2022高考数学一轮复习—函数的单调性、奇偶性、周期性习题含答案

合集下载

高考数学复习---《周期性、单调性、奇偶性、对称性的灵活运用》真题练习(含答案)

高考数学复习---《周期性、单调性、奇偶性、对称性的灵活运用》真题练习(含答案)

高考数学复习---《周期性、单调性、奇偶性、对称性的灵活运用》真题练习(含答案)1.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .1【答案】A 【解析】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++−=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +−=,即()()f y f y =−,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++−==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=−−,()()14f x f x −=−−,故()()24f x f x +=−,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =−=−=−,()()()321112f f f =−=−−=−,()()()4221f f f =−==−,()()()5111f f f =−==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++−=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++−=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos 3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++−=++−== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x x π=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =−=−=−==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;2.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +−=−−=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21−B .22−C .23−D .24−【答案】D 【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x −=+,因为()(4)7g x f x −−=,所以(2)(2)7g x f x +−−=,即(2)7(2)g x f x +=+−,因为()(2)5f x g x +−=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++−=,即()(2)2f x f x +−=−,所以()()()()35212510f f f +++=−⨯=−,()()()()46222510f f f +++=−⨯=−.因为()(2)5f x g x +−=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =−−=−. 因为()(4)7g x f x −−=,所以(4)()7g x f x +−=,又因为()(2)5f x g x +−=,联立得,()()2412g x g x −++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =−=−.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=−−−−=−⎡⎤⎡⎤⎣⎦⎣⎦=∑.故选:D3.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫− ⎪⎝⎭,(2)g x +均为偶函数,则( ) A .(0)0f = B .102g ⎛⎫−= ⎪⎝⎭C .(1)(4)f f −=D .(1)(2)g g −=【答案】BC【解析】[方法一]:对称性和周期性的关系研究 对于()f x ,因为322f x ⎛⎫− ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫−=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫−=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x −=,所以()f x 关于32x =对称,则(1)(4)f f −=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=−,(4)()g x g x −=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''−=+⇔−−=+⇔−−=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x −+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯−= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫−== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g −==−,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC .故选:BC .[方法三]: 因为322f x ⎛⎫− ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫−=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫−=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=−, 所以()()3f x f x −=,(4)()g x g x −=,则(1)(4)f f −=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=−=− ⎪⎝⎭, 所以()(4)()3g x g x g x −==−−,所以()(2)(1)g x g x g x +=−+=, 所以13022g g ⎛⎫⎛⎫−== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g −==−,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.4.(2022·全国·统考高考真题)若()1ln 1f x a b x++−=是奇函数,则=a _____,b =______. 【答案】 12−; ln 2. 【解析】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠ 若奇函数的1()||1f x ln a b x =++−有意义,则1x ≠且101a x+≠− 1x ∴≠且11x a ≠+, 函数()f x 为奇函数,定义域关于原点对称,111a ∴+=−,解得12a =−, 由(0)0f =得,102ln b +=,2b ln ∴=, 故答案为:12−;2ln . [方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x−+−−=++=+=+−−− 1()1ax a f x ln b x++−=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x ln ln b x x−−++∴+−=++=−+ 2222(1)201a x a lnb x −+∴+=− 22(1)1210112a a a a +∴=⇒+=⇒=− 1222241,22b ln b ln a b ln ln −==−⇒=∴=−= [方法三]:因为函数()1ln 1f x a b x ++−=为奇函数,所以其定义域关于原点对称. 由101a x+≠−可得,()()110x a ax −+−≠,所以11a x a +==−,解得:12a =−,即函数的定义域为()()(),11,11,−∞−⋃−⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x +=−++=−−,在定义域内满足()()f x f x −=−,符合题意. 故答案为:12−;ln 2. 本课结束。

2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)

2022年高考数学一轮复习专题3-3 函数的奇偶性与周期性(含答案解析)
又由 ,可得 , , ,
则 ,
所以 .
故选:C.
【点睛】本题考查函数奇偶性与对称性,周期性,解题关键是由奇函数的性质和对称性得出函数为周期函数.
12.奇函数 的定义域为R,若 为偶函数,且 ,则 =( )
A.﹣2B.﹣1C.0D.1
【答案】B
【解析】
【分析】根据题意和函数的奇偶性,得到函数 是周期为4的周期函数,进而利用函数的周期性,求得 的值,即可得到答案.
∴1=2- ,∴a=2.
(2)由(1)知f(x)=x- ,
定义域为(-∞,0)∪(0,+∞)关于原点对称.
f(-x)=-x- =-x+ =-(x- )=-f(x),
∴函数f(x)为奇函数.
【点睛】本题考查函数解析式中参数的求解,利用奇偶性的定义判断函数奇偶性,属综合基础题.
高频考点二:函数奇偶性的应用
对于选项 ,令 ,则 .
在 中,将 换为 ,得 ,
【点睛】本题考查利用函数周期性求函数值,涉及函数奇偶性的应用,属综合基础题.
14.已知定义在 上的奇函数 满足 ,当 时, ,则 ()
A.2019B.1C.0D.-1
【答案】C
【解析】
【分析】根据题意推导出函数 的对称性和周期性,可得出该函数的周期为 ,于是得出
可得出答案.
【详解】 函数 是 上的奇函数,则 ,
对于D选项,令 ,则 , , 且 ,
所以,函数 为非奇非偶函数.
故选:B.
【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.
【知识拓展】
(1)奇、偶函数定义域的特点.
由于f(x)和f(-x)须同时有意义,所以奇、偶函数的定义域关于原点对称.这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;

函数的性质单调性、奇偶性、周期性、对称性、最值(十六大题型)(课件)高考数学一轮复习(新教材新高考)

函数的性质单调性、奇偶性、周期性、对称性、最值(十六大题型)(课件)高考数学一轮复习(新教材新高考)
判断.
②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.
③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接
写出它们的单调区间.
知识梳理·基础回归
解题方法总结
(3)记住几条常用的结论:
①若()是增函数,则−()为减函数;若()是减函数,则−()为增函数;
2
注意:关于①式,可以写成函数() = + ( ≠ 0)
−1
2
或函数() = − ( ∈ ).
+1


偶函数:①函数() = ±( + ).

②函数() = log ( + 1) − .
2
③函数(| |)类型的一切函数.
④常数函数
1 − 2
使得 −
1
2
< 0”成立的是(
− 2
f (a x) f (a x)

f ( x)为奇函数
f (a x) f (a x)

f (b x) f (b x)
f (a x) f (a x)

f ( x)为奇函数
f (a x) f (a x)

f ( x)为偶函数
(2)若函数 = ( + )为奇函数,则函数 = ()关于点(, 0)对称.
(3)若() = (2 − ),则函数()关于 = 对称.
(4)若 + (2 − ) = 2,则函数()关于点(, )对称.
知识梳理·基础回归
解题方法总结
1、单调性技巧
②若()和()均为增(或减)函数,则在()和()的公共定义域上() +

高中数学:函数单调性和奇偶性的综合练习及答案

高中数学:函数单调性和奇偶性的综合练习及答案

高中数学:函数单调性和奇偶性的综合练习及答案1.下列函数中,既是偶函数又在$(0,+\infty)$上单调递增的函数是()A。

$y=x^3$B。

$y=|x|+1$C。

$y=-x^2+1$D。

$y=2-|x|$2.已知函数$f(x)=x^2+|x|$A。

是偶函数,在$(-\infty,+\infty)$上是增函数B。

是偶函数,在$(-\infty,+\infty)$上是减函数C。

不是偶函数,在$(-\infty,+\infty)$上是增函数D。

是偶函数,且在$(0,+\infty)$上是增函数3.已知函数$f(x)=3x-(x\neq 0)$,则函数()A。

是奇函数,且在$(0,+\infty)$上是减函数B。

是偶函数,且在$(0,+\infty)$上是减函数C。

是奇函数,且在$(0,+\infty)$上是增函数D。

是偶函数,且在$(0,+\infty)$上是增函数4.定义在$\mathbb{R}$上偶函数$f(x)$在$[1,2]$上是增函数,且具有性质$f(1+x)=f(1-x)$,则函数$f(x)$A。

在$[-1,0]$上是增函数B。

在$[-1,0]$上增函数,在$(-\infty,0]$上是减函数C。

在$[1,0]$上是减函数D。

在$[-1,0]$上是减函数,在$(-\infty,0]$上是增函数5.$f(x)$是定义在$\mathbb{R}$上的增函数,则下列结论一定正确的是()A。

$f(x)+f(-x)$是偶函数且是增函数B。

$f(x)+f(-x)$是偶函数且是减函数C。

$f(x)-f(-x)$是奇函数且是增函数D。

$f(x)-f(-x)$是奇函数且是减函数6.已知偶函数$f(x)$在区间$[0,+\infty)$上的解析式为$f(x)=x+1$,下列大小关系正确的是()A。

