语音采集与回放

语音采集与回放
语音采集与回放

实验报告之――――

语音采集与回放

作者:吴瑶魏翠袁文涛

赛前及文稿整理辅导老师:黄根春

摘要

本系统基本实现了语音信号的采集与回放。其主要结构由语音处理前向通道,A/D转换模块,单片机控制兼数据处理模块,D/A转换模块,键盘显示模块及后向处理通道组成,实现了语音的采集与回放功能。设计制作时使用了32K存储器和较高速A/D(AD574),并分别尝试了4K,8K的采样频率,效果不错,在PCM,DPCM,IV三种编码模式下,基本上都能较好的进行语音回放。整个制作过程,单片机控制处理程序简练,前后向处理通道效果良好,系统已具备较高的性能指标。

一:方案设计与论证

顾名思义,语音采集与回放系统具有两个最基本的功能:完整的采集原音数据和回放语音。采集数据主要由前向通道和A/D实现,前向通道将语音放大,滤波,然后送给AD采样,继而CPU读入数据并压缩存储;而语音回放主要是将前向采集的数据解压缩,然后送至DA及后向通道还原出语音信号。下面就对这些重要环节的设计方案做论证和比较。

1:语音采集

(1):语音信号放大:因为话筒采集的声音信号极为弱小,一般小于5mv,所以在AD 采集之前要对小信号进行隔离放大。测量放大器具有高输入阻抗,高放大倍数,抗噪性能好,可以对小信号进行很好的隔离与放大,所以选择该种放大器来做语音信号前置放大的核心放大电路。

(2):前向滤波:滤波要求通频带内平外陡。一般情况,巴特沃斯滤波器通频带较为平坦,而采用多阶滤波可提高陡度。所以采用5阶巴特沃斯低通和5阶巴特沃斯高通级联,

效果挺好。

(3):数据采入:选择较高速AD采样芯片AD574作信号采样和转换处理,据奈奎斯特采样定理,系统分别采用了4K,8K的采样速率对语音信号进行采样。下面则对读取和压缩数据的设计方案作比较。

方案(一):使用CPLD或FPGA高速读入数据,继而在其内部进行压缩编码,不经过CPU直接送至存储器,而CPU只作一些控制功能。(用FPGA实现DMA功能)方案(二):使用单片机作控制兼数据处理功能。也即CPU控制读入采样数据,继而自行进行数据压缩,放至存储器。

两种方案都可以较好的进行语音压缩编码。方案1速度快,处理方便,可以作更多的算法处理,但价格昂贵,成本太高;方案2速度虽慢,但若使程序简练,算法精辟,速度可以达到要求,而且成本相对较低,故采用第二种方案。

(4):数据压缩编码方式:采用常用的三种语音编码方式:即采即放PCM,插值IV,差分脉冲编码DPCM。

2 语音回放

(1):输出已压缩语音:选择DAC0832作D/A转换处理,比0800控制方便。而CPU 的数据解压缩,也有两种方案,同上,设计时选择单片机自行进行数据解码处理。

(2):后向滤波:与前向滤波方案一致。

(3):音频功放:人耳听到的语音功率不大,故选择常用的集成功放芯片LM386来驱动的扬声器,达到了不错的效果。

二:系统各模块的具体设计与实现

系统组成及原理框图如图1-1-1所示。以下就各模块进行具体分析。

(系统框图1-1-1)

1:前向通道

(1):小信号隔离放大的电路设计和实现:拾音器采集的信号极为弱小,且拾音器输出阻抗不可忽略,故放大前必须进行隔离,并尽量减小信号输出阻抗。本电路采用运放隔离电路,放大部分则分前置同向放大,测量放大及自增益控制放大电路。前置同向放大电路具有很高的输入阻抗,可以先将小信号进行适当放大,再用高抗噪的测量放大器进行大幅度放大,自增益控制放大电路则是考虑到放大信号过大,以防A/D 采样失真,并可以使声音变得圆润。又考虑到放大电路会引入直流分量,还会有偏零现象,故在整个放大电路的设计中必须加入耦合和调零电路。具体电路图分别如下:

(前置隔离放大电路图1-1-2)

麦克风 隔离放大器 测量放大器 AGC 自动增益控制

300Hz —带通滤波器

AD 采样

51 单

片 机 显示 键盘 RAM

音频功放 300Hz —带通滤波器

DA 转换 扬声器

这是隔离电路,的电容和3M的电阻组成阻容耦合电路,并增大隔离器输入阻抗。同向放大器的运放在1,5调零端接入调零电路。我们取该放大器Av=2;继而进入测量放大,见图(1-1-3)

(测量放大电路1-1-3)

该测量放大器同样采用了阻容耦合电路,前级的两个运放则是将输入信号进行双极性转换。进入测量放大器的信号线采用屏蔽导线。而两个1M的电阻则是使测放电路上下充分对称,降低零点漂移,并提高共模抑制比。其中Av=1+2R/Rf,(该电路中,R=27K取标称值,Rf为2K滑变),故Av>=28。此时已将一般语音信号放大至1V左右。然后进入AGC控制放大电路,将信号峰峰值范围稳住,见图(1-1-4)。

