曲线钢轨侧磨的原因及预防措施
铁路曲线钢轨磨耗及减缓措施

轮的滑行 , 使轨顶磨耗增加 。曲线 内轨的磨耗集 中于轨
头顶 面 , 常常 出现 强烈 的轨 头 压 陷或 飞 边 , 是 由于 并 这 当列 车低 速通过 曲线 时 内轨 负荷 过大所 致 。此外 , 由于 机 车车辆转 向而在轨 顶 面上 发 生 的横 向 滑动 摩 擦 也 会 引起 较大 的磨耗 。 曲线上 钢轨 的磨 耗 , 别 是外 轨 的磨 耗 , 要 取决 特 主 于 曲线半 径 的大 小 。半 径愈 小 , 耗 愈 大 , 轮 踏 面 与 磨 车
磨耗 。
道床不 洁 、 固不 良, 捣 线路上 有三角坑 、 暗坑和 吊板
调查资料, 我国小半径曲线轨道上的钢轨 , 9 是 由 有 8 于磨耗超过 限度而报 废 。曲线 轨道上 的钢轨磨 耗 , 主要 有: 上股钢轨侧面磨耗 、 下股钢轨头部压溃、 波形磨耗等 3 种不 同形式 。 1 1 钢轨 的位 置不正确 .
19 9
擦 。同时 , 因曲线 内股 轨 线 比外 股 轨线 短 , 内外 两 轮 而
在 车轴上 一起 滑动 , 经 距 离 不 相 同 , 而必 然 产 生 车 所 因
14 钢轨 波磨分 析 . 其 特征 是钢轨 表 面 出现 有规 律 性 的高低 波浪 型 起 伏 。在 一般 情况下 , 钢轨 波磨 可分 为波纹 磨耗 和波 浪磨
铁路 曲线的钢轨 磨耗 和 机 车车辆 的车 轮磨 耗是 一
压, 列车行走不平稳产生附加打击钢轨而加速轨面磨
耗。
个较为复杂的问题, 涉及到轮轨之 间的作用力、 钢轨 的 化学 成分 、 机械性 能 、 金相 组 织 等 。铁 路 曲线 钢 轨侧 磨
钢轨波浪形磨耗原因分析与对策

钢轨波浪形磨耗原因分析与对策发布时间:2021-01-15T14:31:50.107Z 来源:《基层建设》2020年第25期作者:黄永强[导读] 摘要:随着中国铁路高速重载的快速发展,对钢轨的质量要求也越来越高。
中国铁路呼和浩特局集团有限公司包头工务段内蒙古包头 014040摘要:随着中国铁路高速重载的快速发展,对钢轨的质量要求也越来越高。
对目前钢轨使用过程中凸显出来的钢轨波浪形磨耗问题进行了分类介绍及产生原因的初步分析,并对在线使用后产生的磨耗进行了取样解剖分析,根据具体分析结果提出了相应的质量改进措施。
关键词:钢轨波浪形;磨耗原因;对策一、波浪形磨耗形成的原因当车辆通过曲线半径较小的线路时,由于轮对冲角的改变,轮轨的纵向剪切力超过轮轨黏着极限,轮轨间发生纵向滑动,滑动处形成波谷;滑动后释放了积累的能量,使轮轨又处于黏着状态,钢轨表面出现波浪形波磨。
磨损性波磨是由于轮对在通过曲线时,轮对扭曲共振导致交替的纵向力,从而在车轮与钢轨间发生纵向滑动而产生波磨。
这不仅与车轮的重力角刚度特性有关,而且与曲线曲率及轮轨黏着状态有直接关系,主要是轮轨之间的粘滑振动导致内轨顶面的波磨。
当车辆通过曲线半径较小的线路时,由于轮对冲角的改变,轮轨的纵向剪切力超过轮轨黏着极限,轮轨间发生纵向滑动,滑动处形成波谷;滑动后释放了积累的能量,使轮轨又处于黏着状态,钢轨表面出现波浪形波磨。
道床不洁,污染严重,轨枕下道碴含土或石粉严重(轨枕下60mm处就已经出现),有严重的板结现象。
使线路的横向及纵向阻力加大,但道床的弹性减小,反弹力增大,容易产生波磨。
钢轨下大胶垫损坏严重,较大的损坏率为86%,较小的损坏率也达到了10%,使线路的弹性下降,容易产生波磨。
钢轨的材质与运量不匹配,准东铁路重车线大部分是U71Mn的包钢生产的钢轨,这类钢轨含碳量低,强度和韧性较小,对重载大运量线路不适合,难以承受,导致波磨的产生。
