优秀教案-2018-2019学年最新北师大版七年级上学期数学4.2比较线段的长短-教学设计
56.北师大七年级数学上册4.2 比较线段的长短1-教案

4.2 比较线段的长短1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】 根据线段的中点求线段的长如图,若线段AB =20cm ,点C 是线段AB 上一点,M 、N 分别是线段AC 、BC 的中点.(1)求线段MN 的长;(2)根据(1)中的计算过程和结果,设AB =a ,其它条件不变,你能猜出MN 的长度吗?请用简洁的话表达你发现的规律.解析:(1)先根据M 、N 分别是线段AC 、BC 的中点得出MC =12AC ,CN =12BC ,再由线段AB =20cm 即可求出结果;(2)根据(1)中的条件可得出结论.解:(1)∵M 、N 分别是线段AC 、BC 的中点,∴MC =12AC ,CN =12BC ,∵线段AB =20cm , ∴MN =MC +CN =12(AC +BC )=12AB =10cm ; (2)由(1)得,MN =MC +CN =12(AC +BC )=12AB =12a .即MN 始终等于AB 的一半.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【类型二】 已知线段的比求线段的长如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,点E 是线段AD 的中点,EC=2cm ,求:(1)AD 的长;(2)AB ∶BE .解析:(1)根据线段的比,可设出未知数,根据线段的和差,可列方程,根据解方程,可得x 的值,根据x 的值,可得AD 的长度;(2)根据线段的和差,可得线段BE 的长,根据比的意义,可得出答案.解:(1)设AB =2x ,则BC =3x ,CD =4x ,由线段的和差,得AD =AB +BC +CD =9x .由E 为AD 的中点,得ED =12AD =92x . 由线段的和差得,CE =DE -CD =92x -4x =x 2=2. 解得x =4.∴AD =9x =36(cm ).(2)AB =2x =8,BC =3x =12.由线段的和差,得BE =BC -CE =12-2=10(cm ).∴AB ∶BE =8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型三】 当图不确定时求线段的长如果线段AB =6,点C 在直线AB 上,BC =4,D 是AC 的中点,那么A 、D 两点间的距离是( )A.5B.2.5C.5或2.5D.5或1解析:本题有两种情形:(1)当点C 在线段AB 上时,如图:AC =AB -BC ,又∵AB =6,BC =4,∴AC =6-4=2,∵D 是AC 的中点,∴AD =1;(2)当点C 在线段AB 的延长线上时,如图:AC =AB +BC ,又∵AB =6,BC =4,∴AC =6+4=10,∵D 是AC 的中点,∴AD =5.故选D.方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:线段性质的应用如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计教学过程中,强调学生通过想象、合作交流等数学探究过程,了解线段大小的比较方法,学习使用几何工具的操作方法,发展几何图形意识和探究意识,激发学生解决问题的积极性和主动性.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
《比较线段的长短》示范公开课教学设计【北师大版七年级数学上册】

第四章基本平面图形4.2比较线段的长短教学设计一、教学目标1.了解“两点之间的所有连线中,线段最短”.2.能借助直尺、圆规等工具比较两条线段的长短.3.能用圆规作一条线段等于已知线段.4.知道中点的定义,会用符号表示中点.二、教学重点及难点重点:比较线段的方法,线段的公理,线段中点的概念.难点:比较线段的方法以及线段的中点理解和应用.三、教学准备圆规、直尺四、相关资源相关图片五、教学过程【问题情境】创设情境,提出问题师生活动:教师利用课件展示以上的图片,并回答问题:观察以上图片,谁的身高更高?哪棵树高?哪支铅笔长?窗框相邻的两条边哪条边长?设计意图:七年级学生的学习带有强烈的情感色彩,对于熟悉的情境、感兴趣的问题能够很容易的展开思维.利用姚明、李连杰的明星效应,把现实生活中的娱乐问题转化为数学活动的几何图形,让学生体会到“快乐数学”.在生活中我们经常会比较物体的长短,那么究竟可以概括为哪些方法,我们通过研究线段的长短进行探究.板书:4.2比较线段的长短【新知讲解】合作交流,探索新知探究一:比较线段长短的方法活动1.两名同学演示比较身高.活动2.归纳总结:方法一:目测法比较线段的长短:方法二:用度量法比较线段的长短:用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较.方法三:叠合法比较线段的长短:步骤:(1)将线段AB的端点A与线段CD的端点C重合;(2)线段AB沿着线段CD的方向落下;(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记作AB=CD.若端点B落在C,D之间,则得到线段AB小于线段CD,可以记作AB<CD.若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD.设计意图:学生通过亲身实践,感受知识的形成过程,培养学生的动手、动脑、动口能力.归纳重叠比较法,进而向学生渗透分类的思想.用度量法比较线段的长短,其实就是比较两个数的大小.从“数”的角度去比较线段的长短,在此活动环节中,教师从数与形这两方面对线段长短的比较进行了说明,这样做既肯定了学生比较的方法,肯定了实际生活中的经验,同时又将生活中的方法科学化,实现了知识的抽象与升华.活动3.作图:画一条线段等于已知线段已知线段a,用直尺和圆规画一条线段,使它等于已知线段a.方法(1)度量法:先量出线段a 的长度,再画出一条等于这个长度的线段AB .方法(2)尺规作图法:尺规作图就是用无刻度的直尺和圆规作图. 第一步:先用直尺画一条射线AC ; 第二步:用圆规在射线AC 上截取AB =a .; 线段AB 及为所求.注意:这里教材上给出了两种画线段等于已知线段的方法,一种是使用刻度尺测量解决,另一种尺规作图,要使学生明白这两种方法的不同之处,并能准确掌握.先让学生自己尝试画,然后教师示范画图并叙述作法,让学生模仿画图,该问题不必要求学生写画法,但最后必须写出结论.