周期为T =|a -b |;若在定义域内满足f (x +a )=-f (x ),f (x +a )=1f (x ),f (x +a )=-1f (x )(a >0),则f (x )为周期函数,且T =2a 为它的一个周期.对称性与周期的关系:(1)若函数f (x )的图象关于直线x =a 和直线x =b 对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(2)若函数f (x )的图象关于点(a ,0)和点(b ,0)对称,则函数f (x )必为周期函数,2|a -b |是它的一个周期.(3)若函数f (x )的图象关于点(a ,0)和直线x =b 对称,则函数f (x )必为周期函数,4|a -b |是它的一个周期.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”). (1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( ) (4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( ) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ 二、走进教材2.(必修1P 35例5改编)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x答案:B3.(必修4P 46A 10改编)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 答案:1 三、易错自纠4.设奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x [f (x )-f (-x )]<0的解集为( )A .{x |-1<x <0或x >1}B .{x |x <-1或0<x <1}C .{x |x <-1或x >1}D .{x |-1<x <0或0<x <1}解析:选D 由题意,得f (-x )=-f (x ),∵x [f (x )-f (-x )]<0,∴xf (x )<0,又f (1)=0,∴f (-1)=0.奇函数f (x )在(0,+∞)上是增函数,从而函数f (x )在(-∞,0)∪(0,+∞)的大致图象如图所示: 则不等式x [f (x )-f (-x )]<0的解集为{x |-1<x <0或0<x <1},故选D .5.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是__________.解析:由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).答案:(-∞,1]∪[3,+∞)6.若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________.解析:因为函数f (x )是定义在R 上的周期为2的奇函数,所以f (0)=0,f (x +2)=f (x ),所以f ⎝⎛⎭⎫-52+f (2)=f ⎝⎛⎭⎫-52+2+f (0)=f ⎝⎛⎭⎫-12+0=-f ⎝⎛⎭⎫12=-412=-2. 答案:-2考点一函数奇偶性的判断与应用|题组突破|1.(2019届山东青岛二模)下列函数是偶函数的是( ) A .f (x )=x sin x B .f (x )=x 2+4x +4 C .f (x )=sin x +cos xD .f (x )=log 3(x 2+1+x )解析:选A 选项A 、B 、C 、D 中函数的定义域均为R .对于选项A ,f (-x )=(-x )sin(-x )=(-x )(-sin x )=x sin x =f (x ),所以函数是偶函数;对于选项B ,f (-x )=x 2-4x +4≠f (x ),所以函数不是偶函数;对于选项C ,f (-x )=sin(-x )+cos(-x )=-sin x +cos x ≠f (x ),所以函数不是偶函数; 对于选项D ,f (-x )=log 3(x 2+1-x )=log 31x 2+1+x =-log 3(x 2+1+x )=-f (x ),所以函数是奇函数,不是偶函数.故选A .2.已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=( ) A .-1 B .1 C .-5D .5解析:选D 设F (x )=f (x )+x ,由已知函数y =f (x )+x 是偶函数,得F (x )=F (-x ),即f (x )+x =f (-x )-x ,∴f (-x )=f (x )+2x ,∴f (-2)=f (2)+2×2=5.3.(2020届贵阳摸底)若f (x )=a -22x +1是奇函数,则a =________. 解析:解法一:因为函数f (x )是奇函数,所以f (-x )=-f (x ),即a -22-x+1=-a +22x +1⇒a =12x +1+12-x +1=12x +1+2x2x +1=1. 解法二:因为函数f (x )是奇函数且x ∈R ,所以f (0)=0,即a -21+1=0⇒a =1.答案:1 ►名师点津应用函数奇偶性可解决的3类问题(1)判定函数奇偶性 ①定义法 ②图象法 ③性质法设f (x ),g (x )的定义域分别是D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.(2)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(3)利用函数的奇偶性求值首先判断函数解析式或解析式的一部分的奇偶性,然后结合已知条件通过化简、转换求值.考点二函数周期性的判断及应用|题组突破|4.已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝⎛⎭⎫x +32,且f (1)=2,则f (2015)=________. 解析:∵f (x )=-f ⎝⎛⎭⎫x +32, ∴f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ). ∴f (x )是以3为周期的周期函数,则f (2015)=f (671×3+2)=f (2)=f (-1)=-f (1)=-2. 答案:-25.函数y =f (x )满足对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2016)+f (2017)+f (2018)的值为________.解析:∵函数y =f (x -1)的图象关于点(1,0)对称, ∴f (x )是R 上的奇函数.又f (x +2)=f (-x ), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),故f (x )的周期为4, ∴f (2017)=f (504×4+1)=f (1)=4,∴f (2016)+f (2018)=f (2016)+f (2016+2)=f (2016)-f (2016)=0,∴f (2016)+f (2017)+f (2018)=4.答案:4 ►名师点津函数周期性问题的求解策略(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.考点 函数性质的综合应用——多维探究函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主,多以选择题、填空题形式出现.常见的命题角度有:(1)单调性与奇偶性结合;(2)周期性与奇偶性结合;(3)单调性、奇偶性与周期性结合.●命题角度一单调性与奇偶性结合【例1】(2019年全国卷Ⅲ)设f (x )是定义域为R 的偶函数,且在(0,+∞)上单调递减,则( )A .f ⎝⎛⎭⎫log 314>f (2-32)>f (2-23) B .f ⎝⎛⎭⎫log 314>f (2-23)>f (2-32)C .f (2-32)>f (2-23)>f ⎝⎛⎭⎫log 314 D .f (2-23)>f (2-32)>f ⎝⎛⎭⎫log 314 [解析]∵f (x )是定义域为R 的偶函数, ∴f ⎝⎛⎭⎫log 314=f (log 34). ∵log 34>log 33=1,0<2-32<2-23<20=1, ∴0<2-32<2-23<log 34.∵f (x )在(0,+∞)上单调递减, ∴f (2-32)>f (2-23)>f ⎝⎛⎭⎫log 314,故选C . [答案]C●命题角度二周期性与奇偶性结合【例2】(2020届四川五校联考)已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),当x ∈(0,1]时,f (x )=2x +ln x ,则f (2019)=________.[解析]由f (x )=f (x +4)得f (x )是周期为4的函数,故f (2019)=f (4×505-1)=f (-1).又f (x )为奇函数,所以f (-1)=-f (1)=-(2+ln1)=-2.[答案]-2●命题角度三单调性、奇偶性与周期性结合【例3】已知函数f (x )的定义域为R ,且满足下列三个条件: ①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x ); ③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2017),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <bD .c <b <a[解析]由①得,f (x )在[4,8]上单调递增;由②得,f (x +8)=-f (x +4)=f (x ),故f (x )是周期为8的周期函数,所以c =f (2017)=f (252×8+1)=f (1),b =f (11)=f (3);由③得,f (x )的图象关于直线x =4对称,所以b =f (3)=f (5),c =f (1)=f (7).结合f (x )在[4,8]上单调递增可知,f (5)<f (6)<f (7),即b <a <c .故选B .[答案]B ►名师点津函数性质综合问题的求解方法(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)函数周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)解决函数的奇偶性、周期性、单调性的综合问题通常先利用周期性转化到自变量所在的区间,然后利用奇偶性和单调性求解.|跟踪训练|1.(2019届石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选BA 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故D 错误.故选B .2.(2019届四川达州模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减,设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b解析:选D ∵偶函数f (x )满足f (x +2)=f (x ),∴函数的周期为2.∴a =f (-2.8)=f (-0.8),b =f (-1.6)=f (0.4)=f (-0.4),c =f (0.5)=f (-0.5).∵-0.8<-0.5<-0.4,且函数f (x )在[-1,0]上单调递减,∴a >c >b ,故选D .考点 函数性质的创新探究应用【例】已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m[解析] y =x +1x =1+1x ,其图象如图,关于点(0,1)对称.又f (-x )=2-f (x ),即f (-x )+f (x )=2,∴y =f (x )的图象也关于点(0,1)对称.又∵y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),∴由图象对称性可知,这些交点也关于点(0,1)对称.不妨设点(x 1,y 1)与(x m ,y m )关于点(0,1)对称.点(x 2,y 2)与(x m -1,y m -1)关于点(0,1)对称,….由对称性可知x 1+x m =0,x 2+x m -1=0,…,y 1+y m =2,y 2+y m -1=2,….∴∑m i =1(x i +y i )=∑m i =1x i +∑m i =1y i =0+2×m2=m .故选B .[答案]B ►名师点津求解函数对称性问题的关键是利用条件判断出函数的对称中心或对称轴.|跟踪训练|(2019届江西南昌模拟)已知定义在R 上的函数f (x )满足f (x )+f (-x +2)=4,g (x )=sin πx +2.若函数f (x )的图象与g (x )的图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则∑ni =1(x i +y i )=( )A .nB .2nC .3nD .4n解析:选C因为f(x)+f(-x+2)=4,所以函数f(x)的图象关于(1,2)中心对称.因为g(x)=sinπx+2,所以g(x)的图象也关于(1,2)对称,所以∑ni=1x i=n,∑ni=1y i=2n,所以∑ni=1(x i+y i)=3n,故选C.。