(AGC控制放大电路1-1-4)

图中场效应管选用3DJ6F,N沟道,Vgs必须是负值。当Vgs由0向负向增大时,管子

沟道变窄,导通电阻增大,放大倍数减小,否则反之;故在运放输出进行负向检波,得到负直流控制电压,两个3M的电阻则是使管子栅极电流小,并有高频扼流功能,47uf的电容也是去纹波。

(2):前向滤波电路:选择巴特沃斯滤波器,5阶低通级联5阶高通,具体电路见图1-1-5。

(图1-1-5)

滤波器参数选择:由5阶巴特沃斯函数极点可以算出其归一化滤波器的各元件参数:低通:R=47k;C1=;C2= nf;C3= nf;C1’= nf;C2’= nf;

高通:C=;R1=;R2=;R3=126;R1’=;R2’=;

2:中央处理模块

中央处理模块由AD,DA及单片机控制兼处理模块组成。

(1):A/D芯片选择较高速12位AD芯片AD574,但由于单片机内部处理限制,只启动8位转换。其与单片机的接口采用标准接法,见图(1-1-6)。

(AD574采样电路1-1-6)

(2):D/A选用0832,方便控制,速度适中,性能良好。接口图见(1-1-7):

(DAC0832数模转换电路1-1-7)

(3):单片机控制兼处理模块:采用89S52处理器构成单片机最小系统,扩展一片容量为32Kbyte的62256芯片作为语音存储介质,通过键盘选择如下几种编码解码方式。下面分别对各种方式进行阐述:

1:压缩编码:有三种编码方式:即存即放PCM,差分脉冲DPCM,插值IV;

PCM: 录音时,单片机采入AD转换的数据,随即存入RAM;放音时,单片机又将这些数据依次送入DA转换,可以很好的还原语音。

DPCM: 差分脉冲编码调制。采用预测编码技术,从输入中减去预测值,然后对预测误差进行量化,最终的编码就是预测值与实际值的差值。解码器用以前的数

据对当前样值进行预测,然后用误差编码重构原始样值。性能决定于预测编码

的方法。DPCM系统是一个负反馈系统,采用这种结构可以避免量化误差的积

累。在实际应用中,我们用四个Bit对差值进行量化编码,最高位作为符号位,

0表示当前样本值大于预测值,1表示当前样本值小于预测值,剩下三位保存

插值的量化绝对值。这种编码方式可以很好的还原原始语音信号,并且将录音

时间延长到了8s,但是引入了少量噪音。

DM:增量调制,也称Δ调制。DM是对实际的采样信号与预测的采样信号之差的极性进行编码,将极性变成0和1这两种可能的取值之一。这样每个byte可以

用一个bit来表示,压缩率达到8:1,录音时间延长到了32s。在增量调制编

码中,量化阶Δ的选择至关重要。Δ过大,会引入严重的粒状失真;Δ过小,

会产生斜率过载,造成超越失真。根据AD采集的语音信号幅度的大小和实际

的调试经验,取Δ=10可以得到最佳的语音还原。由于超越失真和粒状失真

的存在,恢复的语音信号幅度明显没有其他几种编码方式大,并且当输入信号

较平坦时,重构信号被一个周期性的方波信号污染,经分析认为是由粒状失真

造成。在软件中采取适当措施,很好的抑制了污染。

IV:线性插值法。即使用4k/s对语音信号进行半采样,并且直接编码存储,重构时在两个实际值之间插入它们的平均值,用8k/s的速率播放。在实际调试中

我们发现,取3个实际值的平均值作为插入值效果更加理想。由于是半采样,

所以对语音信号中的高频分量损失很大,在放音时有明显表现。

2:解压缩:由于压缩算法都是线性算法,故只需对压缩算法进行逆运算就可以对压缩编码进行解压缩。

3:后向通道

(1): 后向滤波:复制前向滤波器。

(2):音频功放:选择一般集成功放芯片LM386。设计时在其传统接法上作了些改进,使男低音得到适当提升,并稍微抑制女高音,感觉效果较好。具体电路图如下:

(功放电路1-1-8)

三:系统调试

根据方案设计的要求,调试过程分为三大部分:硬件调试、软件调试和软硬件联调。电路按模块调试,各个模块调试通过后再联调。

1:硬件调试

前级测量放大电路和AGC电路的调试是本系统硬件调试的重点和难点,测量放大器具有很高的共模抑制比,调整其参数,使背景噪声得到有效的抑制;AGC电路根据输入信号的幅度自动调整增益的大小,使语音信号幅度平坦,限制在AD的最佳采集范围之内(-2V-2V),使微弱信号和大信号都能得到有效的采集。使用AGC电路之后,系统的动态范围得到了很大的扩展,使得系统的语音采集范围达到了4米!