设计意图:本环节中教师指导学生作图,在学生动手操作的基础上,向学生初步渗透圆规的作用,为后面学习尺规作图打基础.BA探究二:线段的和差与画法:活动1.如图,线段AB 和AC 的大小关系是怎样的?线段AC 与线段AB 的差是哪条线段?你还能从图中观察出其他线段间的和、差关系吗?师生活动:让学生四人一小组交流、讨论,回答问题.教师关注学生是否认真讨论,能否找出其他线段间的和、差关系.小结:(1)AB <AC ; (2)AC -AB =BC ; AC -BC =AB ; BC +AB =AC .活动2.如图,已知线段a 和线段b ,怎样通过作图得到a 与b 的和、a 与b 的差呢?师生活动:让学生自主学习教材相关内容,然后由一名学生上黑板解答该问题.其他学生在练习本上画一画,教师巡回指导,关注学生画图是否规范,纠正画错的学生,最后师生一起点评.小结:在直线上作线段AB =a ,再在AB 的延长线上作线段BC =b ,线段AC 就是a 与b 的和,记作AC =a +b .CB A ba在直线上作线段AB=a,再在AB上作线段AC=b,线段BC就是a与b的差,记作BC =a-b.设计意图:充分发挥学生的主观能动性,把课堂交给学生,教师只在关键之处进行点拨即可.探究三:线段的中点活动1.通过折纸,探索线段的中点.(1)在一张透明纸上画一条线段AB;(2)对折这张纸,使线段AB的两个端点重合;(3)把纸展开铺平,标明折痕点C.教师:刚才用折纸的方法找出AB的中点C,你还能通过什么方法得到中点C呢?活动2.学生动手演示得到线段中点的方法:度量法、尺规截取法归纳总结:线段中点定义:点C把线段AB分成相等的两部分,则点C叫做线段AB的中点.类似地,还有三等分点、四等分点等.关键点:线段的中点应满足的两个条件:①点M在线段AB上;②AM=BM.线段间的关系:用几何语言表示:因为点C是线段AB的中点,AM=BM=12AB;AB=2AM=2BM.设计意图:以折纸的方法,使学生在动手操作的基础上发现中点问题中所存在的数量关系,在教材中的方法的基础上鼓励学生发现更多的找中点的方法,从而对中点这一重要的数学概念有更好的理解.探究四:基本事实如图,从A地到B地有四条路.问题1:从A地到B地的四条道路中,哪条路最近?,除它们外,能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.问题2:从这个现象中,你能得到什么结论?问题3:你还能举出类似的例子吗?归纳:线段公理:两点的所有连线中,线段最短.简单说成,两点之间,线段最短.连接两点间的线段的长度,叫做这两点间的距离.需要强调两点之间的线段的长度叫两点间的距离,而不是两点间的线段,线段是图形,线段的长度是数值;举例:从A到B架电线,总是尽可能沿着线段AB架设等.设计意图:通过对以上问题的解决,归纳出关于线段的基本事实,培养学生观察、发现问题的能力和归纳总结的能力.【典型例题】例1.(1)在直线上顺次取A,B,C三点,使AB=4cm,BC=3cm,点O是线段AC的中点,则线段OB的长是( A )A. 0.5cmB. 1cmC. 1.5cmD. 2cm分析:由于是顺次取A,B,C三点,所以不用考虑多种情况.(2)如图,若AB=CD,则AC与BD的大小关系为( ).A.AC>BD B.AC<BD C.AC=BD D.不能确定解析:本题可用线段的和、差表示要比较的两条线段,从而判断两条线段的大小关系.因为AB=CD,所以AB+BC=CD+BC.又因为AB+BC=AC,CD+BC=BD,所以AC=BD.答案:C.例2.如图是A,B两地之间的公路,在公路工程改造时,为使A,B两地行程最短,请在图中画出改造后的公路,并说明你的理由.分析:根据“两点之间,线段最短”,可直接连接AB.解:如图,连接AB.理由是:两点之间的所有连线中,线段最短.例3.已知线段a,b(2a>b).用直尺和圆规作一条线段,使这条线段等于2a-b.分析:先作出一条线段等于2a,再在这条线段上截取一条线段等于b,则剩余线段就是所求作线段.作法:①作射线AM(如图);①在射线AM上依次截取AB=BC=a;①在线段AC上截取AD=b.线段DC就是所求作的线段.例4.已知三角形ABC,如图,试比较AC+BC与AB的大小关系.分析:方法一:用刻度尺直接度量三角形三条边,求出AC+BC的长度,就可以与AB比较大小了;方法二:如图,在AB上截取线段AD=AC,再比较BC与BD的大小关系即可.解:经过比较,可以得到:AC+BC>AB.例5.如图,已知点C在线段AB上,线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请表述你发现的规律.分析:(1)线段MN=MC+CN,可先利用已知条件和线段中点的定义分别求出线段MC和线段CN的长;(2)根据线段中点的定义,可知MC+CN=12AC+12BC=12(AC+BC)=12AB,代入后可得到MN的长度.解:(1)因为线段AC=6 cm,BC=4 cm,点M,N分别是AC,BC的中点,所以MC=1 2AC=12×6=3(cm),CN=12BC=12×4=2(cm),MN=MC+CN=3+2=5(cm).(2)MN=12 a.规律:一点将一条线段分成两条线段,则这两条线段中点之间的距离等于原线段长的一半.设计意图:通过练习来发现学生对本节内容的掌握情况,发现学生学习中的问题,及时解决,争取把问题反映在课堂上,在课堂上解决.【随堂练习】1.(1)两点之间线段的长度是(C).A.线段的中点B.线段最短C.两点间的距离D.线段(2)若点P是线段CD的中点,则(B).A.CP=CD B.CP=PD C.CD=PD D.CP>PD(3)在跳大绳比赛中,要在两条大绳中挑出一条最长的绳子参加比赛,选择的方法是(A).A.把两条大绳的一端对齐,然后拉直两条大绳,另一端在外面的即为长绳B .把两条大绳接在一起C .把两条大绳重合观察另一端情况D .没有办法挑选(4)下列图形中能比较大小的是( A ).A .两条线段B .两条直线C .直线与射线D .两条射线 2.在①ABC 中,BC ____AB +AC (填“>”“<”“=”),理由是____.<,两点之间的所有连线中,线段最短.3.直线l 上依次有三点A ,B ,C ,AB ①BC =2①3,如果AB =2厘米,那么AC =___厘米.思路解析:根据比例的性质可得AB ①BC =2①3,BC =3厘米,所以AC =2+3=5厘米. 4.如图所示,已知AB =40,C 是AB 的中点,D 是CB 上的一点,E 是DB 的中点,CD =6,求ED 的长.解:①C 是AB 的中点,①AB =2BC .①AB =40,①BC =20.