$f(1)>f(2)$B。

$f(1)>f(-2)$C。

$f(-1)>f(-2)$D。

$f(-1)<f(2)$7.已知$f(x)$是偶函数,对任意的$x_1,x_2\in(-\infty,-1]$,都有$(x_2-x_1)[f(x_2)-f(x_1)]<0$,则下列关系式中成立的是()A。

2022届高考数学 函数的单调性练习题(含答案)

2022届高考数学  函数的单调性练习题(含答案)

函数的单调性一、单选题1.函数()f x = )A .(,1]-∞B .[3,)+∞C .(,1]-∞-D .[1,)+∞2.已知2(2)ln f x xx -=-,则()f x 的单调增区间为( ) A .(2,)-+∞B .(2,0)-C .(0,)+∞D .(0,2)3.函数213()log (6)f x x x =--的单调递增区间是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭B .1,22⎡⎫-⎪⎢⎣⎭C .1,2⎛⎤-∞- ⎥⎝⎦D . 13,2⎛⎤--⎥⎝⎦4.已知()y f x =在区间I 上是严格增函数,且12,x x I ∈,则12x x <是()()12f x f x ≤( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件5.设函数()ln 31ln 31f x x x =++-,则()f x ( ) A .是偶函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递增B .是奇函数,且在11,33⎛⎫- ⎪⎝⎭单调递减C .是偶函数,且在1,3⎛+∞⎫ ⎪⎝⎭单调递增 D .是奇函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递减6.设函数()11xa f xb a -=+-(0a >,1a ≠),则函数()f x 的单调性( ) A .与a 有关,且与b 有关 B .与a 无关,且与b 有关C .与a 有关,且与b 无关D .与a 无关,且与b 无关7.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(2)1f x -≤-≤的x 的取值范围是( ) A .[-2,2]B .[-2,1]C .[1,3]-D .[0,4]8.若2222log log 41a a a b b b -+=-++,则( )A .2a b >B .2a b <C .21a b >+D .21b a >+9.已知()(0)1x x f x =>+,则()f x 的最小值是( )A .4B .5C .6D .810.已知函数()()22log 14f x x x =+≤≤,则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( ) A .6 B .13 C .22 D .3311.已知x ,y ∈R ,且x y >,则下列说法是正确的是( )A .11x y<B .--+<+x yy x e e e e C .11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D .22x y >12.已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为( )A .a b c >>B .c b a >>C .b a c >>D .c a b >>13.已知函数f (x )=221,143,1x x x x x ⎧-+<⎨-+≥⎩,在(0,3)a -上单调递减,则实数a 的取值范围是( )A .[3,4]B .[3,5]C .(3,4]D .(]3,514.已知()cos2sin f x x a x =-在区间,62ππ⎛⎫⎪⎝⎭上是增函数,则实数a 的取值范围为( ) A .[2,)-+∞ B .(2,)-+∞C .(,4)-∞-D .(,4]-∞-二、填空题15.函数243y x x =-++,[]0,3x ∈的单调递增区间是_____.16.已知函数()f x 的定义域为R ,对任意实数,x y 满足:()()()12f x y f x f y +=++,且102f ⎛⎫=⎪⎝⎭,当12x >时,()0f x >.给出以下结论:①()102f =-;②()312f -=-;③()f x 为R 上的减函数;④()12f x +为奇函数;⑤()1f x +为偶函数.其中正确结论的序号是________.17.设()21,0f x x x =⎨--<⎩,0.50.7a -=,0.5log 0.7b =,0.7log 5c =,则比较()f a ,f b ,()f c 的大小关系_______.18.若函数()22()log 3f x x ax =++在区间(3,)+∞上单调递增,实数a 的取值范围是________. 三、解答题19.已知函数()21xf x x=+,[]1,1x ∈-. (1)用单调性的定义证明函数()y f x =在区间[]1,1-上是单调递增; (2)求关于x 的不等式()()1f x f x -<的解集.20.已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,比较()x f b 与()x f c 的大小关系21.已知()y f x =是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-+. (1)求0x <时,函数()f x 的解析式;(2)若函数()f x 在区间[1,2]a --上单调递增,求实数a 的取值范围. (3)解不等式()2f x x ≥+.22.定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-. (1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.答案解析1.【解析】由题意,可得2230x x --≥,解得1x ≤-或3x ≥,所以函数()f x =(][),13,-∞-⋃+∞,二次函数223y x x =--的对称轴为1x =,且在(][),13,-∞-⋃+∞上的单调递增区间为[3,)+∞,根据复合函数的单调性,可知函数()f x =[3,)+∞.故选:B.2.【解析】因为对数函数ln y x =在()0,∞+上是增函数,反比例函数2y x=-在()0,∞+上也是增函数, 所以2ln y x x=-在定义域()0,∞+上单调递增; 又()f x 是由(2)f x -向左平移两个单位得到,所以()f x 的单调增区间为(2,)-+∞.故选:A. 3.【解析】由题意知()f x 的定义域为()3,2-.令26t x x =--+, 则函数t 在13,2⎛⎤-- ⎥⎝⎦上递增在1,22⎡⎫-⎪⎢⎣⎭上递减.又13log y =在其定义域上递减.故由复合函数的单调性知原函数的递增区间是1,22⎡⎫-⎪⎢⎣⎭,故选:B 4.【解析】由()y f x =在区间I 上是严格增函数, ∴12,x x I ∈,12x x <时,2121()()0f x f x x x ->-,∴21()()0f x f x ->,即21()()f x f x >,故12x x <是()()12f x f x ≤充分非必要条件.故选:A.5.【解析】由310310x x ⎧+>⎪⎨->⎪⎩得:13x ≠±,()f x ∴定义域为1111,,,3333⎛⎫⎛⎫⎛⎫-∞--+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 又()()ln 31ln 31ln 31ln 31f x x x x x f x -=-++--=-++=,()f x ∴为定义域内的偶函数,可排除BD ;当1,3x ⎛⎫∈-∞- ⎪⎝⎭时,()()()()2ln 31ln 31ln 91f x x x x =--+-+=-,291t x =-在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,ln y t =单调递增,()f x ∴在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,可排除A ;()f x 为偶函数且在1,3⎛⎫-∞- ⎪⎝⎭上单调递减,()f x ∴在1,3⎛+∞⎫⎪⎝⎭上单调递增,C 正确.故选:C.6.【解析】函数()11x a f x b a -=+-(0a >,1a ≠), 当01a <<时,()11xa f xb a -=+-单调递减. 当1a >时,()11xa f xb a -=+-单调递减. 则0a >且1a ≠,b R ∈,()11xa f xb a -=+-的单调性都为单调递减. 所以函数()11xa f xb a -=+-(0a >,1a ≠)的单调性与a b ,无关.故选:D 7.【解析】因为函数()f x 在R 上的奇函数,且(2)1f -=,所以()2(2)1f f =--=-, 又因为()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数,因为1(2)1f x -≤-≤, 所以()()21(2)12f f x f =-≤-≤=-,则222x -≤-≤,解得04x ≤≤,故选:D 8.