2:软件调试

程序全部由C语言编写,可实现编码模式选择、录放起止、暂停、停止、音量加减、快进、快退、反复播放等功能。人机交互采用16×1液晶显示器和4×4键盘,界面友好。

本系统使用单片机内部定时器中断产生采样频率。即使定时器T0工作在可以自动赋初值的模式2状态,定时125us,产生8K的采样频率。本软件设计的瓶颈在于,两次中断的时间间隔太短(125us),在这125us内,单片机要完成启动AD转换、等待转换结束、读取转换结果并对数据进行压缩存储。单片机的执行速度限制了压缩与解压算

法的复杂程度,使我们只能选择最简单的算法,这直接影响到了恢复的语音信号的质量。

本软件设计的另一个难点在于显示部分。由于LCD是慢速器件,执行一条指令需要多达100多个机器周期,在系统不断产生中断的情况下,实时显示录放信息(录放时间)成为很大困难。为了解决这个问题,我们尝试了在中断服务程序中添加显示指令,即当录放时间达一秒时,执行一次显示指令,在指定的显示位上显示当前秒数。为了节省时间,我们抛弃了传统的刷屏显示套路,而是对光标进行精确定位,只对要显示的位进行操作,这样就大大的节省了CPU的等待时间。当然,在每一秒钟到来的时刻,执行显示指令会对采样频率造成影响,但是实际证明,这种影响几乎可以忽略不记。

程序开始时设计了RAM检测程序,以保证RAM工作的可靠性。

软件主体流程图如下:

(图1-1-9)

T0中断服务程序流程图如下:

(图1-1-10)

3:软硬联调

本系统的软件和硬件联系非常紧密。在软件调试成功之后加入AD,DA电路,用信号源和示波器模拟前向通道和后向通道,直至DA输出波形与AD采集波形一致。最后加入前向放大系统、滤波系统、功放系统实现整机联调。

四:系统性能测试

1、测试仪器:

PC机(P4 1.8G,256M内存)、WAVE6000仿真机、SG1733SB3A直流稳压稳流电源、TDS1002数字示波器、33120A信号源及FLUKE17B数字万用表各一台。

2、测试过程:

一名组员在离麦克风不同的距离上以同样的声音大小说话,分别换用不同的编码方式,对各种编码方式的最终放音效果进行了记录,如表1-1-1所示:

(表1-1-1)

由表可见,在有限的存储空间下,PCM编码方式对数据没有压缩,所以放音效果最好,但时间只有4s;DPCM方式放音效果与PCM方式几乎相同,且时间延长到了8s,是比较理想的编码方式;ADM虽然时间达到了32s,但是效果不如DPCM;插值法由于采样频率过低,使信号的高频部分损失严重,造成了一定的失真。总的来说,效果都不错。五:小结

本系统以89S52单片机为处理核心,很好的满足了设计各项指标要求,并且设计了多种编码方式,增加了各种控制功能。当然,由于时间有限,本系统还存在着一些缺陷,比如存储时间短,有一定噪音等。

(附录:单片机C51程序)

基于dsp的语音信号采集与回放系统的设计--开题报告

HEFEI UNIVERSITY 课程设计开题报告 题目:《基于DSP系统的语音采集与回放系统》 专业:11 级电子信息工程 姓名:章健吴广岭何志刚 学号:1105011029 1105011030 1105011044 指导老师:汪济洲老师 完成时间:2014年12月1日

一、开题报告题目 基于DSP系统的语音采集与回放系统。 二、研究背景与意义 语音处理是数字信号处理最活跃的研究方向之一,它是信息高速公路、多媒体技术、办公自动化、现代通信及职能系统等新兴领域应用的核心技术之一。用数字化的方法进行语音的传送、存储、分析、识别、合成、增强等是整个数字化通信网中的最重要、最基本的组成部分之一。一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能, 还要能够进行复杂的语音信号分析和处理。通常这些信号处理算法的运算量很大, 而且又要满足实时的快速高效处理要求, 随着DSP 技术的发展, 以DSP 为内核的 设备越来越多。为语音信号的处理提供了优质可靠的平台. 软件编程的灵活性给很多设备增加不同的功能提供了方便, 利用软件在已有的硬件平台上实现不同的功能已成为 一种趋势。近年来,随着DSP的功能日益增强,性能价格比不断上升,开发手段不断改进,DSP在数据采集系统的应用也在不断完善。 三、主要内容与目标 随着计算机多媒体技术,网络通信技术和DSP(Digital Signal Processor)技术的飞速发展,语音的数字通信得到越来越多的应用,语音信号的数字化一直是通信发展的主要方向之一,语音的数字通信和模拟通信相比,无疑有着更大的优越性,这主要体现在以下几个方面:数字语音比模拟语音具有更好的话音质量;具有更强的干扰性,并易于加密;可节省带宽,能更有效的利用网络资源;更加易于存储和处理。最简单的数字化就是直接对原始语音信号进行A/D 转换,但这样得到的语音的数据量非常大。为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。语音编码的目的就在于在保证语音音质和可懂度的条件下,采用尽可能少的比特数来表示语音,即尽可能的降低编码比特率,以便在有限的传输带宽内让出更多的信道来传输图像和其他数据流,从而达到传输资源的有效利用和网络容量的提高。在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动通信、IP 电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。 语音信号处理在手持设备、移动设备和无线个人设备中的应用正在不断增加。今天的个人手持设备语音大多时候仅仅局限于语音拨号,但是已经出现了适用于更广泛开发语音识别和文本到语音应用的技术。语音功能为用户提供自然的输入和输出方式,它比其他形式的I/O更安全,尤其是当用户在开车期间。在大多数应用中,语音都是键盘和显示器的理想补充。其他潜在的语音应用包括如下几个方面。 (1)语音电子邮件。包括浏览邮箱、利用语音输入写电子邮件以及收听电子邮件的读出。 (2)信息检索。股票价格、标题新闻、航班信息、天气预报等都可以通过语音从互联网收听。例如,用户不用先进入某个网址并输入股票名字或者浏览预定义列表,可以通过语音命令实现。 (3)个人信息管理。允许用户通过语音指定预约、查看日历、添加联络信息等等。 (4)语音浏览。利用语音程序菜单,用户可以在网上冲浪、添加语音收藏夹并收听网页内容的读出。 (5)语音导航。在自动和人眼不够用的条件下获取导航的完全语音输入/输出驾驶