①BD =BC -CD ,CD =6,①BD =14. ①E 是DB 的中点, ①ED =7(厘米).5.已知线段AB =8 cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求线段AM 的长.思路解析:本题是关于中点的计算以及分类讨论的问题,题中只说明A ,B ,C 三点共线,但无法判断点C 是在线段AB 上,还是在AB 的延长线上,所以要分情况讨论.(1)解:第(1)种情况,如图(1),当点C 在线段AB 上时, 因为M 是AC 的中点, 所以AM =21AC . 因为AC =AB -BC =8-4=4 cm ,所以AM =21AC =21×4=2 cm .(2)第(2)种情况,如图(2),当点C 在线段AB 的延长线上时, 因为点M 是AC 的中点, 所以AM =21AC . 因为AC =AB +BC =8+4=12 cm , 所以AM =21AC =21×12=6 cm . 所以AM 的长度为2 cm 或6 cm .六、课堂小结这节课你学到了什么? (1)线段长短比较的方法; (2)画一条线段等于已知线段; (3)线段的和、差的概念及画法; (4)两点间距离的概念;(5)线段的性质“两点间线段最短”及应用; (6)线段的中点的概念及简单的应用.师生活动:教师鼓励学生先自述学会了什么,然后找几位学生谈收获和体会. 设计意图:培养学生自我总结、自我评价能力,学会把零散的知识进行整理和优化,完善自己的知识构建.七、板书设计。
2019七年级数学上册 第四章 基本平面图形 4.2 比较线段的长短教案 (新版)北师大版

教学过程 教学 环节 课堂合作交流 二次备课 (修改人:
)பைடு நூலகம்
知识点 2:线段的和、差、倍、分 环 节 一
例 1.如图,如何利用线段的和差表示线段 AC。
A
B
C
D
1
课中作业
知识点 3:线 段的基本事实 1.线段的基本事实是: 2. 叫做两点的距离
环 节 二
课中作业 如图所示 ,直线 l 是一条平直的公路,A、B 是某公司的两个仓库,位 于公路两旁,请在公路上找一点建造货物中转站 C,使 A、B 到 C 的距 离和最小,请找出 C 的位置并说明理由。
4.2 比较线段的长短
课
题
4.2 比较线段的长短 31
课时安排
共( 1)课时
课程标准 1、比较线段长短的方法 学习目标 教学重点 教学难点 教学方法 教学准备 2、线段中点的性质及理解两点的距离的概念 线段中点的性质及理解两点的距离的概念 线段中点的性质及理解两点的距离的概念 教师引导,小组合作
线段长短的比较方法 课前作业 方法 1 方法 2 。
课后作业设计: 1、习 题 3.1 2、同步学案 3、整理错题 (修改人: )
标题 目标 知识点
课件
演板
板书设计: 标题 目标 知识点 课件 演板
3
教学反思:
成 形 终 最 的 场 市 界 世 和 命 革 业 工 次 两 17讲 第 练 标 达 下 课 8) 满 钟 45分 : 间 (时 8) 4分 小 每 12, 共 大 (本 题 择 选 、 一 () 了 映 反 这 术 技 新 用 雇 少 耗 消 本 入 投 多 能 可 发 开 来 汁 脑 尽 绞 都 业 行 各 是 于 。 宜 便 为 极 却 格 价 的 炭 煤 而 惊 得 高 平 水 资 人 工 象 现 种 一 成 形 渐 逐 国 英 , 期 8中 到 纪 6世 1. 成 形 始 初 的 断 垄 业 行 A. 赖 依 的 炭 煤 对 动 启 化 代 近 B. 锐 尖 渐 日 的 盾 矛 资 劳 C. 件 条 特 独 的 启 命 革 力 动 D. 误 B错 化 近 映 反 未 并 除 排 体 无 在 AC两 ; 确 正 项 故 件 条 特 独 其 有 启 命 革 力 见 可 生 而 运 应 明 汽 蒸 动 劳 替 代 器 机 源 能 以 后 此 术 技 新 佣 雇 少 耗 消 多 出 发 开 投 法 设 方 想 业 行 各 是 于 , 象 现 的 宜 便 为 极 却 格 价 炭 煤 、 惊 得 高 资 人 工 了 成 形 渐 逐 国 英 8期 到 纪 16世 中 料 材 D。 选 : 析 解 () 期 初 命 革 业 出 映 反 这 。 恩 尼 奥 · 得 彼 头 他 和 特 科 主 厂 法 拌 搅 铁 熟 产 生 兼 个 顿 普 伦 克 骡 , 工 织 是 原 斯 夫 里 格 哈 者 明 发 的 机 纱 纺 妮 珍 2. 合 结 正 真 未 尚 术 技 和 学 科 A. 现 新 的 学 科 于 赖 依 明 发 术 技 B. 术 技 新 了 断 垄 主 场 工 手 C. 衡 平 不 而 慢 缓 程 进 播 传 术 技 新 D. D 关 无 程 进 播 传 新 符 不 原 斯 夫 里 格 哈 机 妮 珍 C与 误 B错 系 联 接 直 太 有 没 并 ; 确 项 故 合 结 正 真 未 尚 学 了 映 反 人 熟 娴 术 技 是 都 大 者 明 发 命 革 业 次 一 第 知 可 , 息 信 等 头 的 他 和 特 科 主 厂 兼 纱 纺 ” 工 织 “ 料 材 据 A。 选 : 析 解 () 这 力 持 保 能 又 时 同 闲 休 何 任 让 不 换 更 流 里 大 卜 萝 麦 小 、 菁 芜 植 种 上 土 块 的 场 在 别 分 即 ” 制 作 轮 四 “ 做 叫 新 项 一 中 其 。 命 革 术 技 业 农 了 生 发 区 地 部 东 国 英 7, 至 代 160年 3. 程 进 市 城 和 化 业 工 国 英 动 推 A. 给 自 食 粮 现 实 国 英 成 促 B. 大 扩 距 差 济 经 部 西 东 国 英 致 导 C. 幕 序 动 运 地 圈 国 英 开 揭 D. D 关 无 产 生 目 题 与 力 劳 由 量 大 供 它 ” 人 吃 羊 “ 动 运 C圈 较 比 展 发 济 经 西 不 行 进 部 东 仅 误 B错 给 自 食 粮 明 说 未 并 ; 确 正 项 故 础 基 定 奠 化 为 率 用 利 地 土 了 高 提 法 做 一 这 , 术 技 农 前 命 革 业 工 国 英 是 的 映 反 中 料 材 A。 选 : 析 解 () 确 准 最 解 理 点 观 者 作 对 ” 。 卒 为 成 则 钟 时 而 , 狱 监 的 新 种 一 是 厂 工 “ : 说 曾 斯 德 兰 · 卫 大 人 国 英 4. 方 地 的 发 频 罪 犯 了 成 厂 工 A. 段 手 理 管 的 狱 监 仿 模 厂 工 B. 削 剥 的 人 个 对 织 组 断 垄 判 批 C. 活 人 工 了 化 异 产 生 器 机 D. 