2024届新高考一轮复习人教B版 主题二 第二章 第3节 函数的奇偶性与周期性 课件(38张)

2024届新高考一轮复习人教B版 主题二 第二章 第3节 函数的奇偶性与周期性 课件(38张)

;
3.判断下列函数的奇偶性.
(1)f(x)=
(+)
第3节
函数的奇偶性与周期性
[课程标准要求]
1.结合具体函数,了解奇偶性的概念和几何意义.
2.结合函数的周期性、最小正周期的含义,判断应用函数的周期性.
1.函数的奇偶性
奇偶性
定义
图象特点
偶函数
一般地,设函数f(x)的定义域为D,如果
∀x∈D,都有-x∈D,且 f(-x)=f(x) ,则称
关于 y轴 对称
任意的x∈R恒成立,所以(-x)3 (a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成
立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.
答案:1
2.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-2x+a,则a=
当x<0时,f(x)=
.
解析:因为f(x)是定义在R上的奇函数,
设函数y=f(x),x∈R,a>0.
(1)若f(x+a)=f(x-a),则函数的一个周期为2a.
(2)若f(x+a)=-f(x),则函数的一个周期为2a.
(3)若 f(x+a)=

()
(4)若 f(x+a)=-
,则函数的一个周期为 2a.

()
,则函数的一个周期为 2a.
3.对称性的四个常用结论
以 f(2+x)=f[1+(1+x)]=f[-(1+x)]=-f(1+x)=-f(-x)=f(x),所以函数 f(x)是以 2




为周期的周期函数,f()=f(-2)=f(-)=.

高考数学复习知识点讲解教案第8讲 函数的奇偶性、对称性与周期性

高考数学复习知识点讲解教案第8讲 函数的奇偶性、对称性与周期性
最小的正数
常用结论1.奇(偶)函数定义的等价形式:(1) 为偶函数;(2) 为奇函数.2.设的周期为,对的定义域内任一自变量的值 ,有如下结论:(1)若,则 ;(2)若,则 ;(3)若,则 .
3.对称性与周期性之间的常用结论:
(1)若函数的图象关于直线和对称,则函数 的周期 ;(2)若函数的图象关于点和点对称,则函数 的周期 ;(3)若函数的图象关于直线和点对称,则函数 的周期 .
[思路点拨](1)首先确定各函数的定义域,判断定义域是否关于原点对称,若对称,再根据奇、偶函数的定义判断函数的奇偶性,若不对称,则函数为非奇非偶函数.
[解析] 对于A,由,得,则的定义域为 ,定义域不关于原点对称,故为非奇非偶函数,A不符合题意;对于B, 的定义域为,且,故 为偶函数,B符合题意;对于C,因为在上恒成立,所以的定义域为 ,且 ,所以为奇函数,C不符合题意;对于D,令解得 或,故函数的定义域为,关于原点对称, ,又,所以 为奇函数,D不符合题意.故选B.
第8讲 函数的奇偶性、对称性与周期性
课前基础巩固
课堂考点探究
作业手册(A)
作业手册(B)
教师备用习题
高考数学复习知识点讲解教案
1.结合具体函数,了解奇偶性的概念和几何意义.2.了解周期性的概念和几何意义.
◆ 知识聚焦 ◆
1.函数的奇偶性
偶函数
奇函数
定义
一般地,设函数的定义域为 ,如果,都有 ,且________________,那么函数 就叫作偶函数
[总结反思](1)注意函数周期的常见表达式的应用.
(2)根据函数的周期性,可以由函数局部的解析式(或函数值)得到整个定义域内的解析式(或相应的函数值).(3)在解决具体问题时,要注意结论“若是函数的周期,则且 也是函数的周期”的应用.