基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 目录 第1章前言 ................................................................................................... 错误!未定义书签。第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。 2.1MATLAB软件功能简介................................................................. 错误!未定义书签。 2.2课程设计意义 .................................................................................. 错误!未定义书签。第3章语音信号的仿真原理..................................................................... 错误!未定义书签。第4章语音信号的具体实现..................................................................... 错误!未定义书签。 4.1语音信号的采集................................................................................ 错误!未定义书签。 4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。 4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。 4.4用滤波器对加噪语音滤波................................................................ 错误!未定义书签。 4.5比较滤波前后语音信号波形及频谱................................................ 错误!未定义书签。第5章总结................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录................................................................................................................. 错误!未定义书签。

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

调用采样和数据回放的说明

调用采样和数据回放的说明 1、调用采样 指本软件的采样模块被第三方软件调用,方法如下: ●调用采样模块格式: d:\EcgWire\EcgWire 'c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,C14,C15,C16,C17,C18' ●解释:假定安装目录是d:\EcgWire,执行程序名称是EcgWire.exe,后面的参数必须用单引号括住,中间用逗号隔开。 ●如果C18有,按照C18规定生成心电图数据文件,否则按照下条生成心电图文件 ●采样的数据在安装目录下,对应三种采用方式,数据文件的名字分别固定是:"EcgTempData.W", "EcgTempData.F" 或 "EcgTempData.A",每次采样后必须取走,否则下一次采样后将覆盖原来的数据文件。 ●参数说明 1word版本可编辑.欢迎下载支持.

2、对指定ECG文件的回放、分析、打印 ●正确安装本程序后,双击“.W”、“.F”、“.A”的数据文件,将自动调用本程序的分析打印模块。 ●第三方程序调用采样分析打印格式: d:\EcgWire\EcgWire “d:\EcgWire\EcgTempData.W,c0,c1,c2,c3,c4,c5,c6,c7” ●解释:假定安装目录是d:\EcgWire,执行程序名称是EcgWire.exe,后面参数必须用双引号括住,数据文件需带全路径,参数 2word版本可编辑.欢迎下载支持.

之间用逗号隔开。 输出文件名称前缀生成规则: 1、输出文件是指:报告的JPG、PDF文件和存储心电图参数和诊断结论的TXT三个文件,由setup中的选项决定否生成,默认均生成, 另外,每次在“安装目录\HIS下”还生成HIS.JPG、HIS.PDF和HIS.TXT,内容对应前面的三个文件,不同的是下次阅图后生成的HIS会覆盖上一次的HIS文件 2、如果参数C6不为空,优先以该信息为准存储输出文件,输出文件均在C6指定的目录下 3、如果参数C6为空,参数C5不为空,输出文件的前缀是:年月日时分秒(12位,每项2位)+ID(8位)+患者,其中“患者”来自 3word版本可编辑.欢迎下载支持.

数据采集及管理控制系统设计规范

数据采集及管理控制系统设计规范

服装企业实时数据采集及管理控制系统的设计 Design Of Real-time Data Collection And Administration Control System In Clothes Enterprise 摘要:随着计算机和通讯技术的飞速发展,国内服装业信息化的高要求也迫在眉睫。本文主要针对服装业讨论设计了一 套实时数据采集及管理控制系统,它避免了当前服装业常 见管理软件的信息延迟与滞后的问题,能够做到生产过程 的实时控制,把国内服装业的管理水平推向一个更高的层 次。 关键词:实时控制;工况信息;批处理;成绩表现;生产平衡 Abstract:With the development of the computer and communication technology , it is very necessary for clothes enterprises in china to accelerate innovations . In this paper , it is principal to design a system in clothes enterprise for real- time data collection and administration control , which can escape the important problem occurred by nowadays administrative software —— information delay and can improve the administration level .