二、波浪形磨耗的危害根据钢轨的伤损标准,在桥梁上或隧道内的轻伤钢轨,应及时更换或处理。
城市轨道交通快线轮轨侧磨成因及防治

随着城 市轨道 交通 的迅 速发 展 , 其是 尤 近几年 , 一些速度 达到甚 至超过 10k / 0 m h轨 道 交通快 线 的投 入运 营 , 小半 径 曲线 的钢 使
图 1 典 型配 线 及 钢 轨 侧 磨 分 布 表 1 轨 道 交通 快 线 侧 磨 - 隋况统 计
8 m h 铁车 辆 的一 系悬 挂 , 0k / 地 多采 用层 叠 式橡 胶结
构l , 图 3 示。 如 所
道 岔 导 曲 线 轨 距 加 宽 5mm 仍
有 侧 磨
轨 距 加 宽不 是 主 要 因素
2 )根据车辆动力学理论 , 列车 的曲线通 过能力 可
该 工 程 轮 轨 踏 面硬 度 匹 配
车辆一系悬挂参数对于半径 2 0~ 5 I 0 2 0T 曲线的适应性 1
稍差 。
相关文献表 明 , 车辆 一 系悬 挂 纵 向刚度对 于车辆 的曲线 通 过 性 能 影 响 较 大 , 而 对 轮 轨 侧 磨 产 生 进
影 响[ 。
折 返 线 上 仅 折 返 道 岔 导 曲 线
项 目 8 k 雾勒
轮 对 质 量/ g k
轮 对 侧 滚 转 动 惯 量/ g・ k m
轮 对 摇 头 转 动 惯 量/ g・n k I
一
系垂 向刚 度/ MN m) ( /
一
系横 向刚 度/( / MN m) 系纵 向 刚度/( / MN m)
基 础 上 , 一 系 纵 向 刚 度 调 整 为 5M / 其 他 参 数 将 N m,
不变。
3 2 计 算 结 果 .
3种T况的轮轨侧磨评价参数见表 4 。
() a 转臂 式结 构
浅析钢轨波形磨耗成因及防治

浅析钢轨波形磨耗成因及防治发表时间:2018-12-28T13:40:07.187Z 来源:《防护工程》2018年第24期作者:鲁笑琳[导读] 钢轨是铁路的重要组成部分,其质量将影响铁路工程的应用,不仅对铁路的寿命有直接影响,而且对铁路列车的安全产生影响。
本文就钢轨磨耗成因及预防措施进行了研究。
鲁笑琳中国铁路昆明局集团有限公司昆明南工务段云南昆明 650200摘要:钢轨是铁路的重要组成部分,其质量将影响铁路工程的应用,不仅对铁路的寿命有直接影响,而且对铁路列车的安全产生影响。
本文就钢轨磨耗成因及预防措施进行了研究。
关键词:钢轨波形磨耗;成因;影响因素;防治前言钢轨波形磨耗是线路上常见的钢轨病害之一。
钢轨波形磨耗会引起很高的轮轨相互作用力,加速机车车辆和轨道各组成部分的损坏,以至影响列车安全。
随着我国高速铁路的长期运营,钢轨波磨问题越来越受到重视。
1波磨的成因钢轨波形磨耗是指钢轨顶面纵向规律性的起伏不平的磨耗现象。
钢轨波形磨耗会增大轮轨振动和噪声,加大钢轨和轮对的荷载,能引起很大的轮轨附加动力,额外消耗牵引能源,加速轨面伤损和道床永久变形,增加维修养护费用,大大减小其使用寿命,甚至会影响行车安全。
钢轨波磨按波长分为波纹形和波浪形两种。
波纹形磨耗的波长为30-60mm,波幅为0.1-0.4mm,这种轨顶周期性不平顺,多发生在高速行车地段。
波浪形磨耗的波长为60-3000mm,波幅为2mm以下,主要发生在低速重载铁路上。
钢轨的波形磨耗主要发生在道岔区段钢轨、曲线地段钢轨、线路下沉地段的钢轨、难于经常维持道床捣固密实的钢轨、道床板结弹性差的钢轨以及轨道结构受约束较多较复杂的钢轨。
1.1曲线区段波形磨耗产生原因波形磨耗多出现在曲线地段,同时曲线半径越小,出现和发展的速率越快。