一轮复习函数的性质(三)周期性、对称性ppt课件

一轮复习函数的性质(三)周期性、对称性ppt课件

2.函数的周期性 函数的周期性的定义:设函数y=f x ,x D, 若存在非零常数T,使得对任意的x D都有 ③ ________,则函数f x为周期函数,T为 y=f x 的一个周期.若函数f x 对定义域中 任意x满足f ( x+a)=-f x 或f (x+a)=-(a 0), 则函数f x 是周期函数,它的一个周期是④ _____.
解 析 : 由 周 期 函 数 的 定 义 知 f 1 0 6 . 5 = f( 2 64 + 2 . 5 ) = f 2 . 5 = 2 . 5 .
1 . 函 数 的 对 称 性 如 果 函 数 f x 足 f( a + x ) = f( ax -) 满 或 f x f( 2 ax -) , 则 函 数 f x 的 图 象 关 于 直 线 = ① _ _ _ _ _ _ 对 称 . 一 般 的 , 若 f( a + x ) = f( bx -) , 则 函 数 f x 的 对 称 轴 方 程 是 ② _ _ _ _ _ _ .
3 4 . 设 f x 足 f (x +) = f x 且 f x 奇 函 数 . 满 , 是 2 若 f 1 1 , f 2 a , 则 下 列 结 论 正 确 的 是 = A . a2 C . a 1 ? B . a 2 D . a 1
解 析 : 由 已 知 得 f( x + 3 ) = f x , 所 以 f x 的 周 期 是 3 , 且 是 奇 函 数 , 所 以 af = 2 f( 31 -) = f( ) = f 1 1 , 选 D . =
评析:函数的性质是互相联系的,尤其是对称性
与单调性.本题已知函数的两条平行于 y 轴的对
称轴,函数必是周期函数,一个周期是 2(b - a) ,