语音信号采集与回放系统

电子与信息工程学院 综合实验课程报告 课题名称 语音采集及回放系统设计 专 业 电子信息工程 班 级 07电子2班 学生姓名 Y Y Y 学 号 07002 指导教师 X X X 2010年 7月 5日

1 总体设计方案介绍: 1.1语音编码方案: 人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。但要将之运用于单片机,显然信号波形表示法相对简单易实现。基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。结合实际情况,提出以下几种可实现的方案。 (1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。但对于单片机,由于处理数据能力底,该方法不易实现。 (2)实时副值采样法采样过程如图2.1所示。 图2.1 采样过程 具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M ?调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。 1.2 A/D、D/A及存储芯片的选择 单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。 (1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位, 可选择转换时间不超过125s的八位A/D转换芯片。目前常用的A/D转换实现的

多路视频数据实时采集系统设计与实现

多路视频数据实时采集系统设计与实现 常永亮王霖萱常馨蓉 ( 中国飞行试验研究院陕西西安 710089) ( 贵州省贵阳市花溪区贵州大学贵州省贵阳市 550025) ( 陕西省榆林市榆阳区榆林学院陕西省榆林市 719000) 摘要面对越来越多的实时视频采集、播放的应用,如何能更加方便的操控视频采集,保证流畅的播放效果,成为近几年实时媒体流的一个重要研究方向。本文介绍了视频数据的采集、记 录、编解码、多路视频数据间的切换,基于多网络协议组合下的多媒体流传输,动态切换四路视 频数据实时传输与播放,从而使远端操控、优质播放有了很大的提高。 关键词视频编解码、媒体流、RTP/RTCP协议、组播协议、TCP协议 0.引言 随着信息技术的不断发展,人们将计算机技术引入视频采集、视频处理领域,用计算机处理视频信息和网络传输数字视频数据在很多领域已有广泛的应用,飞机试飞中现如今也大量的应用。 针对目前分散在多处试飞现场视频传入监控大厅后监测设备多而分散的问题,提出了将多处试飞现场视频引入监控大厅后用一台高性能服务器管控,客户端通过网络请求服务器端检测关心的现场场景,达到集中管理优化监控的目的。 视频图像采集的方法较多,基本可分为2大类:数字信号采集和模拟信号采集。前者采用图像采集芯片组完成图像的采集、帧存储器地址生成以及图像数据的刷新;除了要对采集模式进行设定外,主处理器不参与采集过程,我们只要在相应的帧存储器地址取出采集到的视频数据即可得到相应的视频数据,这种方法,无论在功能、性能、可靠性、速度等各方面都得到了显著的提高,但成本高。后者采用通用视频采集卡实现图像的采集,并用软件进行实时编码,其特点是数据采集CPU占用率较高,对处理器的速度要求高,成本低、易于实现,能够满足某些图像采集系统的需要。此系统使用第二类视频采集方法。 如何将各处试飞现场视频信号通过VGA持续接收?传统方式是将模拟的VGA信号引到指定显示器显示,这样即浪费资源且多占空间。多路视频实时采集使用的是VisionRGB- PRO板卡(英国Datapath公司),此卡可同时实时采集两路视频数据,基本达到了本系统的要求,再用一台VGA矩阵切换器将前端数据源的四路视频数据进行人为切换采集,用H.264格式编解码,保存为H.264格式,通过RTP/RTCP 与组播协议将编码后视频流传输给请求客户端,而且可在客户端通过TCP协议选择关心的VGA采集通道。

数据采集控制与数字电压表

;-------------------------------------------------------------------------- ; 课程设计: 数据采集控制与数字电压表 ;-------------------------------------------------------------------------- A8255 EQU 0600H ;8255端口地址:PA0~PA7-->L0~L7 B8255 EQU 0602H ;PB0~PB7-->A~G.DP 段码口 C8255 EQU 0604H ;PC0~PC3-->X1~X4,PC4.PC5-->EOC CON8255 EQU 0606H ;PC6-->K6电压表,PC7-->K7开机 A8254 EQU 0640H ;8254端口地址 B8254 EQU 0642H C8254 EQU 0644H CON8254 EQU 0646H ADC0809 EQU 06C0H ;ADC0809端口地址 ;-------------------------------------------------------------------------- DATA SEGMENT VRBUF DB 10 DUP(0) ;AD转换结果缓冲区数据段 VR DB ? ;AD转换结果数据段 V ALUE DB 3 DUP(0) ;电压值数据段000 LED DB 3FH,06H,5BH,4FH ;数码管段码表0-15 DB 66H,6DH,7DH,07H DB 7FH,6FH,77H,7CH DB 39H,5EH,79H,71H DATA ENDS ;-------------------------------------------------------------------------- SSTACK SEGMENT STACK DW 64 DUP(?) SSTACK ENDS ;-------------------------------------------------------------------------- CODE SEGMENT ASSUME CS:CODE,DS:DA TA,SS:SSTACK START: MOV AX,DATA ;当前数据段址送DS MOV DS,AX ;-------------------------------------------------------------------------- ; 系统初始化及启动程序 ;-------------------------------------------------------------------------- MOV DX,CON8255 ;8255控制字:PA7~PA0显示AD转换值 MOV AL,10001000B ;A口输出,B口输出,PC0~PC3输出,PC4~PC7输入! OUT DX,AL ;-------------------------------------------------------------------------- BEGIN: MOV DX,B8255 ;L0~L7灯全灭! MOV AL,00H OUT DX,AL MOV DX,A8255 ;LED数码管全灭! MOV AL,00H OUT DX,AL MOV DX,CON8254 ;启动秒计数 MOV AL,00100111B ;计数器0,读写高8位,方式3,十进制 OUT DX,AL ;-------------------------------------------------------------------------- K7: MOV DX,C8255 IN AL,DX ;读C口 TEST AL,10000000B ;测试C口最高位!