在曲线处轨道结构受到的作用力相对于直线路段是存在加成的,轮轨之间作用加大,波磨情况必然加剧。
轮对在曲线地段的振动表现为粘滑振动,在半径较小的曲线地段,轮轨间蠕滑力接近饱和,轮轨间磨耗功发生剧烈波动,造成钢轨的不均匀磨损或压溃。
浅谈铁路线路曲线病害成因及其整治措施

对 铁路 曲线 的设计 ,保证 路基 参数 能够达 到 设计 标准 ;整治 路基病 害 ,防治 路基基 础 变化 引起 的上部 建筑 的变形 ;安设 曲线 头 尾标 志 固定 曲线 的位 置 。 ( 2 ) 设置合理的曲线外轨高度 在铁路 曲线的设计时都采用 了三次 抛 物线 ,铁路 线路 的缓 和曲线 正矢 和外轨 超 高都呈 折线 梯形 ,在 曲线 的终点处 不能 满足圆顺过度的要求,因此在进行曲线设 置 时要注 意 以下问题 : 第一 ,在 曲线 的头尾位置设置正确 的标记 , 在检修过程中及时对其进行校对 , 对产 生 的异变 采用偏 角法 或者绳 正法 对其 进行 校核 ,以保证 曲线 的止确位 置 。 第 二 ,设 置 合 理 的 正 矢 和 超 高 ,在 缓 和曲线 始点 位置 不允许 ¨ ; 现 负误差 ,在 终 点处不 允许 …现 正误差 ,以缓 和i 次抛 物线 在 曲线头 尾处离 心力 的突 变 。 第三, 在 缓和 曲线 始终点 到直线 部分 5 0 m 范 围 内 ,其 轨 距 设 置 在 1 3 5 ± 2 a r m 的范刚内,以减轻缓和曲线在始终点的附
道 出版 社 .
『 2 1 吴耀庭 . 铁路曲线及其养护 ( 第二版 )
『 M1 . 北 京 :中 国铁道 出版 社 .
中国新技术新产品 一1 9 1 —
生 产 与 安 全 技 术
口重盔盈嘲
浅 谈铁 路线路 曲线病害成 因及其 整治措 施
卢 思 源
( 成都铁路局 重庆工务段 ,四川 成都 4 0 0 0 5 3)
摘 要 :铁路运行经常出现铁路线路病害,影响运输安全性和平稳性 ,因此对铁路线路进行及 时预 防和养护是保障铁路 正 常运 行 的必要 手段 。本 文就 铁路 线路 常见 的 曲线病 害进 行 了分析 ,提 出 了铁路 曲线病 害 的政 治措施 和 对策 。
铁路线路小半径曲线侧磨的成因及其整治

关 键 词 : 路 线 路 ; 半 径 曲 线 ; 道 受 力 ; 线侧 磨 铁 小 轨 曲 中图分 类号 - 1 U2 文献标 识码 : C 文 章 编 号 :0 7 - 9 1 2 0 ) 9 0 8 — 0 10 - 6 2 (0 7 1 — 0 3 2
曲 线 是 铁 路 轨 道 的 重 要 组 成 部 分 , 线 路 维 护 是 中 的 薄 弱 环 节 。 随 着 列 车 轴 重 、 度 与 行 车 速 度 的 密 不 断 提 高 , 半 径 曲 线 上 股 钢 轨 发 生 不 均 匀 侧 磨 的 小 现象 十分 严 重 , 困扰 线 路 维 修 养 护 的一 大 难 题 。 是 由于 曲 线 钢 轨 的 使 用 寿 命 取 决 于 钢 轨 最 大 磨 耗 量 的 大 小 , 以 曲 线 钢 轨 磨 耗 不 仅 缩 短 了 钢 轨 的 使 用 寿 所 命 、 大 了养 护 维 修 的工 作 量 , 且 增 加 了行 车 的 不 加 而 安 全 因 素 。要 从 根 本 上 解 决 难 题 , 须 对 其 产 生 的 必 原 因进行分 析 。 1 曲 线 侧 磨 产 生 的 原 因 曲线不 均 匀 侧磨 是指 在 同一 曲 线上 , 股 钢轨 上 在 产 生 正 常 的 侧 面磨 耗 时 , 于 其 不 同 的 磨 耗 速 率 , 由 导 致 钢 轨 侧 面 磨 耗 量 不 等 。