高考数学一轮复习函数的奇偶性及周期性

高考数学一轮复习函数的奇偶性及周期性

第3讲函数的奇偶性及周期性最新考纲考向预测1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.命题趋势以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性与对称性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.核心素养数学抽象、逻辑推理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性的常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).常见误区1.判断函数的奇偶性不可忽视函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.2.函数f(x)是奇函数,必须满足对定义域内的每一个x,都有f(-x)=-f(x),而不能说存在x0,使f(-x0)=-f(x0).同样偶函数也是如此.3.不是所有的周期函数都有最小正周期,如f(x)=5.1.判断正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.()(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.()(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.()(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.()(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.()答案:(1)√(2)×(3)√(4)√(5)√2.下列函数中为偶函数的是()A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数,也不是偶函数.故选B.3.(易错题)已知函数f (x )=ax 2+bx +3是定义在[a -3,2a ]上的偶函数,则a +b 的值是( )A .-1B .1C .-3D .0解析:选B.因为函数f (x )=ax 2+bx +3是定义在[a -3,2a ]上的偶函数,所以a -3+2a =0,解得a =1.由f (x )=f (-x )得b =0,所以a +b =1.故选B.4.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x (1+x ),则f (-1)=________.解析:f (1)=1×2=2,又f (x )为奇函数, 所以f (-1)=-f (1)=-2. 答案:-25.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析:f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1.答案:1函数的奇偶性 角度一 判断函数的奇偶性判断下列函数的奇偶性. (1)f (x )=x 3+x ,x ∈[-1,4]; (2)f (x )=ln2-x2+x;(3)f (x )=x 2-1+1-x 2;(4)f (x )=⎩⎨⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.【解】 (1)因为f (x )=x 3+x ,x ∈[-1,4]的定义域不关于原点对称,所以f (x )既不是奇函数也不是偶函数.(2)f (x )的定义域为(-2,2), f (-x )=ln2+x 2-x =-ln 2-x2+x=-f (x ), 所以函数f (x )为奇函数.(3)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0,f (-1)=-f (1)=0, 所以f (x )既是奇函数又是偶函数. (4)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.函数具有奇偶性包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f (x )与f (-x )的关系.在判断奇偶性时,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.常见特殊结构的奇偶函数:f (x )=log a (x 2+1-x )(a >0且a ≠1)为奇函数,f (x )=a x +a -x (a >0且a ≠1)为偶函数.角度二 函数奇偶性的应用(1)(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( )A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1(2)(2021·黑龙江哈尔滨师范大学附中月考)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x +x x 2+1-1,若f (a )=-13,则f (-a )=( ) A .13 B .23 C .-13D .-53【解析】 (1)通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e-x+1,选D.优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D. (2)设g (x )=f (x )+1=-sin 2x +xx 2+1,易知g (x )是奇函数,则g (a )=f (a )+1=-13+1=23, 所以g (-a )=-g (a )=-23,即f (-a )+1=-23,所以f (-a )=-53.故选D. 【答案】 (1)D (2)D已知函数奇偶性可以解决的3个问题(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参数的值.1.函数f (x )=x +2a +3x 2+8为奇函数,则实数a =( )A .-1B .1C .-32D .32解析:选C.由题知f (x )为奇函数,则f (0)=0,即0+2a +3=0,所以a =-32,此时f (x )=xx 2+8为奇函数. 2.如果f (x )是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )A .y =x +f (x )B .y =xf (x )C .y =x 2+f (x )D .y =x 2f (x )解析:选B.因为f (x )是奇函数, 所以f (-x )=-f (x ).对于A ,g (-x )=-x +f (-x )=-x -f (x )=-g (x ),所以y =x +f (x )是奇函数. 对于B ,g (-x )=-xf (-x )=xf (x )=g (x ), 所以y =xf (x )是偶函数.对于C ,g (-x )=(-x )2+f (-x )=x 2-f (x ), 所以y =x 2+f (x )为非奇非偶函数. 对于D ,g (-x )=(-x )2f (-x )=-x 2f (x )=-g (x ),所以y =x 2f (x )是奇函数.3.(多选)若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则( )A .f (x )=e x +e -x 2B .g (x )=e x -e -x2 C .f (-2)<g (-1)D .g (-1)<f (-3) 解析:选AD.因为函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ①,所以f (-x )+2g (-x )=e -x ,即f (x )-2g (x )=e -x ②. 联立①②⎩⎨⎧f (x )+2g (x )=e x ,f (x )-2g (x )=e -x,解得⎩⎪⎨⎪⎧f (x )=e x +e -x2,g (x )=e x -e -x4,所以f (-2)=e -2+e 22,f (-3)=e -3+e 32,g (-1)=e -1-e4<0,所以g (-1)<f (-2),g (-1)<f (-3),故选AD.4.(一题多解)已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:方法一:当x <0时,-x >0,所以f (-x )=x 2+x . 又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝ ⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.方法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14, 因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14. 答案:14函数的周期性(1)(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎨⎧x +a ,-1≤x <0,|2-x |,0≤x <1,其中a ∈R ,若f (-5)=f (4.5),则a =( )A .0.5B .1.5C .2.5D .3.5(2)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( )A .2B .3C .4D .5【解析】 (1)由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.(2)当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f(x)=(x-2)(x-1)(x-3),所以当2≤x<4时,y=f(x)的图象与x轴交点的横坐标分别为x3=2,x4=3.