语音信号的采集和播放

语音信号的采集和播放 随着数字信号处理算法在DSP上的实现,基于DSP处理器的语音处理也得到了更广泛的应用。语音信号具有随机性强、应用广泛和实时性要求高等特点。DSP较其他类型处理器处理速度快、运算能力强的特点使它在语音处理方面的应用优势显著。语音信号的处理包括信号采集、处理、传输、存储和播放等一系列过程。其中,语音信号的采集、传输和播放属于语音信号的控制,满足一般的标准操作即可;而语音信号的处理和存储与应用类型有很大的联系,不同的应用要求的处理和存储算法也不一样。 语音信号的采集和播放是语音信号处理的基础,在基于DSP的语音处理系统中,DSP通过控制APD芯片采集和播放语音信号,再通过DSP实现各种语音处理算法。在TI各个系列DSP芯片中,16位的C54XX因其指令简单、接口连接方便而在语音处理系统中得到广泛应用。 1 实现目标 系统要求使用DSP和APD芯片实现语音信号的采集,然后将语音信号存储到DSP的RAM中,最后实现语音信号的播放。 2 硬件实现 2.1 解决思路 系统采用的主处理器是TMS320VC5402,利用芯片提供的多通道缓冲串口McBSP实现与APD芯片的连接。

系统采用的TLC320AD50的APD芯片采集和播放语音信号。AD50使用过采样技术提供APD和DPA的高分辨率低速信号转换。该器件包括两个串行的转换通道,在DPA之前有内插滤波器,APD 之后有抽取滤波器,由此可以降低AD50的本底噪声。在AD50正常工作以前,必须对它进行初始化。初始化的主要工作是配置AD50的四个控制寄存器CR1,CR2,CR3和CR4。控制寄存器的读写是通过二次通信来实现的。AD50启动二次通信有硬件和软件两种方式,硬件方式相对容易实现,DSP通过内部寄存器将XF引脚置高,进而控制与其连接的FC引脚到高,然后向McBSP串口写16位的控制字,低8位是AD50的控制寄存器初始化字,高8位选择要初始化的寄存器及操作。软件方式则是当AD50工作于15位模式时,将DSP输出到AD50的数据的D0位置1,即可进行二次通信。系统采用的是硬件实现的方式,在二次通信中,D0~D7为写入控制寄存器的数据或从寄存器读出的数据,D8~D12的内容决定选择哪个控制寄存器,D13决定是读操作还是写操作。D8~D13位确定的具体操作情况如表1所示。 表1 D8~D13位确定的具体操作情况

波形采集、存储与回放系统(H 题)

H-1 2011 年全国大学生电子设计竞赛试题 参赛注意事项 (1)2011 年8 月31 日8:00 竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份 的有效证件(如学生证)随时备查。 (4)每队严格限制3 人,开赛后不得中途更换队员。 (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)2011 年9 月3 日20:00 竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。波形采集、存储与回放系统(H 题) 【高职高专组】 一、任务 设计并制作一个波形采集、存储与回放系统,示意图如图1 所示。该系统能同时采集两 路周期信号波形,要求系统断电恢复后,能连续回放已采集的信号,显示在示波器上。 图1. 采集回放系统示意图 二、要求 1.基本要求 (1)能完成对A 通道单极性信号(高电平约4V、低电平接近0V)、频率约1kHz 信号 的采集、存储与连续回放。要求系统输入阻抗不小于10 kΩ,输出阻抗不大于1kΩ。(2)采集、回放时能测量并显示信号的高电平、低电平和信号的周期。原信号与回放 信号电平之差的绝对值≤50 mV,周期之差的绝对值≤5%。 (3)系统功耗≤50mW,尽量降低系统功耗,系统内不允许使用电池。 2. 发挥部分 (1)增加B 通道对双极性、电压峰峰值为100mV、频率为10Hz~10kHz 信号的采集。

信号采集与回放系统

信号采集与回放系统 技术报告 电信082班084775240 周霞 (合作者:电信082班084775228 吴迪) 指导教师:倪海燕 2010-5-27

摘要:本设计通过A/D转换和D/A转换实现输入信号与输出信号的变化。通过实验箱上的模式3的ADC输入正弦波信号,设计按键选择,有3种模式分别是直接回放,单次回放,循环回放和定点回放。 关键字:信号回放模式选择 一、实验要求 1. 实现输入,存储,回放信号 2. 回放模式选择(直接回放,单次波形回放,循环回放,分段存储定点回放等) 二、总原理图 三、系统总体方案设计 根据实验要求,TLC5510A 是采样率最高为20MHz的8位并行高速ADC ,FPGA的PIO48输出信号控制ADC1的输出使能信号OE(低电平有效);PIO15为转换时钟信号CLK;AD转换结果送至PIO16~PIO23,并且同时显示在数码管1和数码管2上。ADC的模拟信号输入端在实验箱的左侧,允许输入0~5V的信号。 转换关系:DATA=255×Ain/5