【解析】根据题意,可知,0a >,0b >,∵22log 41b b b -++()22log 1(2)b b b =+-+()222log log 22(2)b b b b =+-++22log (2)2(2)b b b b -=++,∴222222log log (2)2(2)log (2)2(2)a a a b b b b b b b -+=-++>-+,令()()22()lo ,g 0f x x x xx =-∈++∞,即()()2f a f b >,∵211ln 2(2ln 2)()12ln 2ln 2x x f x x x x -⋅+⋅'=-+=⋅⋅, 令2()(2ln 2)ln 21g x x x =⋅-⋅+,∵0ln 21<<, ∴2(ln 2)8ln 2ln 2(ln 28)0∆=-=⋅-<,即对于任意的x ,恒有()0()0g x f x '>⇒>,∴()f x 在()0,∞+上单调递增, ∴2a b >.故选:A.9.【解析】令1,(0)t x x =+>,所以()1,1x t t =->;所以()236(0)1x x x x f x ++=>+转化为()()()231116t t y t t-+-+>=; 即()()()21316411y t t t t tt =++-+-+=>,又函数y 在()1,2上单调递减,在区间()2,+∞上单调递增, 所以当2t =时,y 取到最小值,最小值为5; 即当1x =时,()f x 取到最小值,最小值为5. 故选:B. 10.【解析】()22log f x x =+,22222[()]()(log )6log 6y f x f x x x ∴=+=++,14x ≤≤,∴21414x x ⎧⎨⎩, 22222[()]()(log )6log 6y f x f x x x ∴=+=++,的定义域是{}|12x x .令2log x t =,因为12x ,所以01t ,则上式变为266y t t =++,01t ,266y t t =++在[]0,1上是增函数,当1t =时,y 取最大值13,故选:B .11.【解析】A :当2x =,3y =-时,11x y>,∴A 错误, B :设x x y e e -=-,则函数为R 上的增函数,∵x y >,∴x x y y e e e e --->-,即y x y x e e e e --+>+,∴B 错误.C :∵12x y ⎛⎫= ⎪⎝⎭为R 上的减函数,x y >,∴1122x y ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即11022x y⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,∴C 正确,D :当2x =,3y =-时,22x y <,∴D 错误. 故选:C .12.【解析】33331log log 10log 9.1log 9210-=>>=,0.822<, 即:0.8331log log 9.1210->>,又()f x 是定义在R 上的减函数, ()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数,3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭,()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>. 13.【解析】函数221,1()43,1x x f x x x x ⎧-+<=⎨-+≥⎩,画出函数()f x 的大致图象,如图所示:函数()f x 在(0,3)a -上单调递减,∴由图象可知:032a <-≤,解得:35a <≤, 故实数a 的取值范围是:(]3,5.故选:D.14.【解析】()cos2sin f x x a x =- =22sin 1x asinx --+, 令sinx t =,由,62x ππ⎛⎫∈⎪⎝⎭,可得1,12t ⎛⎫∈ ⎪⎝⎭,则: ()cos2sin f x x a x =-在区间,62ππ⎛⎫⎪⎝⎭上是增函数,等价于221y t at =--+在1,12⎛⎫⎪⎝⎭是增函数,只需对称轴:14a -≥,解得4a ≤-.故选:D.15.【解析】243y x x =-++的图象开口向下,又243y x x =-++的对称轴为42(1)2x =-=-⨯,()f x ∴的单调递增区间是[]0,2.16.【解析】由题意和,x y 的任意性,取0x y ==代入()()()12f x y f x f y +=++, 可得()()()01020=++f f f ,即1(0)2f =-,故①正确; 取12x =, 12y 代入可得()1110222⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭f f f ,即1110222⎛⎫-=+-+ ⎪⎝⎭f ,解得112⎛⎫-=- ⎪⎝⎭f ; 再令12x y ==-代入可得()111122232122⎛⎫⎛⎫=-+-+=-+=- ⎪ ⎪⎝⎭-⎝⎭f f f ,故②正确;令y x =-代入可得11(0)()()22-==+-+f f x f x ,即11()()022++-+=f x f x ,故1()2+f x 为奇函数,④正确;取1y =-代入可得()()()1112-=+-+f x f x f ,即()()()111102---=+=-<f x f x f ,即()()1f x f x -<,故()f x 为R 上减函数,③错误;⑤错误,因为11()1()22+=++f x f x ,由④可知1()()2=+g x f x 为奇函数,故11()()2()22-+--=-g x g x g x 不恒为0,故函数()1f x +不是偶函数.故答案为:①②④17.【解析】当0x ≥时,()11f x x =+≥,且()f x 在[)0,+∞上单调递增, 当0x <时,()211f x x =--<-,且()f x 在(),0-∞上单调递增,()f x ∴为R 上的增函数,又()()00.50.70.70.50.50.5log 5log 10log 1log 0.7log 0.510.70.7-<==<<==<,即c b a <<,()()()f a f b f c ∴>>18.【解析】设2log u x =,则其在区间(0,)+∞上单调递增; 设23v x ax =++,其开口向上,对称轴为直线2a x =-;在区间(,)2a-∞-上单调递减、在区间(,)2a-+∞上单调递增. 由复合函数的单调性知当内外层函数的单调性都为单调递增时,复合函数才单调递增. 所以要使函数()22()log 3f x x ax =++在区间(3,)+∞上单调递增,则需32a-≤, 同时还得保证其真数大于0,即令:2(3)3330v a =++≥,解得4a ≥-. 故答案为:[)4,-+∞.19.【解析】(1)令1211x x ,则()()()()()()()()22221221121212121222222212121211()()111111x x x x x x x x x x x x f x f x x x x x x x +-+-+--=-==++++++()()()()12122212111x x x x x x --=++,∵22121211,(1)(1)0x x x x -≤<≤++>,1210x x ->,∴12())0(f x f x -<,故函数()y f x =在区间[]1,1-上是单调递增; (2)由(1)结论,及()()1f x f x -<知:111111x xx x -<⎧⎪-≤-≤⎨⎪-≤≤⎩,解得112x <≤.因此,不等式()()1f x f x -<的解集为112x x ⎧⎫<≤⎨⎬⎩⎭.20.【解析】∵(1)(1)f x f x +=-,∴函数()f x 的对称轴是1x =.故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-∞,上递减,在[)1+∞,上递增.若0x ≥,则321x x ≥≥, ∴(3)(2)x x f f ≥;若0x <,则321x x <<,∴(3)(2)x x f f >.综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.21.【解析】(1)设0x <,则0x ->,所以22()()2()2f x x x x x -=--+-=--又()f x 为奇函数,所以()()f x f x =--, 所以当0x <时,2()2f x x x =+,(2)作出函数()f x 的图像,如图所示:要使()f x 在[1,2]a --上单调递增,结合()f x 的图象知2121a a ->-⎧⎨-≤⎩,所以13a <≤,所以a 的取值范围是(1,3].(3)由(1)知222,0()2,0x x x f x x x x ⎧-+≥=⎨+<⎩,解不等式()2f x x ≥+,等价于2022x x x x ≥⎧⎨-+≥+⎩或2022x x x x <⎧⎨+≥+⎩,解得:∅或2x -≤ 综上可知,不等式的解集为(],2-∞-22.【解析】(1)令1x y ==,()()()()11110f f f f +=⇒=. (2)()f x 在()0,∞+单调递减,设120x x >>,令1xy x =,2x x =,则12x y x =,所以1y >,()0f y <, 得()()()()211112220⎛⎫⎛⎫+=⇒-=< ⎪ ⎪⎝⎭⎝⎭f x f f x f x x x f x f x x , 即对任意()12,0,x x ∈+∞,若12x x >,则()()12f x f x <,()f x 在()0,∞+单调递减.(3)因为()1f e =-,令x y e ==,()()()22=+=-f e f e f e , 令x e =,1y e =,()()110⎛⎫=+= ⎪⎝⎭f f e f e ,11f e ⎛⎫= ⎪⎝⎭, 因为函数单调递减,所以()max 11⎛⎫== ⎪⎝⎭f x f e ,()()2min 2==-f x f e .。