又f(4)=f(2)=f(0)=0,综上可知,共有5个交点.【答案】(1)C(2)D函数周期性的判定与应用(1)判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.1.已知定义在R上的函数满足f(x+2)=-1f(x),当x∈(0,2]时,f(x)=2x-1.则f(17)=________.解析:因为f(x+2)=-1f(x),所以f(x+4)=-1f(x+2)=f(x),所以函数y=f(x)的周期T=4.f(17)=f(4×4+1)=f(1)=1.答案:12.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(2 023)=________.解析:因为f(x+4)=f(x-2),所以f(x+6)=f(x),则T=6是f(x)的周期.所以f(2 023)=f(337×6+1)=f(1).又f(x)在R上是偶函数,所以f(1)=f(-1)=6-(-1)=6,即f(2 023)=6.答案:6[A级基础练]1.(多选)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是() A.y=x2B.y=|x-1|C.y=|x|-1 D.y=2x解析:选AC.选项A,C中的函数为偶函数且在(0,+∞)上单调递增;选项B,D中的函数均为非奇非偶函数.所以排除选项B,D,故选AC.2.函数f(x)=x+9x(x≠0)是()A.奇函数,且在(0,3)上是增函数B.奇函数,且在(0,3)上是减函数C.偶函数,且在(0,3)上是增函数D.偶函数,且在(0,3)上是减函数解析:选B.因为f(-x)=-x+9-x=-⎝⎛⎭⎪⎫x+9x=-f(x),所以函数f(x)=x+9x为奇函数.又f′(x)=1-9x2,在(0,3)上f′(x)<0恒成立,所以f(x)在(0,3)上是减函数.3.(2021·贵阳市第一学期监测考试)已知函数f(x)的定义域为R,当x<0时,f(x)=2x,当-1≤x≤1时,f(-x)=-f(x),当x>12时,f⎝⎛⎭⎪⎫x+12=f⎝⎛⎭⎪⎫x-12,则f(5)=()A.12B.-12C.-2 D.2解析:选B.因为当x>12时,f⎝⎛⎭⎪⎫x+12=f⎝⎛⎭⎪⎫x-12,所以f(x+1)=f(x),所以f(5)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).又当x<0时,f(x)=2x,所以f(5)=f(1)=-f(-1)=-2-1=-12,故选B.4.设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数解析:选D.因为f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).所以f(x)是奇函数.因为f(|-x|)=f(|x|),所以f(|x|)是偶函数,所以f(|x|)f(x)是奇函数.5.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为()A.(-∞,-3) B.(3,+∞)C.(-∞,-1) D.(1,+∞)解析:选D.因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的周期函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.6.已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.解析:因为f(x)是定义在R上的偶函数,所以当x<0时,-x>0.由已知f(-x)=(-x)2-(-x)-1=x2+x-1=f(x),所以f(x)=x2+x-1.答案:x2+x-17.若函数f(x)=x(x+2)(x-a)为奇函数,则实数a的值为________,且当x≥4时,f(x)的最大值为________.解析:由f(x)为奇函数易知a=2,当x≥4时,f(x)=1x-4x在[4,+∞)上单调递减,所以当x=4时,f(x)max=1 3.答案:2 138.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.解析:方法一:因为f (x )在R 上是奇函数,且f (1-x )=f (1+x ). 所以f (x +1)=-f (x -1),即f (x +2)=-f (x ). 因此f (x +4)=f (x ),则函数f (x )是周期为4的函数, 由于f (1-x )=f (1+x ),f (1)=2, 故令x =1,得f (0)=f (2)=0,令x =2,得f (3)=f (-1)=-f (1)=-2, 令x =3,得f (4)=f (-2)=-f (2)=0, 故f (1)+f (2)+f (3)+f (4)=2+0-2+0=0,所以f (1)+f (2)+f (3)+…+f (50)=12×0+f (1)+f (2)=2.方法二:取一个符合题意的函数f (x )=2sin πx2,则结合该函数的图象易知数列{f (n )}(n ∈N *)是以4为周期的周期数列.故f (1)+f (2)+f (3)+…+f (50)=12×[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)=12×[2+0+(-2)+0]+2+0=2.答案:29.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)因为f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ), 所以f (x +3)=f ⎝ ⎛⎭⎪⎫32+⎝⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以y =f (x )是周期函数,且3是其一个周期. (2)因为f (x )为定义在R 上的奇函数, 所以f (0)=0,且f (-1)=-f (1)=-2, 又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.10.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. 解:(1)因为f (1+x )=f (1-x ),所以f (-x )=f (2+x ). 又f (x +2)=f (x ),所以f (-x )=f (x ).又f (x )的定义域为R , 所以f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0], 则f (x )=f (-x )=x ;从而当1≤x ≤2时,-1≤x -2≤0, f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎨⎧-x ,x ∈[-1,0],x ,x ∈(0,1),-x +2,x ∈[1,2].[B 级 综合练]11.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若y =f (x )是奇函数,则f (-x )=-f (x ),所以|f (-x )|=|-f (x )|=|f (x )|,所以y =|f (x )|的图象关于y 轴对称,但若y =|f (x )|的图象关于y 轴对称,y =f (x )不一定是奇函数,如y =|f (x )|=x 2,故选B.12.已知函数f (x )=⎩⎨⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N +,定义f n (x )=,那么f 2 022(2)的值为( )A .0B .1C .2D .3解析:选C.因为f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,所以f n (2)的值具有周期性,且周期为3,所以f 2 022(2)=f 3×674(2)=f 3(2)=2,故选C.13.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积. 解:(1)由f (x +2)=-f (x ),得f (x +4)=f ((x +2)+2)=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数. 所以f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f ((x -1)+2)=-f (x -1)=f (-(x -1)), 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ), 于是当x <0时, f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)可画出f (x )的图象,知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[C 级 创新练]15.若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R ,都有f (-x )+f (x )=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x . 以上三个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3解析:选B.由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.故选B.16.(多选)设函数f (x )的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f (x )=-f (y )成立,则称函数f (x )为“H 函数”.下列为“H 函数”的是( )A .y =sin x cos xB .y =ln x +e xC .y =2xD .y =x 2-2x解析:选AB.