所 有 的 现 场 调 查 和 实 测 资料都 表明 : 线钢 轨轨头 的侧磨 是很不 均匀 的 , 曲 即 使 是 理 想 的 曲 线 线 型 , 态 理 论 的计 算 也 表 明 , 线 动 曲 各 点 的横 向 力 和 冲角 也 是 不 会 完 全 相 同 的 。 何 况 在 实 际条件 下 , 论机 车 车辆 还 是线 路 结 构 和几 何 状 无 态 都 无 法 做 到 理 想 化 的 一 致 。 所 以 钢 轨 轨 头 出 现 不 均匀 侧磨是 无法 避 免 的 。机 车车 辆 车轮 的冲 击 、 货 物装 载不 良、 车编 组不 合 理 、 道结 构 状 态 差 、 列 轨 轨 道几 何尺寸 不 良, 以及 环 境 因 素 如 温 度 高 、 气 湿 度 空 大 、 染严 重 等 都 是 产 生 钢 轨 不 均 匀 侧 磨 的 因素 。 污 现 仅 从 工 务 维 修 养 护 的 角 度 出 发 , 曲 线 钢 轨 不 均 对 匀侧磨 产生 的原 因分析如 下 : 小 半 径 曲 线 钢 轨 磨 耗 特 别 是 侧 磨 往 往 在 多 种 因 素 的复合作 用下形 成 , 对 其产生 的原 因分析 如下 : 现 ①钢轨 材质 的影 响 , 产 生不 均 匀 磨 耗 的 曲线 地段 对 进 行轨头 表 面硬度 测 试分 析 表 明 , 一 根 钢 轨 在硬 同 度 相 同 的情 况 下 , 轨 却 发 生 了 较 明 显 的 不 均 匀 侧 钢 磨 , 明 钢 轨 表 面 硬 度 与 不 均 匀 侧 磨 的 相 关 性 不 明 说 显 。虽然 钢轨 表 面硬 度与钢 轨 的不 均匀 侧磨相 关性 不 明显 , 是钢 轨 的强 度与 钢 轨 的磨 耗 速率 却有 着 但 密 切 的 关 系 。 钢 轨 的 耐 磨 性 随 着 钢 轨 的强 度 增 大 而 增 大 , 金 轨 和 全 长 淬 火 轨 在 钢 轨 轨 头 有 较 高 的 强 合 度 , 而 提 高 了 钢 轨 的 耐 磨 性 。 ② 曲 线 圆顺 度 ( 矢 从 正 变 化 ) 影 响 , 车 通 过 曲 线 时 会 产 生 导 向 力 和 冲 的 列 角 , 钢 轨 侧 磨 的 大 小 , 决 于 车 轮 作 用 在 钢 轨 上 的 而 取 导 向力 大 小 与 摩 擦 距 离 的 大 小 。 曲 线 圆 顺 度 的 不 良 直 接 引 起 轮 轨 横 向 力 及 导 向 力 的 增 加 , 论 计 算 表 理 明, 曲线 正 矢 的 变 化 与 导 向 力 和 冲 角 成 正 比 。 对 现 场 钢 轨 侧 磨 实 测 的 数 据 进 行 分 析 也 表 明 , 正 矢 变 在 化 较 大 范 围 内经 常 出 现 钢 轨 的 最 大 侧 磨 点 , 原 因 其 也 在 于 此 。 ③ 曲 线 超 高 的 影 响 , 高 大 小 对 轮 轨 之 超
重庆地铁十号线道岔磨损原因分析和治理措施

重庆地铁十号线道岔磨损原因分析和治理措施摘要:众所周知,道岔是用于列车从一股轨道转入或跨越另一轨道时比不可少的线路设备,是轨道结构的重要组成部分。
由于道岔具有零件数量多、构造复杂、使用寿命短、限制列车速度、养护维修投入大等特点,与曲线、接头并称为轨道的三大薄弱环节。
钢轨和道岔作为轨道交通中最基础也是最重要的轨道设备,其安全直接关系到地铁列车的运行安全。
本文就道岔磨损原因分析和治理措施进行简要的分析和探讨。