2022高考数学一轮复习—利用导数研究函数的单调性、极值和最值习题含答案

2022高考数学一轮复习—利用导数研究函数的单调性、极值和最值习题含答案

利用导数研究函数的单调性[A 组 基础保分练]1.已知函数f (x )=x ln x ,则f (x )( )A .在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e,即函数的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e, 即函数的单调递减区间为⎝⎛⎭⎫0,1e . 答案:D2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图像如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:由题意得,当x ∈(-∞,c )时,f ′(x )>0,所以函数f (x )在(-∞,c )上是增函数, 因为a <b <c ,所以f (c )>f (b )>f (a ).答案:C3.(2021·江西红色七校第一次联考)若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(-∞,2]D .(-∞,2)解析:f ′(x )=6x 2-6mx +6,由已知条件知x ∈(1,+∞)时,f ′(x )≥0恒成立.设g (x )=6x 2-6mx +6,则g (x )≥0在(1,+∞)上恒成立.当Δ=36(m 2-4)≤0,即-2≤m ≤2时,满足g (x )≥0在(1,+∞)上恒成立;当Δ=36(m 2-4)>0,即m <-2或m >2时,则需⎩⎪⎨⎪⎧m 2≤1,g (1)=6-6m +6≥0,解得m ≤2,所以m <-2.综上得m ≤2,所以实数m 的取值范围是(-∞,2].答案:C4.(2021·襄阳模拟)已知定义在R 上的可导函数f (x )的导函数y =f ′(x ),满足f ′(x )<f (x ),f (0)=1,则不等式f (x )<e x 的解集为( )A .(0,+∞) B.(1,+∞)C .(-2,+∞)D .(4,+∞)解析:令F (x )=f (x )e x ,则F (0)=1,F ′(x )=f ′(x )e x -f (x )e x e 2x =f ′(x )-f (x )e x<0,故F (x )为R 上的减函数,有f (x )<e x 等价于F (x )<1,即F (x )<F (0).故不等式f (x )<e x 的解集为(0,+∞).答案:A5.(2021·贵港模拟)若函数f (x )=kx -2ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2] B.(-∞,-1]C .[1,+∞)D .[2,+∞)解析:因为f (x )=kx -2ln x ,所以f ′(x )=k -2x.因为f (x )在区间(1,+∞)上单调递增,所以在区间(1,+∞)上f ′(x )=k -2x ≥0恒成立,即k ≥2x 恒成立,当x ∈(1,+∞)时,0<2x<2,所以k ≥2. 答案:D6.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________. 解析:f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 7.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________. 解析:令g (x )=f (x )-x ,所以g ′(x )=f ′(x )-1.由题意知g ′(x )>0,所以g (x )为增函数.因为g (2)=f (2)-2=0,所以g (x )>0的解集为(2,+∞).答案:(2,+∞)8.求下列函数的单调区间:(1)f (x )=12(x -5)2+6ln x ; (2)f (x )=x cos x -sin x +1(x >0).解析:(1)f (x )的定义域为(0,+∞).f ′(x )=x -5+6x =(x -2)(x -3)x. 令f ′(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.所以函数f (x )的单调递增区间为(0,2),(3,+∞);单调递减区间为(2,3).(2)f ′(x )=cos x -x sin x -cos x =-x sin x .令f ′(x )=0,得x =k π(k ∈N ).当x ∈(2k π,(2k +1)π)(k ∈N )时,sin x >0,此时f ′(x )<0;当x ∈((2k +1)π,(2k +2)π)(k ∈N )时,sin x <0,此时f ′(x )>0.故f (x )的单调递减区间为(2k π,(2k +1)π)(k ∈N ),单调递增区间为((2k +1)π,(2k +2)π)(k ∈N ).9.已知函数f (x )=ln x +k e x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析:(1)由题意得f ′(x )=1x -ln x -k e x,又因为f ′(1)=1-k e=0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x, 设h (x )=1x-ln x -1(x >0), 则h ′(x )=-1x 2-1x<0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0;当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).[B 组 能力提升练]1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1) B.(-1,+∞)C .(-∞,-1)D .(-∞,+∞)解析:由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1.答案:B2.(2021·益阳模拟)定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是它的导函数,恒有f ′(x )>f (x )tan x 成立,则有( ) A.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 B.3f ⎝⎛⎭⎫π6>2cos 1·f (1)C .2f ⎝⎛⎭⎫π4<6f ⎝⎛⎭⎫π6 D.2f ⎝⎛⎭⎫π4>f ⎝⎛⎭⎫π3解析:由于f ′(x )>f (x )tan x 且x ∈⎝⎛⎭⎫0,π2,则f ′(x )cos x -f (x )sin x >0.设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )sin x >0,所以g (x )在⎝⎛⎭⎫0,π2上是增函数,所以g ⎝⎛⎭⎫π3>g ⎝⎛⎭⎫π6,即f ⎝⎛⎭⎫π3cos π3>f ⎝⎛⎭⎫π6cos π6,即f ⎝⎛⎭⎫π3>3f ⎝⎛⎭⎫π6.故A 正确.同理可得B ,C ,D 错误. 答案:A3.(2021·长沙模拟)若函数f (x )=(2x 2-mx +4)e x 在区间[2,3]上不是单调函数,则实数m 的取值范围是( )A.⎣⎡⎦⎤203,172B.⎝⎛⎭⎫203,172 C.⎣⎡⎦⎤5,203 D.⎝⎛⎭⎫5,203 解析:因为f (x )=(2x 2-mx +4)e x ,所以f ′(x )=[2x 2+(4-m )x +4-m ]e x ,因为函数f (x )在区间[2,3]上不是单调函数,所以f ′(x )=0在区间(2,3)上有根,即2x 2+(4-m )x +4-m =0在区间(2,3)上有根,所以m =2x 2+4x +4x +1在区间(2,3)上有根,令t =x +1,则x =t -1,t ∈(3,4),所以m =2(t -1)2+4(t -1)+4t =2t 2+2t =2(t +1t)在t ∈(3,4)上有根,从而求得m 的取值范围为⎝⎛⎭⎫203,172.答案:B4.(2021·遵义模拟)已知函数f (x )=x -(e -1)·ln x ,则不等式f (e x )<1的解集为( )A .(0,1) B.(1,+∞)C .(0,e)D .(e ,+∞)解析:f ′(x )=1-(e -1)1x =x -(e -1)x(x >0).当x ∈(0,e -1)时,f ′(x )<0,f (x )单调递减;当x ∈(e -1,+∞)时,f ′(x )>0,f (x )单调递增.因为f (1)=f (e)=1,所以f (x )<1的解集为(1,e),即不等式1<e x <e ,解得0<x <1,即不等式f (e x )<1的解集为(0,1).答案:A5.(2021·安庆模拟)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.解析:∵f (x )=13x 3-32x 2+ax +4,∴f ′(x )=x 2-3x +a .又函数f (x )恰在[-1,4]上单调递减,∴-1,4是f ′(x )=0的两根,∴a =-1×4=-4.答案:-46.(2021·洛阳模拟)已知函数f (x )=1-x ax+ln x . (1)若函数f (x )在[1,+∞)上为增函数,求正实数a 的取值范围;(2)讨论函数f (x )的单调性.解析:(1)∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax 2(a >0). ∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0对x ∈[1,+∞)恒成立, ∴ax -1≥0对x ∈[1,+∞)恒成立,即a ≥1x对x ∈[1,+∞)恒成立,∴a ≥1. (2)∵a ≠0,f ′(x )=a ⎝⎛⎭⎫x -1a ax 2=x -1a x 2,x >0, 当a <0时,f ′(x )>0对x ∈(0,+∞)恒成立,∴f (x )的增区间为(0,+∞).当a >0时,f ′(x )>0⇒x >1a ,f ′(x )<0⇒x <1a, ∴f (x )的增区间为⎝⎛⎭⎫1a ,+∞,减区间为⎝⎛⎭⎫0,1a . 7.已知函数f (x )=(ax -1)e x ,a ∈R .(1)讨论f (x )的单调区间;(2)当m >n >0时,证明:m e n +n <n e m +m .解析:(1)f (x )的定义域为R ,且f ′(x )=(ax +a -1)e x .①当a =0时,f ′(x )=-e x <0,此时f (x )的单调递减区间为(-∞,+∞).②当a >0时,由f ′(x )>0,得x >-a -1a; 由f ′(x )<0,得x <-a -1a. 此时f (x )的单调递减区间为⎝⎛⎭⎫-∞,-a -1a ,单调递增区间为⎝⎛⎭⎫-a -1a ,+∞. ③当a <0时,由f ′(x )>0,得x <-a -1a; 由f ′(x )<0,得x >-a -1a.此时f (x )的单调递减区间为⎝⎛⎭⎫-a -1a ,+∞,单调递增区间为⎝⎛⎭⎫-∞,-a -1a . (2)证明:当m >n >0时,要证m e n +n <n e m +m ,只要证m (e n -1)<n (e m -1),即证e m -1m >e n -1n. 设g (x )=e x -1x,x >0, 则g ′(x )=(x -1)e x +1x 2,x >0. 设h (x )=(x -1)e x +1,由(1)知h (x )在[0,+∞)上单调递增,所以当x >0时,h (x )>h (0)=0,于是g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以当m >n >0时,e m -1m >e n -1n式成立,故当m >n >0时,m e n +n <n e m +m .[C 组 创新应用练]1.(2021·长春模拟)已知函数f (x )是定义在R 上的函数,且满足f ′(x )+f (x )>0,其中f ′(x )为f (x )的导数,设a =f (0),b =2f (ln 2),c =e f (1),则a ,b ,c 的大小关系是( )A .c >b >a B.a >b >cC .c >a >bD .b >c >a解析:令g (x )=e x f (x ),则g ′(x )=e x [f (x )+f ′(x )]>0,所以函数g (x )在定义域R 上单调递增,从而g (0)<g (ln 2)<g (1),得f (0)<2f (ln 2)<e f (1),即a <b <c .答案:A2.(2021·商丘模拟)设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:令F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,所以F (x )在R 上单调递减.又a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ).又f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ). 答案:C3.已知f (x )为R 上的可导函数,且任意x ∈R ,均有f ′(x )<2f (x ),则有( )A .e 4 034f (-2 017)<f (0),f (2 017)>e 4 034f (0)B .e 4 034f (-2 017)<f (0),f (2 017)<e 4 034f (0)C .e 4 034f (-2 017)>f (0),f (2 017)>e 4 034f (0)D .e 4 034f (-2 017)>f (0),f (2 017)<e 4 034f (0)解析:构造函数g (x )=f (x )e 2x ,g ′(x )=f ′(x )-2f (x )e 2x,因为f ′(x )<2f (x ),所以g ′(x )<0,即g (x )在R 上单调递减,所以g (-2 017)>g (0).所以f (-2 017)e-4 034>f (0)e 0.所以e 4 034f (-2 017)>f (0),同理得g (2 017)<g (0),所以f (2 017)e 4 034<f (0)e 0.所以f (2 017)<e 4 034f (0). 答案:D利用导数研究函数的极值与最值[A 组 基础保分练]1.