由题意,得“H 函数”的值域关于原点对称.A 中,y =sin x cos x =12sin 2x ∈⎣⎢⎡⎦⎥⎤-12,12,其值域关于原点对称,故A 是“H 函数”;B 中,函数y=ln x +e x 的值域为R ,故B 是“H 函数”;C 中,因为y =2x >0,故C 不是“H 函数”;D 中,y =x 2-2x =(x -1)2-1≥-1,其值域不关于原点对称,故D 不是“H 函数”.综上所述,A ,B 是“H 函数”,故选AB.第3讲函数的奇偶性及周期性最新考纲考向预测1.结合具体函数,了解函数奇偶性的含义.2.会运用函数图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.命题趋势以理解函数的奇偶性、会用函数的奇偶性为主,常与函数的单调性、周期性与对称性交汇命题,加强函数与方程思想、转化与化归思想的应用意识,题型以选择、填空题为主,中等偏上难度.核心素养数学抽象、逻辑推理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.常用结论1.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性的常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).常见误区1.判断函数的奇偶性不可忽视函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.2.函数f(x)是奇函数,必须满足对定义域内的每一个x,都有f(-x)=-f(x),而不能说存在x0,使f(-x0)=-f(x0).同样偶函数也是如此.3.不是所有的周期函数都有最小正周期,如f(x)=5.1.判断正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.()(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.()(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.()(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.()(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.()答案:(1)√(2)×(3)√(4)√(5)√2.下列函数中为偶函数的是()A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.根据偶函数的定义知偶函数满足f (-x )=f (x )且定义域关于原点对称,A 选项为奇函数,B 选项为偶函数,C 选项定义域为(0,+∞),不具有奇偶性,D 选项既不是奇函数,也不是偶函数.故选B.3.(易错题)已知函数f (x )=ax 2+bx +3是定义在[a -3,2a ]上的偶函数,则a +b 的值是( )A .-1B .1C .-3D .0解析:选B.因为函数f (x )=ax 2+bx +3是定义在[a -3,2a ]上的偶函数,所以a -3+2a =0,解得a =1.由f (x )=f (-x )得b =0,所以a +b =1.故选B.4.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x (1+x ),则f (-1)=________.解析:f (1)=1×2=2,又f (x )为奇函数, 所以f (-1)=-f (1)=-2. 答案:-25.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析:f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1.答案:1函数的奇偶性 角度一 判断函数的奇偶性判断下列函数的奇偶性. (1)f (x )=x 3+x ,x ∈[-1,4]; (2)f (x )=ln2-x2+x;(3)f (x )=x 2-1+1-x 2;(4)f (x )=⎩⎨⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.【解】 (1)因为f (x )=x 3+x ,x ∈[-1,4]的定义域不关于原点对称,所以f (x )既不是奇函数也不是偶函数.(2)f (x )的定义域为(-2,2), f (-x )=ln2+x 2-x =-ln 2-x2+x=-f (x ), 所以函数f (x )为奇函数.(3)f (x )的定义域为{-1,1},关于原点对称. 又f (-1)=f (1)=0,f (-1)=-f (1)=0, 所以f (x )既是奇函数又是偶函数. (4)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.函数具有奇偶性包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域.(2)判断f (x )与f (-x )的关系.在判断奇偶性时,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.常见特殊结构的奇偶函数:f (x )=log a (x 2+1-x )(a >0且a ≠1)为奇函数,f (x )=a x +a -x (a >0且a ≠1)为偶函数.角度二 函数奇偶性的应用(1)(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( )A .e -x -1B .e -x +1C .-e -x -1D .-e -x +1(2)(2021·黑龙江哈尔滨师范大学附中月考)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π2+2x +x x 2+1-1,若f (a )=-13,则f (-a )=( ) A .13 B .23 C .-13D .-53【解析】 (1)通解:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e-x+1,选D.优解:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D. (2)设g (x )=f (x )+1=-sin 2x +xx 2+1,易知g (x )是奇函数,则g (a )=f (a )+1=-13+1=23, 所以g (-a )=-g (a )=-23,即f (-a )+1=-23,所以f (-a )=-53.故选D. 【答案】 (1)D (2)D已知函数奇偶性可以解决的3个问题(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解. (2)求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出.(3)求解析式中的参数:利用待定系数法求解,根据f (x )±f (-x )=0得到关于参数的恒等式,由系数的对等性得参数的方程或方程(组),进而得出参数的值.1.函数f (x )=x +2a +3x 2+8为奇函数,则实数a =( )A .-1B .1C .-32D .32解析:选C.由题知f (x )为奇函数,则f (0)=0,即0+2a +3=0,所以a =-32,此时f (x )=xx 2+8为奇函数. 2.如果f (x )是定义在R 上的奇函数,那么下列函数中,一定为偶函数的是( )A .y =x +f (x )B .y =xf (x )C .y =x 2+f (x )D .y =x 2f (x )解析:选B.因为f (x )是奇函数, 所以f (-x )=-f (x ).对于A ,g (-x )=-x +f (-x )=-x -f (x )=-g (x ),所以y =x +f (x )是奇函数. 对于B ,g (-x )=-xf (-x )=xf (x )=g (x ), 所以y =xf (x )是偶函数.对于C ,g (-x )=(-x )2+f (-x )=x 2-f (x ), 所以y =x 2+f (x )为非奇非偶函数. 对于D ,g (-x )=(-x )2f (-x )=-x 2f (x )=-g (x ),所以y =x 2f (x )是奇函数.3.(多选)若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则( )A .f (x )=e x +e -x 2B .g (x )=e x -e -x2 C .f (-2)<g (-1)D .g (-1)<f (-3) 解析:选AD.因为函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ①,所以f (-x )+2g (-x )=e -x ,即f (x )-2g (x )=e -x ②. 联立①②⎩⎨⎧f (x )+2g (x )=e x ,f (x )-2g (x )=e -x,解得⎩⎪⎨⎪⎧f (x )=e x +e -x2,g (x )=e x -e -x4,所以f (-2)=e -2+e 22,f (-3)=e -3+e 32,g (-1)=e -1-e4<0,所以g (-1)<f (-2),g (-1)<f (-3),故选AD.4.(一题多解)已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:方法一:当x <0时,-x >0,所以f (-x )=x 2+x . 又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝ ⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.方法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14, 因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14. 