确 正 活 了 化 异 产 生 器 机 下 度 制 知 可 C据 织 组 断 垄 出 已 明 说 能 B还 段 手 理 管 仿 模 迫 压 削 剥 人 对 现 体 要 主 卒 为 成 则 钟 时 而 ; 误 错 故 , 符 不 思 意 ” 狱 监 的 新 种 一 是 厂 工 “ 料 材 与 A项 D。 选 : 析 解 () ” 身 脱 中 其 能 人 无 界 卷 席 已 日 今 纪 世 个 过 广 推 欧 西 由 , 态 形 济 经 代 现 新 全 这 。 面 两 的 体 一 于 当 相 产 生 业 工 与 义 主 本 资 “ 5. 国 各 美 欧 的 期 晚 纪 19世 于 始 开 A. 路 道 义 主 本 资 了 上 走 国 各 界 世 使 B. 体 整 一 统 向 走 展 发 散 分 由 类 人 使 C. 段 阶 明 文 业 工 到 入 进 史 历 类 人 使 D. 确 正 期 时 明 文 入 进 会 社 动 展 发 义 主 本 资 指 ” 身 脱 其 能 无 界 卷 席 已 日 今 个 两 过 广 推 欧 西 态 形 济 经 代 现 全 一 这 “ 中 据 C根 辟 路 航 新 体 整 向 走 散 分 由 类 人 实 史 合 符 不 对 绝 太 法 B说 ; 误 错 A项 故 国 英 纪 19世 于 始 开 , 产 生 化 业 工 是 的 映 反 料 材 D。 选 : 析 解 () 是 式 形 织 组 符 相 这 与 此 据 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 期 时 史 历 一 某 6. 坊 作 庭 家 A. 度 制 厂 工 C. D 二 织 组 断 垄 确 正 次 第 于 出 度 制 B厂 一 这 体 有 没 场 手 ; 误 错 A项 故 面 方 是 要 主 坊 作 庭 代 时 汽 蒸 入 进 命 革 业 工 始 开 英 知 可 , ” 变 转 矿 向 物 植 从 了 现 实 先 率 源 来 力 的 中 动 活 产 生 在 家 国 欧 西 “ 住 抓 C。 选 : 析 解 () 是 确 准 解 理 料 材 该 对 列 下 ” 供 提 品 成 制 余 剩 为 场 市 国 然 当 行 银 厂 电 山 矿 、 设 建 以 外 了 向 投 也 样 同 本 资 洲 欧 … 。 界 正 真 种 一 植 培 命 革 通 交 路 铁 和 输 运 洋 海 上 加 再 , 展 发 济 经 的 末 纪 19世 “ : 出 指 中 》 史 简 明 文 方 西 《 在 尔 格 瓦 皮 斯 7. 力 动 本 根 的 展 发 场 市 界 世 是 命 革 业 工 A. 程 进 的 累 积 始 原 本 资 了 快 加 场 市 界 世 B. 场 市 占 抢 外 海 到 始 开 家 国 义 主 本 资 C. 善 改 到 得 活 生 类 人 中 化 体 整 向 走 在 界 世 D. 9世 “ 中 据 根 选 : 析 解 ” 真 种 一 出 植 培 通 交 铁 和 输 运 洋 上 加 1再 确 A正 动 推 命 革 业 工 为 因 其 展 发 济 D。 现 体 未 并 善 改 活 生 民 人 于 至 起 崛 西 及 以 形 界 调 所 料 C材 辟 开 路 航 新 随 伴 是 场 市 占 强 外 海 在 家 国 义 主 ; 误 错 B项 故 累 积 始 原 的 本 资 了 成 完 经 已 早 洲 欧 , 末 纪
《4.2 第2课时 线段长短的比较与运算》教案、同步练习、导学案(3篇)

《第2课时线段长短的比较与运算》教案【教学目标】1.会画一条线段等于已知线段,会比较线段的长短;2.体验两点之间线段最短的性质,并能初步应用;(重点)3.知道两点之间的距离和线段中点的含义;(重点)4.在图形的基础上发展数学语言,体会研究几何的意义.【教学过程】一、情境导入比较两名同学的身高,可以有几种比较方法?向大家说说你的想法.二、合作探究探究点一:线段长度的比较和计算【类型一】比较线段的长短为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则( )A.AB<CD B.AB>CDC.AB=CD D.以上都有可能解析:由点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,得AB>CD,故选B.方法总结:比较线段长短时,叠合法是一种较为常用的方法.【类型二】根据线段的中点求线段的长如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如MC比NC长2cm,AC比BC长( )A.2cm B.4cm C.1cm D.6cm解析:点M是AC的中点,点N是BC的中点,∴AC=2MC,BC=2NC,∴AC -BC=(MC-NC)×2=4cm,即AC比BC长4cm,故选B.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【类型三】已知线段的比求线段的长如图,B、C两点把线段AD分成2∶3∶4的三部分,点E是线段AD的中点,EC=2cm,求:(1)AD的长;(2)AB∶BE.解析:(1)根据线段的比,可设出未知数,根据线段的和差,可得方程,根据解方程,可得x的值,根据x的值,可得AD的长度;(2)根据线段的和差,可得线段BE的长,根据比的意义,可得答案.解:(1)设AB=2x,则BC=3x,CD=4x,由线段的和差,得AD=AB+BC+CD=9x.由E为AD的中点,得ED=12AD=92x.由线段的和差得CE=DE-CD=92x-4x=x2=2.解得x=4.∴AD=9x=36(cm);(2)AB=2x=8(cm),BC=3x=12(cm).由线段的和差,得BE=BC-CE=12-2=10(cm).∴AB∶BE=8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型四】当图形不确定时求线段的长如果线段AB=6,点C在直线AB上,BC=4,D是AC的中点,那么A、D两点间的距离是( )A.5 B.2.5 C.5或2.5 D.5或1解析:本题有两种情形:(1)当点C在线段AB上时,如图:AC=AB-BC,又∵AB=6,BC=4,∴AC=6-4=2,D是AC的中点,∴AD=1;(2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=6,BC=4,∴AC=6+4=10,D是AC的中点,∴AD =5.故选D.方法总结:解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:有关线段的基本事实如图,把弯曲的河道改直,能够缩短航程,这样做的根据是( )A.两点之间,直线最短B.两点确定一条线段C.两点确定一条直线D.两点之间,线段最短解析:把弯曲的河道改直缩短航程的根据是:两点之间,线段最短.