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e解析:易知y ′=1-x ex ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得1<x ≤2,所以函数y =x e x 在[0,1]上单调递增,在(1,2]上单调递减,所以y =x e x 在[0,2]上的最大值是1e. 答案:A2.(2021·沈阳模拟)设函数f (x )=x e x +1,则( )A .x =1为f (x )的极大值点B .x =1为f (x )的极小值点C .x =-1为f (x )的极大值点D .x =-1为f (x )的极小值点解析:由f (x )=x e x +1,可得f ′(x )=(x +1)e x ,令f ′(x )>0可得x >-1,即函数f (x )在(-1,+∞)上是增函数;令f ′(x )<0可得x <-1,即函数f (x )在(-∞,-1)上是减函数,所以x =-1为f (x )的极小值点.答案:D3.(2021·肇庆模拟)已知x =1是f (x )=[x 2-(a +3)x +2a +3]e x 的极小值点,则实数a 的取值范围是( )A .(1,+∞) B.(-1,+∞)C .(-∞,-1)D .(-∞,1)解析:依题意f ′(x )=(x -a )(x -1)e x ,它的两个零点分别为x =1,x =a ,若x =1是函数f (x )的极小值点,则需a <1,此时函数f (x )在(a ,1)上单调递减,在(1,+∞)上单调递增,在x =1处取得极小值.答案:D4.若函数f (x )=(2-m )x x 2+m的图像如图所示,则m 的取值范围为( )A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2)解析:f ′(x )=(x 2-m )(m -2)(x 2+m )2=(x -m )(x +m )(m -2)(x 2+m )2,由函数图像的单调性及有两个极值点可知m -2<0且m >0,故0<m <2.又由题图易得m >1,即m >1.故1<m <2.答案:D5.已知不等式x sin x +cos x ≤a 对任意的x ∈[0,π]恒成立,则整数a 的最小值为( )A .2 B.1C .0D .-1解析:令f (x )=x sin x +cos x ,则f ′(x )=sin x +x cos x -sin x =x cos x ,令f ′(x )=0,则在(0,π)上x =π2.当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫π2,π时,f ′(x )<0,f (x )单调递减,又f (0)=1,f ⎝⎛⎭⎫π2=π2,f (π)=-1,所以当x =π2时,f (x )取得最大值,即f (x )max =f ⎝⎛⎭⎫π2=π2,所以a ≥π2,即整数a 的最小值为2.答案:A6.已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________. 解析:f ′(x )=3x 2+2ax +3.由题意知,x =-3是方程f ′(x )=0的根,所以3×(-3)2+2a ×(-3)+3=0,解得a =5.经检验,当a =5时,f (x )在x =-3处取得极值.答案:57.函数f (x )=x 3+bx 2+cx +d 的大致图像如图所示,则x 21+x 22=________.解析:函数f (x )的图像过原点,所以d =0.又f (-1)=0且f (2)=0,即-1+b -c =0且8+4b +2c =0,解得b =-1,c =-2,所以函数f (x )=x 3-x 2-2x ,所以f ′(x )=3x 2-2x -2,由题意知x 1,x 2是函数的极值点,所以x 1,x 2是f ′(x )=0的两个根,所以x 1+x 2=23,x 1x 2=-23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=49+43=169. 答案:1698.已知函数f (x )=sin x -a 2x 2,若f (x )在⎣⎡⎦⎤0,π2上有唯一极大值点,求实数a 的取值范围. 解析:由已知得f ′(x )=cos x -ax ,当a ≤0时,f ′(x )≥0,∴f (x )在⎣⎡⎦⎤0,π2上单调递增,此时f (x )在⎣⎡⎦⎤0,π2上不存在极值点;当a >0时,f ″(x )=-sin x -a <0,∴f ′(x )在⎣⎡⎦⎤0,π2上单调递减,又f ′(0)=1>0,f ′⎝⎛⎭⎫π2=-π2a <0,故存在唯一x 0∈⎝⎛⎭⎫0,π2使得x ∈(0,x 0)时,f ′(x )>0,f (x )单调递增,x ∈⎝⎛⎭⎫x 0,π2时,f ′(x )<0,f (x )单调递减.此时,x 0是函数f (x )的唯一极大值点,综上可得,实数a 的取值范围是(0,+∞).9.已知函数f (x )=ln x -12ax 2+x ,a ∈R . (1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)令g (x )=f (x )-(ax -1),求函数g (x )的极值.解析:(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又f ′(x )=1x+1, 所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)g (x )=f (x )-(ax -1)=ln x -12ax 2+(1-a )x +1, 则g ′(x )=1x -ax +(1-a )=-ax 2+(1-a )x +1x, 当a ≤0时,因为x >0,所以g ′(x )>0.所以g (x )在(0,+∞)上是增函数,函数g (x )无极值点.当a >0时,g ′(x )=-ax 2+(1-a )x +1x=-a ⎝⎛⎭⎫x -1a (x +1)x, 令g ′(x )=0得x =1a. 所以当x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0.因为g (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,+∞上是减函数. 所以x =1a 时,g (x )有极大值g ⎝⎛⎭⎫1a =ln 1a -a 2×1a 2+(1-a )·1a +1=12a-ln a . 综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值12a-ln a ,无极小值. [B 组 能力提升练]1. (2021·太原模拟)函数y =f (x )的导函数的图像如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:由函数y =f (x )的导函数的图像可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增,所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.答案:C2.函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是( )A .25,-2 B.50,14C .50,-2D .50,-14解析:因为f (x )=2x 3+9x 2-2,所以f ′(x )=6x 2+18x ,当x ∈[-4,-3)或x ∈(0,2]时,f ′(x )>0,f (x )为增函数,当x ∈(-3,0)时,f ′(x )<0,f (x )为减函数,由f (-4)=14,f (-3)=25,f (0)=-2,f (2)=50,故函数f (x )=2x 3+9x 2-2在[-4,2]上的最大值和最小值分别是50,-2. 答案:C3.若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( )A .(-5,1) B.[-5,1)C .[-2,1)D .(-2,1)解析:由f ′(x )=3x 2-3=0,得x =±1,且x =-1为函数的极大值点,x =1为函数的极小值点.若函数f (x )在区间(a ,6-a 2)上有最小值,则函数f (x )的极小值点必在区间(a ,6-a 2)内,且左端点的函数值不小于f (1),即实数a 满足⎩⎪⎨⎪⎧a <1<6-a 2,f (a )≥f (1),得⎩⎨⎧-5<a <1,a 3-3a +2≥0,解得-2≤a <1. 答案:C4.函数f (x )=x 2e x 在区间(a ,a +1)上存在极值点,则实数a 的取值范围是( )A .(-3,-1)∪(0,2) B.(-3,-2)∪(-1,0)C .(-2,-1)∪(0,3)D .(-3,-2)∪(0,1)解析:函数f (x )=x 2e x 的导数为f ′(x )=2x e x +x 2e x =x e x (x +2),令f ′(x )=0,则x =0或x =-2.当x ∈(-2,0)时,f (x )单调递减,当x ∈(-∞,-2)和x ∈(0,+∞)时,f (x )单调递增,所以0和-2是函数的极值点.因为函数f (x )=x 2e x 在区间(a ,a +1)上存在极值点,所以a <-2<a +1或a <0<a +1⇒-3<a <-2或-1<a <0.答案:B5.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则a =________,f (x )的极小值为________.解析:因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a-1]·e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,即f (x )极小值=f (1)=-1.答案:-1 -16.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析:因为f (x )的定义域为(0,+∞),又f ′(x )=4x -1x, 由f ′(x )=0,得x =12. 据题意有⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎡⎭⎫1,32 7.设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.解析:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x ,所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1.此时f (1)=3e ≠0.所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,f ′(x )>0. 所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 8.(2021·广州模拟)已知函数f (x )=(x +2)ln x +ax 2-4x +7a .(1)若a =12,求函数f (x )的所有零点; (2)若a ≥12,证明函数f (x )不存在极值.解析:(1)当a =12时,f (x )=(x +2)ln x +12x 2-4x +72, 函数f (x )的定义域为(0,+∞),则f ′(x )=ln x +2x+x -3. 设g (x )=ln x +2x+x -3, 则g ′(x )=1x -2x 2+1=x 2+x -2x 2=(x +2)(x -1)x 2. 当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以当x >0时,g (x )≥g (1)=0(当且仅当x =1时取等号),即当x >0时,f ′(x )≥0(当且仅当x =1时取等号).所以函数f (x )在(0,+∞)上单调递增,至多有一个零点.因为f (1)=0,所以x =1是函数f (x )唯一的零点.所以函数f (x )的零点只有x =1.(2)证明:法一:f (x )=(x +2)ln x +ax 2-4x +7a ,函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x +2x+2ax -4. 当a ≥12时,f ′(x )≥ln x +2x+x -3, 由(1)知ln x +2x+x -3≥0. 即当x >0时,f ′(x )≥0,所以f (x )在(0,+∞)上单调递增.所以f (x )不存在极值.法二:f (x )=(x +2)ln x +ax 2-4x +7a ,函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x +2x+2ax -4, 设m (x )=ln x +x +2x+2ax -4, 则m ′(x )=1x -2x 2+2a =2ax 2+x -2x 2(x >0). 设h (x )=2ax 2+x -2(x >0),当a ≥12时,令h (x )=2ax 2+x -2=0, 解得x 1=-1-1+16a 4a <0,x 2=-1+1+16a 4a>0. 可知当0<x <x 2时,h (x )<0,即m ′(x )<0,当x >x 2时,h (x )>0,即m ′(x )>0,所以f ′(x )在(0,x 2)上单调递减,在(x 2,+∞)上单调递增.由(1)知ln x +2x+x -3≥0, 则f ′(x 2)=ln x 2+2x 2+x 2-3+(2a -1)x 2≥(2a -1)x 2≥0. 所以f ′(x )≥f ′(x 2)≥0,即f (x )在定义域上单调递增.所以f (x )不存在极值.[C 组 创新应用练]某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).11 (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解析:(1)因为蓄水池侧面的总成本为100×2πrh =200πrh 元,底面的总成本为160πr 2元, 所以蓄水池的总成本为(200πrh +160πr 2)元.又根据题意知200πrh +160πr 2=12 000π,所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3). 因为r >0,h >0,所以r <53,故函数V (r )的定义域为(0,53).(2)因为V (r )=π5(300r -4r 3), 所以V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h =8时,该蓄水池的体积最大.。