关键词:道岔磨损;处理措施;预防措施1 重庆地铁十号线道岔磨损现状调查随着列车通过总重的不断增加,局部地段(如小半径曲线地段、列车折返地段、变坡点地段等处)钢轨磨耗的速度比较快,尤其是在起点、终点和出入段线道岔群,钢轨磨耗速度之快、分布之广泛、种类之多是全线道岔最严重的。
经现场调查的道床磨耗部分基本现象:(1)尖轨磨耗较大、尖轨连续的剥落掉块;(2)导曲线上股、基本轨波浪纹、导曲线护轨侧磨、导曲线侧磨;(3)曲基本轨波浪纹。
在道岔群中,普遍现象是非正常的磨耗伤损比较严重而且发展很快,尤其是在尖轨和辙叉心部位的磨耗情况是比较严重的。
图1 道岔辙叉心部位的磨耗图图2 基本轨波浪纹图2 原因分析在对道岔钢轨侧磨进行研究分析时,首先要测量钢轨轨头的侧磨值,采用钢轨端面测量仪在轨头下两边的斜坡和轨顶面定位。
该仪器的测量头采用百分卡的测量头,读数精度为0.01 mm,定位精度和读数精度较高。
数据测量数据分析,此处的道岔群的磨耗普遍存在,根据长期观测的数据显示,磨耗的速度及磨损度比正常情况下要严重得多。
形成这种状况的原因是多方面的。
2.1轨道框架结构横向刚度对道岔磨耗的影响现场的轨道维修人员发现,轨道横向刚度对导曲线钢轨的轨头侧磨有影响,整体道床钢轨的侧磨速率要高于有碴道床钢轨的侧磨速率,混凝土枕地段的钢轨轨头要高于木枕地段的钢轨轨头侧磨速率,即使是同样混凝土枕地段,60kg/m钢轨的侧磨速率要高于50kg/m钢轨的侧磨速率。
钢轨侧向磨耗成因及减磨方法的探讨

钢轨 侧 磨 的成 因较 复 杂 , 据 文献 及 实 际 工作 根
经 验 , 为有 下列 几 个 方面 。 认
的侧磨 都 加 剧 了 , 半 径 曲线 上 股钢 轨 的寿命 仅 2 小 ~ 3 , 些 区段 使 用 期更 短 。 年 有 钢轨 侧 磨 的加 剧不 仅 增
危 害 。 不 久 , 因钢轨 侧 磨 加剧 在 一~ 二 厂联 络线 前 就
上 连 续 造 成 机 车 、 辆 脱 线 各 一 起 , 仅 损 坏 了设 车 不 备 , 重 要 的是 埋 下 了安 全 隐患 。因此 , 析钢 轨侧 更 分
转 向架 通 过 曲线 时 , 以 认 为第 一 轮 对 总是 贴 可 靠 外 轨 的 , 后 面轮 对 的位 置 , 机 车 速度 的不 同而 而 依
W a ng Sho uxi n
( a s a r n & Ste .Ld. Ma n h n I o eI Co t )
Absr ct Sev alm eas r ta er u es,s h as m ou ig uc ntn ac es ore c s is, c oosng r h i eas abl geo eti p am et r on e m rc ar e s of t i he l ne and e ancng m ai e nc orM ag nh i nt na e f ang r l a aiw y equim entar op ed a t nal i he c p e pr os fera yzng t aus at — e ofl er alr l ai wear Thes e ho e s u t e ce l er lw earo h ai ih s . e m t ds ar u ef l o r du at a ft e r l w t har — adis cu ve。i r s pr u r nc eas af y e s et ofr n ng a u ni nd dec eas ait an os . r e m n en ce c t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线钢轨侧磨的原因及预防措施我于2010年12月至2011年2月,对牡丹江工务段管辖滨绥线381km+900m-583km +000m 曲线共计215条,和83km的直线。