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计1.线段的比较与性质(1)比较线段:度量法和叠合法.(2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.【教学反思】本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心.《第2课时线段长短的比较与运算》同步练习能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在( )A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是( )A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为( )A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是( )A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是( )A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC= .8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D 注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5 点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm 分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.第四章几何图形初步4.2 直线、射线、线段《第1课时直线、射线、线段》导学案【学习目标】:1. 会用尺规画一条线段等于已知线段,会比较两条线段的长短.2. 理解线段等分点的意义.3. 能够运用线段的和、差、倍、分关系求线段的长度.4. 体会文字语言、符号语言和图形语言的相互转化.5. 了解两点间距离的意义,理解“两点之间,线段最短”的线段性质,并学会运用.【重点】:作一条线段等于已知线段,理解线段的和、差,掌握线段中点的概念,理解“两点之间,线段最短”的线段性质.【难点】:利用尺规作图作一条线段等于两条线段的和、差,利用线段的和、差、倍、分求线段的长度,“两点之间,线段最短”的实际运用.【课堂探究】一、要点探究探究点1:线段长短的比较合作探究:问题1 做手工时,在没有刻度尺的条件下,如何从较长的木棍上截下一段,使截下的木棒等于另一根短木棒的长?问题2 画在黑板上的线段是无法移动的,在只有圆规和无刻度的直尺的情况下,如何再画一条与它相等的线段?要点归纳:尺规作图:作一条线段(AB)等于已知线段(a)的作法:1.画射线AC;2.在射线AC上截取AB=a.问题3 若要比较两个同学的身高,有哪些办法?你能从比身高的方法中得到启示来比较两条线段的长短吗?试一试:比较线段AB,CD的长短.(1)度量法:分别测量线段AB、CD的长度,再进行比较:AB=_________;BC=_______,________>_______,所以_______>_______;(2)叠合法:将点A与点C重合,再进行比较:①若点 A 与点 C 重合,点 B 落在C,D之间,那么 AB_____CD.②若点 A 与点 C 重合,点 B 与点 D________,那么 AB = CD.③若点 A 与点 C 重合,点 B 落在 CD 的延长线上,那么 AB_________CD.探究点2:线段的和、差、倍、分画一画:在直线上画出线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是与的和,记作AC= . 如果在AB上画线段BD=b,那么线段AD就是与的差,记作AD= .观察与思考:在一张纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点处于线段的什么位置?要点归纳:如图,点 M 把线段 AB 分成相等的两条线段AM 与 BM,点 M 叫做线段 AB 的中点.几何语言:∵ M 是线段 AB 的中点∴ AM = MB = AB,或 AB = AM = MB例1 若AB = 6cm,点C是线段AB的中点,点D是线段CB的中点,求:线段AD的长是多少?例2 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.变式训练:如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长方法总结:求线段的长度时,当题目中涉及到线段长度的比例或倍分关系时,通常可以设未知数,运用方程思想求解.例3 A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是()A.1cm B.9cm C.1cm或9cm D.以上答案都不对变式训练:已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F分别是线段AB,BC的中点,则线段EF的长为()A.21cm或4cm B.20.5cm C.4.5cm D.20.5cm或4.5cm方法总结:无图时求线段的长,应注意分类讨论,一般分以下两种情况:①点在某一线段上;②点在该线段的延长线.针对训练1.如图,点B ,C 在线段AD 上则AB +BC =____;AD -CD =___;BC = ___ -___= ___ - ___.第1题图 第2题图 第3题图2.如图,点C 是线段AB 的中点,若AB =8cm ,则AC = cm.3.如图,下列说法,不能判断点C 是线段AB 的中点的是 ( )A. AC =CBB. AB =2ACC. AC +CB =ABD. CB =21AB 4. 如图,已知线段a ,b ,画一条线段AB ,使AB =2a -b .5.如图,线段AB =4cm ,BC =6cm ,若点D 为线段AB 的中点,点E 为线段BC 的中点,求线段DE 的长.探究点3:有关线段的基本事实议一议:如图:从A 地到B 地有四条道路,除它们外能否再修一条从A 地到B 地的最短路?如果能,请你联系以前所学的知识,在图上画出最短路线.想一想:1.如图,这是A,B两地之间的公路,在公路工程改造计划时,为使A,B 两地行程最短,应如何设计线路?请在图中画出,并说明理由.2. 把原来弯曲的河道改直,A,B两地间的河道长度有什么变化?