数据从采集到转换结束需要两个半时钟周期 四、软件电路的设计 4.1控制器的设计 用VHDL语言编写控制器的程序,要有读写使能和模式选择。用choose[2]的四个状态分别表示直接回放,单次回放,循环回放和定点回放。 程序如下: library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity control is port ( clk:in std_logic; --时钟 writ:in std_logic; --读写使能 en:in std_logic; --使能 choose:in std_logic_vector(1 downto 0); --模式选择 ch:in std_logic_vector(1 downto 0); --阶段选择 enout:out std_logic; --读写使能输出 adr:out std_logic_vector(9 downto 0) ); --地址 end entity control; architecture behave of control is signal count1:std_logic_vector(9 downto 0); signal count11:std_logic_vector(9 downto 0); signal count2:std_logic_vector(9 downto 0); signal count22:std_logic_vector(9 downto 0); begin process(writ,en,ch,choose) begin if(en='1')then count1<="0000000000";count11<="0000000000"; count2<="0000000000";count22<="0000000000"; elsif (clk'event and clk='1')then if(choose="01")then ---- 单次回放

语音信号的采集和频谱分析

语音信号的采集和频谱分析: [y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频 Y=fft(y,4096); %进行傅立叶变换 subplot(211); plot(y); title('声音信号的波形'); subplot(212) plot(abs(Y)); title('声音信号的频谱'); 窗函数设计低通滤波器: fp=1000; fc=1200; as=100; ap=1; fs=22000; wp=2*fp/fs; wc=2*fc/fs; N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1; beta=0.1102*(as-8.7); window=Kaiser(N+1,beta); b=fir1(N,wc,window); freqz(b,1,512,fs); 结果: 滤波: [y,fs,bits]=wavread('voice'); d=filter(b,a,y); D=fft(d); subplot(211) plot(d); title('滤波后的声音波形') subplot(212) plot(abs(D)) title('滤波后的声音频谱') 回放: sound(d,fs,bits) 与滤波之前相比,噪音明显降低了许多。

过零率的计算要用下面的代码: zcr = zeros(size(y,1)1); delta= 0.02; for i=1:size(y,1) x=y(i,:); for j=1;length(x)-1 if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>delta zcr(i)=zcr(i)+1; end end end 其中设置了门限delta=0.02。这是个经验值,可以进行细微的调整。在此条件下可以得到如图所示的过零率波形。与过零率曲线画在一起的是原始的语音信号波形,可以看到,语音信号音母部分的幅度比较低,但是其过零率的数值却很高,峰值将近50,而后面的韵母部分过零率则比较低,在20左右。 加矩形窗的短时能量函数: a=wavread('F:\WO.wav'); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1, (i-1)*N);%形成一个矩形窗,长度为N En=conv(h,a.*a);%求卷积得其短时能量函数En subplot(6,1,i),plot(En); if(i==2) legend('N=32'); elseif(i==3) legend('N=64'); elseif(i==4) legend('N=128'); elseif(i==5) legend('N=256'); elseif(i==6) legend('N=512'); end end 加hamming窗的短时能量函数: 把h=linspace(1,1, (i-1)*N); 改为h1=hamming((i-1)*N); 加矩形窗的短时平均幅度: a=wavread('F:\WO.wav'); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,(i-1)*N);%形成一个矩形窗,长度为N En=conv(h,abs(a));%求卷积得其短时能量函数En subplot(6,1,i),plot(En); if(i==2) legend('N=32'); elseif(i==3) legend('N=64');

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

数据采集实验报告

中国石油大学(北京) 实 验 报 告 实验名称:基于声卡的数据采集 班级:过程10-4班学号:21 姓名:夏亚康 成绩: 实验日期: 2013 年 1 月 4 日