答案:14函数的周期性(1)(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎨⎧x +a ,-1≤x <0,|2-x |,0≤x <1,其中a ∈R ,若f (-5)=f (4.5),则a =( )A .0.5B .1.5C .2.5D .3.5(2)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( )A .2B .3C .4D .5【解析】 (1)由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.(2)当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f(x)=(x-2)(x-1)(x-3),所以当2≤x<4时,y=f(x)的图象与x轴交点的横坐标分别为x3=2,x4=3.又f(4)=f(2)=f(0)=0,综上可知,共有5个交点.【答案】(1)C(2)D函数周期性的判定与应用(1)判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.1.已知定义在R上的函数满足f(x+2)=-1f(x),当x∈(0,2]时,f(x)=2x-1.则f(17)=________.解析:因为f(x+2)=-1f(x),所以f(x+4)=-1f(x+2)=f(x),所以函数y=f(x)的周期T=4.f(17)=f(4×4+1)=f(1)=1.答案:12.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(2 023)=________.解析:因为f(x+4)=f(x-2),所以f(x+6)=f(x),则T=6是f(x)的周期.所以f(2 023)=f(337×6+1)=f(1).又f(x)在R上是偶函数,所以f(1)=f(-1)=6-(-1)=6,即f(2 023)=6.答案:6[A级基础练]1.(多选)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是() A.y=x2B.y=|x-1|C.y=|x|-1 D.y=2x解析:选AC.选项A,C中的函数为偶函数且在(0,+∞)上单调递增;选项B,D中的函数均为非奇非偶函数.所以排除选项B,D,故选AC.2.函数f(x)=x+9x(x≠0)是()A.奇函数,且在(0,3)上是增函数B.奇函数,且在(0,3)上是减函数C.偶函数,且在(0,3)上是增函数D.偶函数,且在(0,3)上是减函数解析:选B.因为f(-x)=-x+9-x=-⎝⎛⎭⎪⎫x+9x=-f(x),所以函数f(x)=x+9x为奇函数.又f′(x)=1-9x2,在(0,3)上f′(x)<0恒成立,所以f(x)在(0,3)上是减函数.3.(2021·贵阳市第一学期监测考试)已知函数f(x)的定义域为R,当x<0时,f(x)=2x,当-1≤x≤1时,f(-x)=-f(x),当x>12时,f⎝⎛⎭⎪⎫x+12=f⎝⎛⎭⎪⎫x-12,则f(5)=()A.12B.-12C.-2 D.2解析:选B.因为当x>12时,f⎝⎛⎭⎪⎫x+12=f⎝⎛⎭⎪⎫x-12,所以f(x+1)=f(x),所以f(5)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).又当x<0时,f(x)=2x,所以f(5)=f(1)=-f(-1)=-2-1=-12,故选B.4.设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数解析:选D.因为f(x)=e x-e-x2,则f(-x)=e-x-e x2=-f(x).所以f(x)是奇函数.因为f(|-x|)=f(|x|),所以f(|x|)是偶函数,所以f(|x|)f(x)是奇函数.5.定义在R上的偶函数f(x)满足f(x+3)=f(x).若f(2)>1,f(7)=a,则实数a的取值范围为()A.(-∞,-3) B.(3,+∞)C.(-∞,-1) D.(1,+∞)解析:选D.因为f(x+3)=f(x),所以f(x)是定义在R上的以3为周期的周期函数,所以f(7)=f(7-9)=f(-2).又因为函数f(x)是偶函数,所以f(-2)=f(2),所以f(7)=f(2)>1,所以a>1,即a∈(1,+∞).故选D.6.已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.解析:因为f(x)是定义在R上的偶函数,所以当x<0时,-x>0.由已知f(-x)=(-x)2-(-x)-1=x2+x-1=f(x),所以f(x)=x2+x-1.答案:x2+x-17.若函数f(x)=x(x+2)(x-a)为奇函数,则实数a的值为________,且当x≥4时,f(x)的最大值为________.解析:由f(x)为奇函数易知a=2,当x≥4时,f(x)=1x-4x在[4,+∞)上单调递减,所以当x=4时,f(x)max=1 3.答案:2 138.已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.解析:方法一:因为f (x )在R 上是奇函数,且f (1-x )=f (1+x ). 所以f (x +1)=-f (x -1),即f (x +2)=-f (x ). 因此f (x +4)=f (x ),则函数f (x )是周期为4的函数, 由于f (1-x )=f (1+x ),f (1)=2, 故令x =1,得f (0)=f (2)=0,令x =2,得f (3)=f (-1)=-f (1)=-2, 令x =3,得f (4)=f (-2)=-f (2)=0, 故f (1)+f (2)+f (3)+f (4)=2+0-2+0=0,所以f (1)+f (2)+f (3)+…+f (50)=12×0+f (1)+f (2)=2.方法二:取一个符合题意的函数f (x )=2sin πx2,则结合该函数的图象易知数列{f (n )}(n ∈N *)是以4为周期的周期数列.故f (1)+f (2)+f (3)+…+f (50)=12×[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)=12×[2+0+(-2)+0]+2+0=2.答案:29.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值. 解:(1)因为f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ), 所以f (x +3)=f ⎝ ⎛⎭⎪⎫32+⎝⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以y =f (x )是周期函数,且3是其一个周期. (2)因为f (x )为定义在R 上的奇函数, 所以f (0)=0,且f (-1)=-f (1)=-2, 又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.10.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. 解:(1)因为f (1+x )=f (1-x ),所以f (-x )=f (2+x ). 又f (x +2)=f (x ),所以f (-x )=f (x ).又f (x )的定义域为R , 所以f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0], 则f (x )=f (-x )=x ;从而当1≤x ≤2时,-1≤x -2≤0, f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎨⎧-x ,x ∈[-1,0],x ,x ∈(0,1),-x +2,x ∈[1,2].[B 级 综合练]11.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.若y =f (x )是奇函数,则f (-x )=-f (x ),所以|f (-x )|=|-f (x )|=|f (x )|,所以y =|f (x )|的图象关于y 轴对称,但若y =|f (x )|的图象关于y 轴对称,y =f (x )不一定是奇函数,如y =|f (x )|=x 2,故选B.12.已知函数f (x )=⎩⎨⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N +,定义f n (x )=,那么f 2 022(2)的值为( )A .0B .1C .2D .3解析:选C.因为f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,所以f n (2)的值具有周期性,且周期为3,所以f 2 022(2)=f 3×674(2)=f 3(2)=2,故选C.13.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积. 解:(1)由f (x +2)=-f (x ),得f (x +4)=f ((x +2)+2)=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数. 所以f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f ((x -1)+2)=-f (x -1)=f (-(x -1)), 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.14.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ), 于是当x <0时, f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)可画出f (x )的图象,知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[C 级 创新练]15.