第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,_____最短.2.连接两点间的线段的_______,叫做这两点的距离.针对训练1.如图,AB+BC AC,AC+BC AB,AB+AC BC(填“>”“<”或“=”). 其中蕴含的数学道理是 .2.在一条笔直的公路两侧,分别有A,B两个村庄,如图,现在要在公路l 上建一个汽车站C,使汽车站到A,B两村庄的距离之和最小,请在图中画出汽车站的位置.二、课堂小结1. 基本作图:作一条线段等于已知线段.2. 比较两条线段大小 (长短) 的方法:度量法;叠合法.3. 线段的中点.因为点M 是线段AB 的中点,所以AM =BM =21AB . (反过来说也是成立的) 4. 两点之间的所有连线中,线段最短;两点之间线段的长度 ,叫做这两点之间的距离.【当堂检测】1. 下列说法正确的是 ( )A. 两点间距离的定义是指两点之间的线段B. 两点之间的距离是指两点之间的直线C. 两点之间的距离是指连接两点之间线段的长度D. 两点之间的距离是两点之间的直线的长度2. 如图,AC =DB ,则图中另外两条相等的线段为_____________.第2题图 第3题图3.已知线段AB = 6 cm ,延长AB 到C ,使BC =2AB ,若D 为AB 的中点,则线段DC 的长为_____________.4.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别是-3,1,若BC=5,则AC=_________.5. 如图:AB =4cm ,BC =3cm ,如果点O 是线段AC 的中点.求线段OB 的长度.6.已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6,求CM和AD的长.。
北师大版七年级上4.2比较线段的长短

北师大版七年级上4.2比较线段的长短知识点总结1、线段的性质:两点之间,线段最短。
2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。
3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。
5、尺规作图:用没有刻度的直尺和圆规作图6、用尺规作线段:(1)作一条线段等于已知线段;(2)作一条线段等于已知线段的二倍;(3)作一条线段等于已知线段的和或差。
其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。
尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.3. 用尺规作线段或比较线段(1)作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.要点诠释:几何中连结两点,即画出以这两点为端点的线段.(2)线段的比较:叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?【答案与解析】解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.思维导图教学设计一、教材分析:1、教材的地位和作用本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。
七年级数学上册《线段的长短比较》教案、教学设计

2.教学过程:
(1)导入新课:通过展示生活中线段长短比较的实际问题,引导学生思考如何比较线段的长短。
(2)新课讲解:讲解线段的概念,引导学生学习线段长短比较的方法,如直接比较、间接比较等。
(3)实例演示:利用教具、多媒体等展示线段长短比较的实例,让学生直观地理解比较方法。
c.利用数学性质比较:如线段的等分点、相似三角形等。
4.通过实例演示,让学生理解并掌握各种比较方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组发放一张练习纸,上面有若干个线段,要求学生用不同的方法比较线段的长短。
2.学生在小组内讨论、交流,共同完成练习纸上的任务。
3.教师巡回指导,关注学生的讨论过程,对学生的疑问进行解答。
二、学情分析
七年级的学生在数学学习方面,已经具备了一定的几何图形识别和直观判断能力,但对于线段长短比较的严谨方法和逻辑推理过程仍需进一步培养。他们在小学阶段接触过简单的长度测量和比较,但对于线段概念的理解和应用仍较为浅显。此外,学生的空间想象力、逻辑思维能力和解决问题的策略选择等方面存在一定差异。
在本章节的学习中,大部分学生能够积极参与课堂讨论,但对于一些理解较为抽象的概念和方法,部分学生可能会感到困惑。因此,教师需要关注学生的学习起点,从学生的实际出发,采用生动形象的教学手段,降低学习难度,帮助学生逐步建立起线段长短比较的概念和方法。
五、作业布置
为了巩固学生对线段长短比较知识的学习,培养他们运用所学解决实际问题的能力,特布置以下作业:
1.完成课本第chapter页的练习题,包括以下题型:
(1)直接比较线段长短;
【最新北师大版精选】北师大初中数学七上《4.2 比较线段的长短》word教案 (2).doc
4.2比较线段的长短
教学
目标
1、知识与技能目标:
借助于具体情境,了解“两点之间线段最短”的性质;能借助尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段;理解线段中点的概念,会用数量关系表示中点及进行相应的计算。
2、过程与方法目标:
感受用类比的思想比较两条线段的大小,经过体会由感性认识上升到理性认识的过程,发展学生的符号感和数感;通过自己动手演示,探索、发现规律,了解比较线段长短的方法,并能用所学知识解决实际问题;学习使用几何工具操作方法,发展几何图形意识和探究意识。
2、叠合法——从“形”的角度比较。工具:圆规
三、练一练
四、中点定义及表示方法。
情境3:
我们将一根绳子对折,可以得到一个点,这个点将这条绳子分成了两根相等的绳子。如果我们把这条绳子看作一条线段,这个点就把这条线段分成了两条相等的线段,这个点就是这条线段的中点。
五、中点应用
六、小结
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
3、情感态度与价值观:
在积极参与、合作交流中体验到教学活动充满着探索和创造,在学习中获得成功的经验,提高学习数学的兴趣;
教
材
分析
重点
线段长短的两种比较方法;线段中点的概念及表示方法。
难点
叠合法比较两条线段大小;会画一条线段等于已知线段。
教具
电脑、投影仪
教
学
过
程
一、情境1.