进行了关于钢轨侧磨的调查。
对曲线钢轨侧磨的有了新的认识,对曲线钢轨侧磨的影响因素进行了进一步的探索。
对钢轨侧磨指标进行了系统分析。
掌握了曲线钢轨侧磨的变化规律。
制定了预防措施。
一、调研目的:1、熟练掌握测量钢轨侧磨的方法。
2、通过直线与曲线的侧磨对比来分析同等条件下磨耗的比例。
3、对曲线侧磨提出综合整治或预防措施二、调研方法:1、对钢轨侧磨进行实地测量。
2、与技术员和工长进行实地测量,对数据进行认真分析。
3、把数据综合整理、对比。
4、查阅有关的钢轨台账。
三、调研内容及过程:(一)概述我国地域辽阔,地形复杂,山区、丘陵地区占很大比例。
特别是山区,曲线铁路占有很大的比例,而在山区大坡道铁路小半径曲线上,钢轨的侧向磨耗就更为严重。
这些地段,小半径曲线的换轨周期,完全由上股钢轨的侧磨来控制。
根据调查资料,我国小半径曲线上的钢轨有98%是由于侧面磨耗超限而报废的。
严重的钢轨侧面磨耗削弱了钢轨的强度,加剧了钢轨的伤损,缩短了钢轨的使用寿命,不仅浪费大量的资金,而且还干扰运输任务的完成。
因此减缓小半径曲线钢轨侧面磨耗的速率,从而延长钢轨使用寿命对于我国铁路具有重大的意义。
曲线是轨道结构强度中的薄弱环节。
当机车、车辆进入曲线后,车体受机车牵引随惯性向前运行,轨道迫使机车、车辆转弯,这样势必形成车轮冲击轨道,造成轨道变形,轨道和车轮同时受到磨耗。
当离心力和向心力得不到平衡而造成的内外轨偏载时,更加剧钢轨的磨耗。
因此如何减缓曲线上的钢轨的磨耗,延长其使用寿命,降低维修成本,保证行车安全,成为工务工作的一项重要内容。
牡丹江工务段管辖滨绥线381km+900m-583km +000m,地处山区,线路基础大部分还是日、俄时期修建的,线路设计标准低,大多顺山铺设。
曲线多、半径小、坡度大。
形成线路条件、质量先天不足。
该段线路共有曲线215条、延长132.65km,其中半径在650m以下的曲线有139条/80.82km,半径在350m以下的曲线有42条/12.53km,最小半径240m,最大坡度15‰。
曲线上股钢轨的使用寿命一般为24~36月,按先用钢轨50kg/m钢轨计算成本投资每公里约60万元,仅小半径曲线每年需要更换钢轨12km,钢轨费用投入约660万元。
随着使用内燃以来、列车的运行速度、机车车辆轴重、行车密度都大大提高,使得轨道各部件的受力增加,曲线钢轨的侧磨成为一个比较突出的矛盾。
据调查统计,宾绥线R ≤350m的曲线上,钢轨平均寿命为1~2年,最短的仅为7~8个月。
我段管内的山区铁路,在半径R≤600m的曲线上,钢轨的平均寿命仅为2~3年。
2007年又开行了重载货物列车。
半径<600m的曲线外股钢轨侧磨加剧,这样不仅给养护维修带来许多工作,而且大大增加了运营的成本和对运输的干扰。
(二)钢轨侧磨的主要原因金属材料磨耗是一种很复杂的现象,引起钢轨磨耗的原因也是很多的。
钢轨侧磨是在列车运行、轮轨摩擦的过程中产生和发展的。
近年来随着机车车辆轴重和车速的提高,曲线上股钢轨的磨耗表现为磨蚀和剥离同时发生,交替进行,使得轨面变窄。
线路上钢轨的磨耗,在直线地段由于车体的蛇形运动和摇摆,车轮对钢轨发生相对滑动形成钢轨的垂直磨耗。
在曲线地段除上述原因造成磨耗外,呈现不同程度的侧面磨耗,半径越小、行车速度越高、曲线状态越坏,磨耗越严重。