若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R ,都有f (-x )+f (x )=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x . 以上三个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3解析:选B.由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.故选B.16.(多选)设函数f (x )的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f (x )=-f (y )成立,则称函数f (x )为“H 函数”.下列为“H 函数”的是( )A .y =sin x cos xB .y =ln x +e xC .y =2xD .y =x 2-2x解析:选AB.由题意,得“H 函数”的值域关于原点对称.A 中,y =sin x cos x =12sin 2x ∈⎣⎢⎡⎦⎥⎤-12,12,其值域关于原点对称,故A 是“H 函数”;B 中,函数y=ln x +e x 的值域为R ,故B 是“H 函数”;C 中,因为y =2x >0,故C 不是“H 函数”;D 中,y =x 2-2x =(x -1)2-1≥-1,其值域不关于原点对称,故D 不是“H 函数”.综上所述,A ,B 是“H 函数”,故选AB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题函数的奇偶性、对称性、周期性
【方法点拨】
1.函数奇偶性、对称性间关系:
⑴若函数y=J(x+a)是偶函数,即几?一x)=y(a+x),则函数v=^x)的图象关于直线x=a 对称;一般的,若对于R上的任意x都有夬7-x)=y@+x),则y=j(x)的图象关于直线x = ^- 对称.
(2)若函数y=Xx+a)是奇函数,即X-x+a)+/(x+a) = O,则函数y=J(X)关于点(a, 0) 中心对称;一般的,若对于R上的任意x都有夬一x+a)+/(x+a) = 2b,则y= 夬x)的图象关于点(a, b)中心对称.
2.函数对称性、周期性间关系:
若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍,为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍.
3.基于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】
例1(2019江苏启东联考)已知函数/(x)对任意的A GR,都有用+"=/(}一",函数八• + 1)是奇函数,当一舟WxW*时,f(.x)=2x,则方程/(x)=-j在区间[一3,5]内的所有根之和为•
【解析】Z□□=/(%J1)ZO匚二工二_/(乂1)二"二1)二二::二用二»二/讣二"二二二/
(1 Zx)Z/(x)ZrZ/(xOl)ZZ/(x)--/(xO2)LZ/(xJl)Z/(x)Z □□ Z~f
例2 已知/(x)是定义域为(f+8)的奇函数,满足/(l-x) = /(l + x).若/(1) = 2,则
/(!) + / ⑵+ /(3) +…+ 八50)=
A. -50
B. 0
C. 2
D. 50
【分析】同例1 得/(x)(Z(ZIZE4,故/(l) +/⑵ +/⑶ +/(4) =/(5) +/(6) +八7) +/⑻
=・・・=/(45) +/(46) +/(47) +/(48), W/(l)=2, /(2)=/(0)=0 (夬1 一x)=;(l+x)中,取x=l)、/⑶=/(一1) =一/(1)= 一2、/(4)=/(0)=0,故/(I) +八2) +几3) +/(4)=/
(5) +/(6) +/(7) 4-/(8)=・・・=/(45) +/(46) +/(47) +/(48) =0,所以/(I) +/(2) + /(3) + ・・・
+/(50) =/(47) +/(48) =/(1) 4-/(2) =2.
例3已知函数y = f(x)是/?上的奇函数,对任意x eR,都有f(2-x) = f(x) + f (2)成立,
当壬,x,e[0, 1],且屁HX,时,都有冬)>0,则下列结论正确的有( )
石一兀
A.f (1) +/ (2) +f (3) +...+/(2019) = 0
B.直线A =-5是函数y = f(X)图象的一条对称轴
C.函数y = /(x)在[-7, 7]上有5个零点
D.函数_y = /(X)在[-7, -5]上为减函数
【解答】解:根据题意,函数y = f(x)是尺上的奇函数,则/(0) = 0;
对任意xeR,都有/(2-x) = .f(x) + y (2)成立,当x = 2时,有/•(0) = 2/ (2) =0, 则有y (2) =0,则有/(2-A-)=/(A),RP X =1是函数f(x)的一条对称轴;
又由/(x)为奇函数,则/(2-x) = -/(-%),变形可得f(x + 2) = -f(x),则有f(x + 4) = -/U + 2) = f(x),故函数/(A)是周期为4的周期函数,
当不,x,曰0, 1],且X,",时,都有”丄凹>0,则函数f(x)在区间[0, 1]上 ' ' ' 斗一尤2为增函数,又由y = f(x)是尺上的奇函数,则八力在区间[-1, 1]上为增函数:
据此分析选项:对于A, /(A +2)=-/(A),
则/ (1) +/ (2) +/ (3) +/ (4) =[/ (1) +/ (3) ]+[f(2) +/ (4) ] = 0,
f (1) +f (2) +f (3) +...+ /(20⑼= 5O4x[/ (1) +f (2) +f (3) +/ (4) ] +f (1) +f (2) + (3) =f (2)
=0. A 正确;
对于〃,x = l是函数八朗的一条对称轴,且函数/(x)是周期为4的周期函数,则x = 5 是函数/(x)的一条对称轴,
又由函数为奇函数,则宜线x = -5是函数y = f(x)图象的一条对称轴,3正确:
对于C,函数y = f(x)在[-7, 7]上有7个零点:分别为-6, -4, -2, 0, 2, 4, 6;
C错误;
对于D, f(x)在区间[-1, 1]上为增函数且英周期为4,函数y = f(x)在[-5, -3]上为增函数,又由A =-5为函数/(x)图象的一条对称轴,则函数y = /(才)在[-7, -5]上为减函数,D正确:故选:ABD.
【巩固训练】
1.已知函数/(X)= (|)|r_u|关于x = l 对称,KiJ/(2A:-2)>/(0)的解集为__________ .
2
2.已知泄义在R上的函数/(x)满足/(l + x) = -/(3-x),且/Xx)的图象与
gM = lg 的图象有四个交点,则这四个交点的横纵坐标之和等于_____________ .
4-x
3•已知函数f(x)(x e R)满足/(I + x) = /(1-A),/(4+ X)= /(4-x),且_3 < x 5 3 时,f(x) = \n(x+yl\+x2)^则7(2018)=()
A. 0
B. 1
C. ln($_2)
D. In(苗+2)
4.已知定义在R上的奇函数
f(x),满足= 且在区间[0, 2]上是增函数, 若方程夬x)="0>O)在区间[-8,8]上有四个不同的根召宀,“,兀,则
x}+x2+x3 + x4= ______________ ・8
5.(多选题)已知/(x)是泄义域为R的奇函数,且函数/U + 2)为偶函数,下列结论正确
的是( )
A.函数y = /(X)的图象关于直线x = l对称
B. f (4) =0
C. /U+8)=/(A)
D.若/(-5) = -1,则/'(2(H9) = —1
6.(多选题)函数/(x)的定义域为且/(x-1)与/'(x-2)都为偶函数,贝9( )
A. /(x)为偶函数
B. + 为偶函数
C. /(A +2)为奇函数
D. f(x)为同期函数
7•若定义在2?上的函数f(x)满足/(x+2)= -/(x), /(x + 1)是奇函数,现给出下列4 个论断:
①/(X)是周期为4的周期函数:②/•(")的图象关于点(1,0)对称:
③/(刃是偶函数;④/(X)的图象经过点(-2,0):
其中正确论断的个数是
【答案或提示】
1. 【答案】[1,2]
【解析】•・•函数/ (x) =(丄)冋关于X = 1对称,・•. d = 1J (刃=
2
2. 【答案】8
X
【解析】^(x) = lg —,故g(4 — x) = —g(x),即y = g(x)的图象关于点(2,0)对称,
又函数f ⑴满足/(1 + A ) = -/(3-X ),则函数.¥ = /(%)的图象关于点(2,0)对称,所 以四个交点的横纵坐标之和为8.
3. 【答案】D
【解析】因为/(l+x) = /(l-x),/(4+x) = /(4-x),
所以/(x) = /(2-x),/(x) = /(8-x) A /(2-X ) = /(8-X )/.T = 8-2 = 6,
A 7(2018) = /⑵= ln(2 + $) •
4. 【答案】一8
5. 【答案】BCD
6. 【答案】ABD
7. 【答案】3
【解析】命题①:由/(X+2) = — f (x),得:/(x4-4) = —f (x + 2)= /(x), 所以函数/(x)的周期为4,故①正确;
命题②:由/(X + 1)是奇函数,知/(X+1)的图象关于原点对称, 所以函数.f (X)的图彖关于点(1,0)对称,故②正确:
则由/(2x-2)>/(0) =
命题③:由/(X + 1)是奇函数,得:/(l+x) = -/(l-.v),
又心2)= -于⑴,
所以/(-x) = -/(-x+2) = -/(l+l-x) = /(l-0-^)) = /W»
所以函数/(x)是偶函数,故③正确:
命题④:/(-2) = -/(-2 + 2) = -/(0).
无法判断其值,故④错误•综上,正确论断的序号是:®@®.。

相关文档
最新文档