如图,小明到小英家有四条路可走,有一天小明有急事找小英,你认为走哪条路最快?为什么?
你能得到什么结论?
线段的性质,两点间的距离。
结论:两点之间的所有连线中,线段最短。
简写:两点之间线段最短。
北师大版数学七年级上册4.2 比较线段的长短1教案与反思
4.2 比较线段的长短满招损,谦受益。
《尚书》怀辰学校陈海峰组长前事不忘,后事之师。
《战国策·赵策》圣哲学校蔡雨欣物以类聚,人以群分。
《易经》如海学校陈泽学1.了解“两点之间,线段最短”.2.能借助尺、规等工具比较两条线段的大小,能用圆规作一条线段等于已知线段.3.了解线段的中点及线段的和、差、倍、分的意义,并能根据条件求出线段的长.一、情境导入爱护花草树木是我们每个人都应具备的优秀品质.从教学楼到图书馆,总有少数同学不走人行道而横穿草坪(如图),同学们,你觉得这样做对吗?为了解释这种现象,学习了下面的知识,你就会知道.二、合作探究探究点一:线段长度的计算【类型一】根据线段的中点求线段的长如图,若线段AB=20cm,点C是线段AB上一点,M、N分别是线段AC、BC的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其它条件不变,你能猜出MN的长度吗?请用简洁的话表达你发现的规律.解析:(1)先根据M、N分别是线段AC、BC的中点得出MC=12AC,CN=12BC,再由线段AB=20cm即可求出结果;(2)根据(1)中的条件可得出结论.解:(1)∵M、N分别是线段AC、BC的中点,∴MC=12AC,CN=12BC,∵线段AB=20cm,∴MN=MC+CN=12(AC+BC)=12AB=10cm;(2)由(1)得,MN=MC+CN=12(AC+BC)=12AB=12a.即MN始终等于AB的一半.方法总结:根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【类型二】已知线段的比求线段的长如图,B、C两点把线段AD分成2∶3∶4的三部分,点E线段AD的中点,EC=2cm,求:(1)AD的长(2)AB∶BE.解析:(1)根据线段的比,可设未知数,根据线段的和差,可列方程,根据解方程,可得x的值,根据x的值,可得AD的长度;(2)根据线段的和差,可得线段BE的长,根据比的意义,可得出答案.解:(1)设AB=2x,则BC=3x,CD=4x,由线段的和差,得AD=AB+BC+CD=9x.由E为AD的中点,得ED=12AD=92x.由线段的和差得,CE=DE-CD=9x-4x=x2=2.解x=4.∴AD=9x=36(cm).(2)AB=2x8,BC=3x=12.由线段的和差,得BE=BC-CE=12-2=10(cm).∴AB∶BE=8∶10=4∶5.方法总结:在遇到线段之间比的问题时,往往设出未知数,列方程解答.【类型三】当图不确定时求线段的长如果线段AB6,点C在直线AB上,BC=4,D是AC的中点那么A、D两点间的距离是()A.5B.2.C.5或2.5D.5或1解析:本题有两种情形:(1)点C在线段AB上时,如图:AC=AB-BC,∵AB=6,BC=4,∴AC=6-4=2,∵D是AC的中点,∴AD=1;(2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=6,BC=4,∴A=6+4=10,∵DAC的中点,∴AD=.故选D.方法结:解答本题关键是正确画图本题渗透了分类讨论的想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.探究点二:线段性质的应用如图,把弯曲的河道改直,能够缩短航程,这样做的根据是()A.两点之间,直线最短B.两点确定一条线段C.两点确定一条线D.两点之间,线段最短解析:把弯的河道改直缩短航程的根据是:两点之间,线段最.故选D.方法总结:本题考查了线段的性质,熟记两点之间线段最短是解题的关键.三、板书设计教学过程中,强调学生通过想象、合作交流等数学探究过程,了解线段大小的比较方法,学习使用几何工具的操作方法,发展几何图形意识和探究意识,激发学生解决问题的积极性和主动性.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。
北师大初中数学七上《42比较线段的长短》word教案(8)
4.2 比较线段的长短教案1.借助具体情境,了解“两点之间线段最短”的性质.2.能借助直尺、圆规等工具比较两条线段的长短.3.能用圆规作一条线段等于已知线段.4.理解两点间距离的概念和线段中点的概念及表示方法.教学重点与难点:重点:掌握线段比较的正确方法,线段中点的概念及表示方法.难点:线段中点的概念及表示方法.教法及学法指导:教法:启发式教学法.学法:自主探索、合作交流.课前准备:多媒体课件.教学过程:一.巧设情境 引入新知生:动手画出(1)直线AB ; (2)射线OM ; (3)线段CD.图1生:学生发言,易于得出线段AC 最短.图2生:因为走的路程最短.生:结论:两点之间的所有连线中,线段最短. 简述为:两点之间线段最短.师:两点之间线段的长度,叫做这两点之间的距离.设计意图:利用生活中可以感知的的情境,极大激发学习兴趣,使学生感受生活中所蕴含的数学道理.