2022年新高考数学总复习:三角函数的周期性、奇偶性、对称性

2022年新高考数学总复习:三角函数的周期性、奇偶性、对称性

2022年新高考数学总复习:三角函数的周期性、奇偶性、对称性角度1周期性例3求下列函数的周期:(1)y =(2)y =3|x ;(3)y =|tan x |;(4)y =-2sinx 6sin x cos x -2cos 2x +1.[解析](1)∵y =∴T =2π23=3π,即y =2sin 3π.(2)画图知y =|cos x |的周期是y =cos x 的周期的一半,∴y =3|x 的最小正周期是y =3cosx T =12×2π2=π2.(3)画出y =|tan x |的图象.如图所示.由图象易知T =π.∴y =|tan x |的图象与y =tan x 的周期相同.(4)y =-2sin 2x ·cos π4-2cos 2x ·sin π4+3sin 2x -cos 2x =2sin 2x -2cos 2x =22sinx f (x )的最小正周期T =2π2=π.[答案](1)3π(2)π2(3)π(4)π角度2奇偶性例4已知函数f (x )=sin(x +θ)+3cos(x +θ),θ∈-π2,π2是偶函数,则θ的值为(B)A .0B .π6C .π4D .π3[解析]因为f (x )=2sin x +π3+θ是偶函数,所以π3+θ=π2+k π,即θ=π6+k π(k ∈Z ),又因为θ∈-π2,π2,故θ=π6.角度3对称性例5已知函数f (x )=sinωx +π3(ω>0)的最小正周期为π,则该函数的图象(D)A π6,0B .关于直线x =π4对称C π4,0D .关于直线x =π12对称[解析]由T =π知ω=2πT =2ππ=2,所以函数f (x )=sin2x +π3.函数f (x )的对称轴满足2x +π3=π2+k π(k ∈Z ),解得x =π12+k π2(k ∈Z );函数f (x )的对称中心的横坐标满足2x +π3=k π(k ∈Z ),解得x =-π6+k π2(k ∈Z ).故选D .名师点拨(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ)(A ,ω,φ为常数,A ≠0)的形式,再分别应用公式T =2π|ω|或T =π|ω|求解.(2)三角函数型奇偶性判断除可以借助定义外,还可以借助其图象与性质,对y =A sin(ωx +φ)代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).(3)求函数y =A sin(ωx +φ)的对称中心、对称轴问题往往转化为解方程问题.①∵y =sin x 的对称中心是(k π,0),(k ∈Z ),∴y =A sin(ωx +φ)的对称中心,由方程ωx +φ=k π解出x =k π-φω,故对称中心为k ∈Z ).②∵y =sin x 的对称轴是x =k π+π2,k ∈Z ,∴ωx +φ=k π+π2解出x =k π+π2-φω,即x =k π+π2-φω为函数y =A sin(ωx +φ)的对称轴方程.③函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A ≠0)图象的对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数图象的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.(4)注意y =tan x k ∈Z ).〔变式训练2〕(1)(角度1)(2018·课标全国Ⅲ,6)函数f (x )=tan x 1+tan 2x 的最小正周期为(C )A .π4B .π2C .πD .2π(2)(角度2)下列函数中,最小正周期为π的奇函数是(D)A .y =xB .y =C .y =sin 2x +cos 2xD .y =x x(3)(角度3)(2018·江苏)已知函数y =sin(2x +φ-π2<φx =π3对称,则φ的值是__-π6__.[解析](1)本题考查三角函数的周期.解法一:f (x )|x ≠k π+π2,k ∈.f (x )=sin xcos x 1=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.解法二:f (x +π)=tan (x +π)1+tan 2(x +π)=tan x1+tan 2x =f (x ),∴π是f (x )的周期.1+tan而=cos x -sin x =-1tan x ,∴=-tan x 1+tan 2x ≠f (x ),∴π2不是f (x )的周期,∴π4也不是f (x )的周期.故选C .(2)y=xcos 2x 是偶函数,不符合题意.y =sin 12x 是T =4π的奇函数,不符合题意,同理C 不是奇函数,D 为y =2sin 2x ,故选D.(3)由题意可得±1,所以2π3+φ=π2+k π,φ=-π6+k π(k ∈Z ),因为-π2<φ<π2,所以k =0,φ=-π6.故填-π6.。