为了找到引起侧磨的主要原因及切实可行的预防措施,通过观察和测量,发现钢轨侧面磨耗主要因素有以下几点:1、半径曲线半径是轨道形态变化的主要标志,它的改变直接影响机车车辆通过曲线时的形态和轮轨相互作用的方式。
曲线半径是决定钢轨侧磨量的关键因素,加大曲线半径对于减少钢轨的侧磨是十分有力的。
曲线半径过小,由于离心力的作用,运行中的列车对外股钢轨的侧向推力加大,造成内股钢轨压溃,而且还存在不同程度的波磨,外股钢轨产生严重的侧磨,轨距、水平、方向也不宜保持。
根据我观测,半径小于600m以下的曲线外股钢轨均有不同程度的侧磨,半径愈小,磨耗愈大。
我对调查地段近几年的换轨可以证实:半径在500m以下的曲线平均更换的周期为24~36月,半径大于500m的曲线平均更换周期则为4~5年。
2、轨距轨距是影响曲线钢轨磨损地重要因素。
理论计算与现场试验都表明,适当减小轨距,可以改善机车车辆通过曲线的条件,使机车通过曲线时的轮轨导向力和冲角都相应减少,车辆通过曲线时,轨距减小车体横向摇摆幅度减弱,轮轨导向力也适当减小,因此,曲线轨距适当减小,对于曲线钢轨磨损是有利的。
对同一曲线来说,如果曲线轨距在动态下扩大过大,轮轨间的游间也相应增大,轮轨间的冲击角增大,导向力必然增加,列车在通过曲线时蛇形运动加剧,容易产生不均匀侧面磨耗,而不均匀侧磨又会加剧冲角的增大和变化,进一步使轮轨磨耗加剧,形成恶性循环,对钢轨侧磨合行车安全极为不利。
3、超高超高通常是根据列车通过曲线的平均速度来设置的,因此,多数列车通过曲线时不是出现欠超高就是出现过超高,由于超高直接引起导向力和冲角的变化,所以也就直接影响钢轨轨头侧磨速率的大小。
设置过超高,由于向心力的作用,导向力减少,但转向架在小半径曲线运行时,转向架前轴外轮轮缘紧贴外轨引导转向架沿曲线运行,而后轴则在向心力作用下向曲线内侧移动,从而增大了轮轨冲角,而有欠超高时转向架承受离心力的作用,转向架后轴向曲线外侧移动,导向力虽然增大,但轮轨冲角却减少。
如前所述,为减轻曲线钢轨侧磨,希望影响钢轨侧磨的主要因素导向力和冲击角都减少,但当曲线行车出现过超高时,导向力值减少而冲击角值增大,而出现欠超高时则是导向力值增加而冲击角值减小,在这种情况下要判断是欠超高对减缓曲线钢轨侧磨有利还是过超高有利。
得不到平衡,势必也增大横向力,也同样导致曲线外股钢轨的侧面磨耗。
4、轨底坡轨底坡从轮轨接触几何学的研究可知,轨底坡大小对轮轨几何接触点的位置及轮轨之间的受力大小有明显的影响。
在曲线轨道上,外股长、内股短,只有轮对外轮的滚动半径大于内轮的滚动半径时,转向架才有良好的通过曲线性能,从而减少车轮对钢轨的滑动摩擦距离。
曲线下股轨底坡较小时,车轮踏面接触位置内移,滚动半径增大,内外轮滚动半径差减少,滑动摩擦距离增大,从而加剧曲线外股钢轨的侧面磨耗。
5、曲线圆顺曲线钢轨不均匀侧磨的形成与曲线的圆顺度有相当大的关系。
曲线不圆顺就意味着曲线的半径不一致,有的处所半径变大,必然使有的处所半径变小,小半径曲线钢轨磨耗严重,大半径曲线钢轨磨耗较轻形成钢轨的不均匀磨耗,从而减少了钢轨的使用寿命。
曲线圆顺度的不良直接引起轮轨横向力及导向力的改变,在圆顺度不良曲线范围内的后四分之一段内,从现场观察可知,在此范围内经常出现钢轨轨头最大侧磨点。
钢轨接头处的支嘴和钢轨硬弯引起的曲线圆顺度不良,对钢轨轨头的磨耗影响尤为严重。
要保持钢轨接头附近的侧磨均匀,有必要消灭“接头支嘴”,加强线路养护,确保接头夹板螺栓扭矩达到标准要求。