一、实验目的 1、掌握Labview软件的基本使用方法; 2、掌握利用Labview功能模板进行虚拟仪器设计; 3、了解声卡的工作原理 4、学习用Labview进行数据采集的基本过程。 5、利用软件设计并实现一台虚拟数字录音机,完成音频数据采集、显示、保存、处理、回放的功能。通过练习使用Labview设计数字录音机。 二、实验仪器和设备 1. 计算机?1台、MIC 1只、耳机1只 2.编程环境 WindowsXP操作系统 3. Labview实验软件 ?1套 二、实验说明: 1、声卡的工作特点 本设计采取的方法是在LabVIEW虚拟仪器环境中利用Windows自带声卡采集语音信号。从数据采集的角度来看,PC声卡本身就成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能稳定、灵活通用,软件特别是驱动程序升级方便。如果测量对象的频率在音频范围(20 Hz-20 kHz)内,而且对采样频率等指标又没有太高要求,就可以考虑使用声卡。而语音音频范围一般在5kHz以内,满足声卡采集的要求。在采集语音信号前,要检查声卡的设置,保证已配置的输入功能(录音功能)不处于静音状态。主机通过总线将数字化的声音信号送到数模转换器(D / A),将数字信号变成模拟的音频信号同时,又可以通过模数转换器(A/D)将麦克风或CD的输入信号转换成数字信号,送到计算机进行各种处理。衡量声卡的技术指标包括复音数量、采样频率、采样位数(即量化精度)、声道数、信噪比(SNR)和总谐波失真(THD)等。复音数量代表声卡能够同时发出多少种声音,复音数越大,音色就越好,播放声音时可以听到的声部越多、越细腻;采样频率是每秒采集声音样本的数量,采样频率越高,记录的声音波形越准确,保真度就越高,但采样数据量相应变大,要求的存储空间也越多。采样位数是指将声音从模拟信号转化为数字信号的二进制位数(bit) ,位数越高,在定域内能表示的声波振幅的数目越多,记录的音质也就越高,例如16位声卡把音频信写的大小分为216 =65536个量化等级来实施上述转

数据采集及控制

《电子技术》 2002 年第 9 期 中国传感器 ht t p :/ / www . senso r . co m . cn (531) 19 计算机应用 桩基静载仪数据采集及控制系统的 研制与开发 武汉大学电子信息学院 (武汉 430072) 刘仲谋 吴建江 刘爱荣 摘 要 文章系统地分析了基于虚拟仪器技术下的桩基静载测试仪数据采集系统的特性 。详 细论述了系统的总体设计方案 ,数据采集 、通信和控制电路的设计以及系统的可靠性设计 。 关键词 虚拟仪器 通信 可靠性 虚拟仪器就是采用计算机技术 ,将传统仪器的 部分或全部功能由软件来实现 ,达到了硬件软件化 的目的 。基于虚似仪器技术的静载仪是代表桩基静 载测试仪器的发展方向 。采用虚似仪器技术 ,前置 机只需要对信号的采集和控制 ,而把复杂的数据处 理 、报表 、打印输出等让上位机处理 ,简化了设计过 程 ,缩短了研制周期 ,降低了设计难度 ,同时提供了 更良好的人机界面和强大的上位机操作功能 。目 前 ,国内的静载仪的制作主要仍然采用传统的方法 , 对实验数据进行采集 、显示 、记录和判断等工作 ,但 不能现场对数据进行处理 ,得到工程所需的曲线 、图 表等资料 。采用虚拟仪器技术能很好地实现这些功 能 ,前置机对现场数据进行采集 、控制加在桩上的压 力以及和上位机进行通信 ,上位机接收来自前置机 的十二路位移信号和两路压力信号 ,然后进行数据 处理 、图表分析 ( 主要是桩基测量的总报表 、P 2S 曲 线图 、S 2lgp 曲线图和 S 2lgt 曲线图分析) 、发出控制 信号等 。下面主要对前置机的硬件设计和系统的可 靠性进行重点分析 。 1 前置机总体设计方案 前置机采集各路传感器的输出信号 ,并将采集 到的数据送给上位机进行数据处理 、图表分析 、显 示 、判断 ,同时接收上位机发来的各芯片初始化指令 及控制命令 ,来初始化系统和控制加在桩上的压力 等 。设计中采用 A T89C51 单片机加上外围电路来 构成前置机 。前置机系统的结构框图如图 1 所示 。 包括十二路位移量采集电路 、两路压力量采集电路 、 油泵流量控制电路 、开关控制电路 、RS485 接口 、监 控电路 、键盘显示电路和电源电路 。 设计中 ,为了尽可能满足现场的各种需要 ,采用 图 1 前置机系统结构框 了具有两个独立的荷载测试通道 ,其一用于连接应 变式压力传感器 ,另一个用于连接变送式压力传感 器 ,同时允许两个测力传感器并联使用 。提供十二 个独立的位移测试通道 ,其中四个测量桩基沉降量 , 另八个测量锚桩上拔量 。采用了两路各自独立的油 泵控制输出 ,油泵流量控制和开关控制输出 ,开关控 制用来直接采用高压油泵启停 ,是用于要求不高的 荷载试验 。油泵流量控制采用了自适应控制技术 , 可自动调节高压油泵流量 ,使荷载超调量极小 ,能进 行自动补载 、自动卸载 ,且不需人工干预 。这样 ,在 测量过程中可根据实际需要灵活设置压力 、位移传 感器的数目和通道以及控制方式 ,很好地满足了测 试现场的各种需求 。 2 数据采集 、控制和通信的实现 2 . 1 十二路位移信号的采集 传感器采用容栅式位移传感器 ,传感器共有四 根引线 ,分别是电源线 、地线 、数据信号线和时钟线 , 电源电压为 1 . 5V ,信号格式如图 2 所示 。 由传感器的输出信号格式可以看出 ,传感器每 250 ms 输出一帧数据 ,每一帧数据包括两组 24bit 的 数据 ,第一组为总位移 ,第二组为总位移减去基准零

相关文档
最新文档