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解

高考数学复习----《抽象函数的单调性、奇偶性、周期性、对称性》典型例题讲解【典型例题】例1、(2023·广东·高三统考学业考试)已知函数()f x 对任意,R x y ∈,都有()()()f x y f x f y +=+成立.有以下结论:①()00f =;②()f x 是R 上的偶函数;③若()22f =,则()11f =;④当0x >时,恒有()0f x <,则函数()f x 在R 上单调递增.则上述所有正确结论的编号是________【答案】①③【解析】对于①令0x y ==,则()()()0000f f f +=+,解得()00f =,①正确;对于②令y x =−,则()()()00f f x f x =+−=,∴()()f x f x −=−,∴()f x 是R 上的奇函数,②错误;对于③令1x y ==,则()()()()211212f f f f =+==,∴()11f =,③正确;对于④设12x x >,则120x x −>,∴()()()12120f x x f x f x −=+−<,则()()()122f x f x f x <−−=,∴()f x 在R 上单调递减,④错误.故答案为:①③.例2、(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤−−<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1−B .()()3,11,1−−−C .()(),11,1−∞−− D .()(),31,−∞−⋃+∞ 【答案】B【解析】由()()121221()[]0f x f x x x x x −−<,得()()11221212()[]0x f x x f x x x x x −−<, 因为121200x x x x −>>,,所以()()11220x f x x f x −<,即()()1122x f x x f x <,设()()g x xf x =,则()g x 在()0,∞+上单调递减,而()()()()()1114222g x x f x f g +=++>==,则012x <+<,解得:11x −<<;因为()f x 为R 上的奇函数,所以()()()()g x xf x xf x g x −=−−==,则()g x 为R 上的偶函数,故()g x 在(,0)−∞上单调递增,()()()()11142g x x f x g +=++>=−,则210x −<+<,解得:31x −<<−;综上,原不等式的解集为(),111)3(,−−−.故选:B .例4、(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图像关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =−,12b f ⎛⎫=− ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<【答案】C【解析】 由函数()f x 的图像关于直线1x =对称可得()()31f f =−,结合奇函数的性质可知 ()3a f =−()()()311f f f =−=−−=,()()200c f f ===.由奇函数的性质结合()y f x =在[]0,1上单调递增可得()y f x =在[]1,1−上单调递增, 所以()()1012f f f ⎛⎫−<< ⎪⎝⎭, 所以b c a <<.故选:C例5、(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x −=,当01x ≤≤时,()1e 1x f x −=−,则方程()11f x x =−在区间[]3,5−上所有解的和为( ) A .8B .7C .6D .5【答案】A【解析】 解:因为函数()f x 满足()()2f x f x −=,所以函数()f x 的图像关于直线1x =对称, 又函数()f x 为偶函数,所以()()()2−==−f x f x f x ,所以函数()f x 是周期为2的函数, 又1()1g x x =−的图像也关于直线1x =对称, 作出函数()f x 与()g x 在区间[]3,5−上的图像,如图所示:由图可知,函数()f x 与()g x 的图像在区间[]3,5−上有8个交点,且关于直线1x =对称, 所以方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性与最值[A 组 基础保分练]1.下列函数中,在区间(-1,1)上为减函数的是( )A.y =11-xB.y =cos xC.y =ln (x +1)D.y =2-x解析:函数y =11-x,y =ln (x +1)在(-1,1)上都是增函数,函数y =cos x 在(-1,0)上是增函数,在(0,1)上是减函数,而函数y =2-x =⎝⎛⎭⎫12x 在(-1,1)上是减函数. 答案:D2.函数y =x 2-2x +3有( ) A.最小值2 B.最小值2 C.最大值2 D.最大值2解析:易知y =(x -1)2+2,因为(x -1)2+2≥2,所以y ≥ 2. 答案:B3.函数f (x )=11-x (1-x )的最大值是( )A.45B.54C.34D.43解析:由f (x )=1⎝⎛⎭⎫x -122+34≤43,则f (x )max =43.答案:D4.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A.f (π)>f (-3)>f (-2) B.f (π)>f (-2)>f (-3) C.f (π)<f (-3)<f (-2) D.f (π)<f (-2)<f (-3)解析:因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数,所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). 答案:A5.函数f (x )=log a (x 2-4x -5)(a >1)的单调递增区间是( ) A.(-∞,-2) B.(-∞,-1) C.(2,+∞) D.(5,+∞)解析:根据题意,得x 2-4x -5>0,解得x <-1或x >5,设u =x 2-4x -5=(x -2)2-9,易知u =x 2-4x -5的单调递增区间为(2,+∞),所以f (x )=log a (x 2-4x -5)的单调递增区间是(5,+∞). 答案:D6.已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)<0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)>0,f (x 2)>0解析:因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0. 答案:B7.函数f (x )=xx -1(x ≥2)的最大值为__________.解析:易得f (x )=x x -1=1+1x -1,当x ≥2时,x -1>0,易知f (x )在[2,+∞)上是减函数,∴f (x )max =f (2)=1+12-1=2.答案:28.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a 的取值范围是__________.解析:作出函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案:(-∞,1]∪[4,+∞)9.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解析:(1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,a 的取值范围是(0,1].[B 组 能力提升练]1.下列函数f (x )中,满足“对任意的x 1,x 2∈(0,+∞)时,均有(x 1-x 2)[f (x 1)-f (x 2)]>0”的是( )A.f (x )=12B.f (x )=x 2-4x +4C.f (x )=2xD.f (x )=log 12x解析:(x 1-x 2)[f (x 1)-f (x 2)]>0等价于x 1-x 2与f (x 1)-f (x 2)正负号相同,故函数f(x )在(0,+∞)上单调递增.显然只有函数f (x )=2x 符合. 答案:C2.已知函数f (x )满足f (x -1)=f (5-x ),且对任意的x 1,x 2∈[2,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,若p =f (log 216),q =f (log 47),m =f ⎝ ⎛⎭⎪⎫⎝⎛⎭⎫1525,则p ,q ,m 的大小关系为( ) A.q <m <p B.p <m <q C.q <p <m D.p <q <m 解析:∵f (x -1)=f (5-x ),∴函数f (x )的图像关于直线x =2对称.又对任意的x 1,x 2∈[2,+∞),x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,∴f (x )在区间[2,+∞)上单调递减,在(-∞,2)上单调递增.∵log 216=4,∴f (log 216)=f (4)=f (0),又1<log 47<log 48=32,0<⎝⎛⎭⎫1525<1,∴0<⎝⎛⎭⎫1525<1<log 47<2,∴p <m <q . 答案:B3.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A.-1 B.1 C.6 D.12解析:由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2, 因为f (x )=x -2在[-2,1]上是增函数, 所以f (x )≤f (1)=-1,因为f (x )=x 3-2在(1,2]上是增函数,所以f (x )≤f (2)=6,所以f (x )max =f (2)=6. 答案:C4.(2021·西安模拟)已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是( ) A.(0,1] B.[1,2] C.[1,+∞) D.[2,+∞)解析:要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1. 答案:C5.(2021·衡阳模拟)若函数f (x )=2x -a +1+x -a -a 的定义域与值域相同,则a =( ) A.-1 B.1 C.0 D.±1解析:∵函数f (x )=2x -a +1+x -a -a , ∴函数f (x )的定义域为[a ,+∞). ∵函数f (x )的定义域与值域相同, ∴函数f (x )的值域为[a ,+∞).又∵函数f (x )在[a ,+∞)上是单调递增函数,∴当x =a 时,f (a )=2a -a +1-a =a ,解得a =1. 答案:B6.函数y =-x 2+2|x |+3的单调递减区间是__________.解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图像如图所示,由图像可知,函数y =-x 2+2|x |+3的单调递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)7.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为__________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2, 所以a 的取值范围是[0,2]. 答案:[0,2]8.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上单调递增,求实数a 的取值范围.解析:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2,x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2,(x -1)2-1,x <2,当x ∈[0,2)时,-1≤f (x )≤0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2,x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上单调递增,所以当x >2时,f (x )单调递增,则-a2≤2,即a ≥-4.当-1≤x ≤2时,f (x )单调递增,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].[C 组 创新应用练]1.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( ) A.(-2,+∞) B.[-2,+∞) C.(-∞,-2) D.(-∞,-2]解析:∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减, ∴(-∞,m )⊆(-∞,-2),即m ≤-2. 答案:D2.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A.[1,+∞) B.[0,3] C.[0,1] D.[1,3]解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x .令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].答案:D3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )>0,f (3)=1.(1)判断f (x )的单调性;(2)解关于x 的不等式f (3x +6)+f ⎝⎛⎭⎫1x >2;(3)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解析:(1)设x 1>x 2>0,则x 1x 2>1,因为当x >1时,f (x )>0,所以f (x 1)-f (x 2)=f ⎝⎛⎭⎫x 1x 2>0, 所以f (x 1)>f (x 2),所以函数f (x )在区间(0,+∞)上为增函数.(2)在f (x 1)-f (x 2)=f ⎝⎛⎭⎫x 1x 2中, 令x 1=9,x 2=3,所以f (9)-f (3)=f (3). 又f (3)=1,所以f (9)=2.所以不等式f (3x +6)+f ⎝⎛⎭⎫1x >2,可转化为f (3x +6)+f ⎝⎛⎭⎫1x >f (9), 所以f (3x +6)>f (9)-f ⎝⎛⎭⎫1x =f (9x ), 由函数f (x )为(0,+∞)上的增函数,可得3x +6>9x >0,所以0<x <1, 所以原不等式的解集为(0,1).(3)因为函数f (x )在(0,3]上是增函数, 所以f (x )在(0,3]上的最大值为f (3)=1,所以不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,所以需满足⎩⎪⎨⎪⎧g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).