6、不同机车类型和行车速度机车车辆通过曲线时会产生导向力和冲击角,而这两个因素又与机车车辆类型、机车转向架构造、牵引性能、固定轴距、行车速度、车轮踏面以及未被平衡的离心力有关。
机车牵引力大、速度高、而且转向架固定轴距大,轮轴位置不对称,左右两端轴的横动量小,机车三轴转向架等导致了钢轨侧磨加快。
7、养护不当曲线状态的好坏对钢轨侧磨产生直接影响,养护不良的曲线,钢轨侧面磨耗严重;反之,养护好的曲线,钢轨侧面磨耗就小,具体表现为:1、由于日常养护工作中,不坚持定期拨道制度,在综合维修中不全面测量、计算,而采取简易绳正法拨正曲线,使曲线头尾控制不好,正矢超限,加之钢轨死弯、接头支嘴,直曲线连接不顺形成曲线鹅头,造成曲线不圆,从而增加了车轮作用于钢轨上的横向力,曲线半径愈小,横向力的分力导向力愈大,加剧了钢轨的磨耗。
2、超高顺坡不好,线路前后高低不好,引起列车在缓和曲线运动时的振动、摇晃和冲击,加剧钢轨的侧磨。
3、捣固不良、线路上有三角坑、暗坑和吊板病害或线路翻浆冒泥等都会加剧钢轨的磨耗。
(三)曲线钢轨侧磨减缓措施如何减缓钢轨磨耗,延长钢轨的使用寿命,我对调查地段的现场调查和通过近几年有关数据的分析,认为采取以下措施有利于减缓曲线上股钢轨的侧面磨耗1、设置合理的轨道几何尺寸包括:轨距,轨底坡,曲线半径,超高等等。
曲线轨道几何尺寸的设置是根据列车运行速度和曲线半径确定的。
通过适当调整轨道的几何尺寸可以改变轮轨间的受力,从而达到减缓钢轨轨头侧磨的目的。
2、加强轨道的养护维修,提高曲线圆顺度、高标准养护曲线、做好曲线的拨道工作、加强曲线的综合维修、加强对小半径曲线轨距扩大地段的整治、加强曲线设备增加横向道床阻力来提高曲线整体强度、加强扭力矩、加强钢轨涂油工作、有条件采用全长淬火轨或稀土轨、增强轨道弹性、提高科学管理水平。
总之,一个良好的曲线必须要以病害的基本点出发,并在其使用中发现问题及时解决,做到质量上防微杜渐,使其整个结构经常处于完好状态。
四、调研结论与建议:我个人认为,钢轨侧面磨耗和轨道其他的永久变形一样,是不可避免的,但是通过各方面的努力,减少和缓和钢轨侧面磨耗是可能的。
列车通过曲线时,轮轨产生两点接触以及在接触点上轮轨间的相互作用—滑移和摩擦是产生曲线轨道上股锅轨侧面磨耗的根源。
实践表明,要减缓钢轨的侧面磨耗,必须从机车车辆、轨道以及轮轨关系等方面入手,改善轮轨的接触条件和摩擦条件。
对此问题进行研究的目的是通过减缓曲线钢轨的侧磨,以及降低轨道部件的力学伤损。
通过多年的研究,已取得了一些突破性的成果。
由于各条线路的列车运行情况不相同,所以影响曲线钢轨侧磨的因素就各不相同,采取的减磨措施也就各不相同。
但目的只有一个,就是降低钢轨侧面磨耗的速率和减少轨道部件的伤损,延长钢轨的使用寿命,从整体上提高铁路运输的经济效益。
通过对曲线钢轨侧磨的成因理论进行了系统的总结、分类和评述,对曲线钢轨侧磨的影响因素进行了进一步的探索,并作为钢轨侧磨指标,系统分析了曲线钢轨侧磨的变化规律,现总结如下:1、对牡丹江工务段管辖滨绥线381km+900m-583km+000m曲线共计215条,和83公里的直线。
进行了关于钢轨侧磨的调查。
现场测得的曲线钢轨侧磨数据的统计分析,得到了钢轨侧磨量与通过有关,并总结了曲线上股钢轨侧面磨耗的特征和发生、发展规律。
2、评价钢轨侧磨指标时得出,加大曲线半径有利于减缓钢轨的侧磨,因此从长远战略出发,增大干线铁路曲线最小半径标准是必要的;在准确测速确定平衡超高的基础上,设置欠超高有利于减缓钢轨的侧磨,但设置幅度不易过大,需要考虑旅客舒适度的影响:严格执行现有的轨距加宽标准,适当的减小轨距有利于减缓钢轨的侧磨。