函数的奇偶性与周期性[A 组 基础保分练]1.(2021·石家庄模拟)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A.y =1xB.y =|x |-1C.y =lg xD.y =⎝⎛⎭⎫12|x |解析:∵函数y =|x |-1和y =⎝⎛⎭⎫12|x |是偶函数,其中y =|x |-1在(0,+∞)上单调递增,y =⎝⎛⎭⎫12|x |在(0,+∞)上单调递减.答案:B2.若函数f (x )=(x -a )(x +2)为偶函数,则实数a =( ) A.0 B.1 C.-1 D.2 解析:f (x )=(x -a )(x +2)=x 2+(2-a )x -2a 为偶函数,则2-a =0,即a =2. 答案:D3.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( )A.-3B.-54C.54D.3 解析:因为f (x )为R 上的奇函数,所以f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3. 答案:A4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( ) A.有最大值4 B.有最小值-4 C.有最大值-3 D.有最小值-3解析:根据题意作出y =f (x )的简图如图所示,由图知,选B.答案:B5.定义在R 上的偶函数f (x )满足f (x +3)=f (x ).若f (2)>1,f (7)=a ,则实数a 的取值范围为( ) A.(-∞,-3) B.(3,+∞) C.(-∞,-1) D.(1,+∞) 解析:因为f (x +3)=f (x ),所以f (x )是定义在R 上的以3为周期的周期函数,所以f (7)=f (7-9)=f (-2).又因为函数f (x )是偶函数, 所以f (-2)=f (2),所以f (7)=f (2)>1, 所以a >1,即a ∈(1,+∞). 答案:D6.已知函数y =f (x ),满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=( ) A.π3 B.2π3C.πD.4π3解析:由y =f (-x )和y =f (x +2)是偶函数知,f (-x )=f (x ),f (x +2)=f (-x +2)=f (x -2),故f (x )=f (x +4),则F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f(1)=2π3.答案:B7.若函数f (x )=x ln (x +a +x 2)为偶函数,则a =__________.解析:因为f (x )为偶函数,所以f (-x )-f (x )=0恒成立,所以-x ln (-x +a +x 2)-x ln (x +a +x 2)=0恒成立,所以x ln a =0恒成立,所以ln a =0,即a =1. 答案:18.(2021·乐山模拟)已知函数f (x )满足:f (-x )+f (x )=0,且当x ≥0时,f (x )=2+m2x-1,则f (-1)=__________. 解析:因为f (-x )+f (x )=0, 所以f (x )为奇函数,又当x ≥0时,f (x )=2+m2x -1,则f (0)=2+m1-1=0,所以m =-1.所以当x ≥0时,f (x )=12x -1,所以f (-1)=-f (1)=-⎝⎛⎭⎫12-1=12.答案:129.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0, x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解析:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图像知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].[B 组 能力提升练] 1.已知函数f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎫lg 13=( ) A.13 B.-13C.5D.8解析:因为f (x )=a sin x +b 3x +4,则f (-x )=-a sin x -b 3x +4,所以f (x )+f (-x )=8,由于f ⎝⎛⎭⎫lg 13=f (-lg 3),因此f (lg 3)+f (-lg 3)=8,即3+f (-lg 3)=8,所以f (-lg 3)=5,即f ⎝⎛⎭⎫lg 13=f (-lg 3)=5. 答案:C2.已知定义在R 上的奇函数f (x )满足当x ≥0时f (x )=log 2(x +2)+x +b ,则|f (x )|>3的解集为( )A.(-∞,-2)∪(2,+∞)B.(-∞,-4)∪(4,+∞)C.(-2,2)D.(-4,4)解析:由题意知,f (0)=1+b =0,所以b =-1,所以f (x )=log 2(x +2)+x -1,所以f (2)=3,且该函数在R 上单调递增.因为|f (x )|>3=f (2),所以f (x )>f (2)或f (x )<-f (2)=f (-2),所以x >2或x <-2. 答案:A3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52等于( ) A.-12 B.-14C.14D.12解析:f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+2=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2×12×⎝⎛⎭⎫1-12=-12. 答案:A4.(2021·郴州模拟)已知f (x )是定义在[2b ,1-b ]上的偶函数,且在[2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23B.⎣⎡⎦⎤-1,13 C.[-1,1] D.⎣⎡⎦⎤13,1解析:因为f (x )是定义在[2b ,1-b ]上的偶函数,所以2b +1-b =0,所以b =-1,因为f (x )在[2b ,0]上为增函数,即函数f (x )在[-2,0]上为增函数,故函数f (x )在(0,2]上为减函数,则由f (x -1)≤f (2x ),可得|x -1|≥|2x |,即(x -1)2≥4x 2,解得-1≤x ≤13.又因为定义域为[-2,2],所以⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,解得⎩⎪⎨⎪⎧-1≤x ≤3,-1≤x ≤1.综上,-1≤x ≤13.答案:B5.已知偶函数f (x )在[0,+∞)上单调递增,则对任意实数a ,b ,“a >|b |”是“f (a )>f (b )”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析:因为f (x )为偶函数,所以f (x )=f (-x )=f (|x |),由于f (x )在[0,+∞)上单调递增,因此若a >|b |≥0,则f (a )>f (|b |),即f (a )>f (b ),所以a >|b |是f (a )>f (b )的充分条件;若f (a )>f (b ),则f (|a |)>f (|b |),可得|a |>|b |≥0,由于a ,b 的正负不能判断,因此无法得到a >|b |,则a >|b |不是f (a )>f (b )的必要条件,所以“a >|b |”是“f (a )>f (b )”的充分不必要条件. 答案:A 6.函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A.f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72 B.f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52 C.f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1) D.f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 解析:因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 所以函数f (x )的图像关于x =2对称,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫32,f ⎝⎛⎭⎫72=f ⎝⎛⎭⎫12.因为y =f (x )在[0,2]上单调递增,且12<1<32,所以f ⎝⎛⎭⎫12<f (1)<f ⎝⎛⎭⎫32,即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 答案:B7.定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则f ⎝⎛⎭⎫2 01912=__________. 解析:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以f ⎝⎛⎭⎫2 01912=f ⎝⎛⎭⎫2 020-12=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12.因为在[0,1]上有f (x )=x 2,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14,故f ⎝⎛⎭⎫2 01912=-14. 答案:-148.(2021·柳州模拟)已知函数f (x )对任意x ∈R 都有f (x +6)+f (x )=2f (3),y =f (x -1)的图像关于点(1,0)对称且f (2)=4,则f (22)=__________.解析:因为y =f (x -1)的图像关于点(1,0)对称,所以y =f (x )的图像关于点(0,0)对称,即函数f (x )为奇函数,由f (x +6)+f (x )=2f (3)得,f (x +12)+f (x +6)=2f (3),所以f (x +12)=f (x ),T =12,因此f (22)=f (-2)=-f (2)=-4. 答案:-49.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且f ⎝⎛⎭⎫32=12. (1)求实数a ,b 的值;(2)求函数g (x )=f 2(x )+f (x )的值域. 解析:(1)因为f (x )+f (-x )=0, 所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ), 即函数f (x )是周期为2的周期函数, 所以f (0)=0,即b =-1.又f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=1-a =12, 解得a =14.(2)当x ∈[0,1)时f (x )=a x+b =⎝⎛⎭⎫14x -1∈⎝⎛⎦⎤-34,0, 由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎝⎛⎭⎫0,34, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎝⎛⎭⎫-34,34, 设t =f (x )∈⎝⎛⎭⎫-34,34, 所以g (x )=f 2(x )+f (x )=t 2+t =⎝⎛⎭⎫t +122-14, 即g (x )=⎝⎛⎭⎫t +122-14∈⎣⎡⎭⎫-14,2116.故函数g (x )=f 2(x )+f (x )的值域为⎣⎡⎭⎫-14,2116. [C 组 创新应用练]1.(2021·兰州模拟)对任意实数x ,定义[x ]为不大于x 的最大整数(例如[3.4]=3,[-3.4]=-4等).设函数f (x )=x -[x ],给出下列四个结论:①f (x )≥0;②f (x )<1;③f (x )是周期函数;④f (x )是偶函数.其中正确结论的个数是( ) A.1 B.2 C.3 D.4解析:由题意有[x ]≤x <[x ]+1,∴f (x )=x -[x ]≥0,且f (x )<1,∴①②正确;∵f (x +1)=x +1-[x +1]=x +1-([x ]+1)=x -[x ]=f (x ),∴f (x )为周期函数,③正确;∵f (-0.1)=-0.1-[-0.1]=-0.1-(-1)=0.9,f (0.1)=0.1-[0.1]=0.1-0=0.1≠f (-0.1),∴f (x )不是偶函数,④错误. 答案:C2.(2019·高考全国卷Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1] 时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94B.⎝⎛⎦⎤-∞,73C.⎝⎛⎦⎤-∞,52D.⎝⎛⎦⎤-∞,83 解析:当x ∈(0,1]时,f (x )=x (x -1),∴当x ∈(0,1]时,f (x )∈⎣⎡⎦⎤-14,0. ∵f (x +1)=2f (x ),∴当x ∈(-1,0]时,x +1∈(0,1],f (x )=12f (x +1)=12(x +1)x ,f (x )∈⎣⎡⎦⎤-18,0; 当x ∈(-2,-1]时,x +1∈(-1,0],f (x )=12f (x +1)=14f (x +2)=14(x +2)(x +1),f (x )∈⎣⎡⎦⎤-116,0; …;当x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2),f (x )∈⎣⎡⎦⎤-12,0; 当x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4f (x -2)=4(x -2)(x -3),f (x )∈[-1,0]; ….f (x )的图像如图所示.11若对任意x ∈(-∞,m ],都有f (x )≥-89,则有2<m ≤3. 设f (m )=-89,则4(m -2)(m -3)=-89, ∴m =73或m =83.结合图像可知,当m ≤73时,符合题意. 答案:B3.(2021·湘潭模拟)已知定义在R 上的偶函数y =f (x +2)的图像连续,当x >2时,函数y=f (x )是单调函数,则满足f (x )=f ⎝⎛⎭⎫1-1x +4的所有x 之积为__________. 解析:因为函数y =f (x +2)是连续的偶函数,所以直线x =0是它的图像的对称轴,所以直线x =2就是函数y =f (x )图像的对称轴.因为f (x )=f ⎝⎛⎭⎫1-1x +4,所以x =1-1x +4或x +1-1x +4=4.由x =1-1x +4,得x 2+3x -3=0,设方程的两根为x 1,x 2,所以x 1x 2=-3;由x +1-1x +4=4,得x 2+x -13=0,设方程的两根为x 3,x 4,所以x 3x 4=-13.所以x 1x 2x 3x 4=39. 答案:39。

相关文档
最新文档