二.小组合作 共同探索 FEDC B A图1 图2 图3生:讨论交流,得出答案:图1直接观察就可以比较;图2观察难以判断,可以测量或将一端重合;图3 可以用绳子或刻度尺测量.师:把两棵树的高度、两根铅笔的长、窗框相邻两边的长看成两条线段,怎么比较它们生:通过小组讨论交流得出如果两条线段长短相差很大,直接观察就可以比较.如果直接观察难以判断,我们可以有两种比较方法:第一种方法是:度量法. 即用刻度尺量出两条线段的长度,再进行比较第二种方法是:叠合法. 方法:先把两条线段的一端重合,另一端落在同侧,根据另一端落下的位置,来比较. 注意:起点对齐,看终点.这时我们可以借助圆规来完成.师:画出两条线段,讨论比较方法.生:同位之间互考,一生上黑板演示两种比较方法.线段AB 与线段CD 相等, 线段AB 大于线段CD , 线段AB 与小于线段CD ,记作AB=CD 记作AB>CD 记作AB<CD练习:176页知识技能第1题 A(C) A(C) A(C) B(D ) D DB B设计意图:在具体问题中设问,在解答问题中形成认知冲突,激发学生的解决问题的热情.让学生感受从实际问题中抽象出所要比较的线段大小的的过程.三. 动手操作,探索新知:(黑板上画出已知线段,同时要求学生在纸上画出已知线段,并尝试.)小组合作交流画法:生:上黑板演示并说明作图过程.师生归纳出三步骤:1、作射线A ’C ’;2、用圆规在射线A ’C ’上截取A ’B ’=AB ;线段AB 就是所求作的线段.动手试试:随堂练习176页2题.设计意图:让学生自己在动手操作中去真正的感受用尺、规作图,并用语言口头表述做法,并开始有作图痕迹意识.用尺规作一条线段等于已知线段,其实就是“叠合法”的具体运用。
新北师版初中数学七年级上册4.2比较线段的长短2公开课优质课教学设计
4.2 比较线段的长短一、教学目标1.使学生在理解线段概念的基础上,了解线段的长度可以用正数表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.掌握比较线段长短的两种方法3.会用直尺和圆规画一条线段等于已知线段4.理解线段和、差的概念及画法5.进一步培养学生的动手能力、观察能力。
二、教学重点线段长短的两种比较方法三、教学难点对线段与数之间的认识,掌握线段比较的正确方法四、教具准备四支筷子(三红一绿,长短不一)、圆规、直尺五、教学过程(一)创设情境教师:老师手中有两只筷子(一红一绿)如何比较它们的长短?学生:先移动一根筷子,与另一根筷子一头对齐,两根棒靠紧,观察另一头的位置,多出的较长。
教师:比较长短的关键是什么?学生:必有一头对齐教师:除此之外,还有其他的方法吗?学生:可以用刻度尺分别测出两根筷子的长度,然后比较两个数值教师:我们可以用类似于比筷子的两种方法比较两条线段的长短(二)新课教学让学生在本子上画出AB、CD两条线段。
(长短不一)1.“议一议”怎样比较两条线段的长短?先让学生用自己的语言描述比较的过程,然后教师边演示边用规范的几何语言描述叠合法:把线段AB、CD放在同一直线上比较,步骤有三:①将线段AB的端点A与线段CD的端点C重合②将线段AB沿着线段CD的方向落下③若端点B与端点D重合,则得到线段AB等于线段CD,可记做:AB=CD(几何语言)若端点B落在D内,则得到线段AB小于线段CD,可记做:AB<CD若端点B落在D外,则得到线段AB大于线段CD,可记做:AB>CD如图1CD C(注:讲此方法时,教师应采用圆规截取线段比较形象,还需向学生讲明从“形”角度去比较线段的长短)度量法:用刻度尺分别量出线段AB和线段CD的长度,再将长度进行比较。
总结;用度量法比较线段大小,其实就是比较两个数的大小。
(从“数”的角度去比较线段的长短)2.“做一做”P141随堂练习第1题(注意:可先让学生观察,再回答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学而不思则罔,思而不学则殆。
精品教学设计
4.2 比较线段的长短
【学习目标】
1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质.
2.能借助直尺、圆规等工具比较两条线段的长短.
3.能用直尺和圆规作一条线段等于已知线段.
【学习重点】
线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关
系.
【学习难点】
叠合法比较两条线段大小;会画一条线段等于已知线段.
行为提示:点燃激情,引发学生思考本节课学什么.
行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了
的小组长督促组员迅速完成.情景导入 生成问题
把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的
路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?
【说明】通过生活中常见的例子,体会数学与生活的紧密联系,激发学生的学习兴
趣.
自学互研 生成能力
知识模块一 线段公理
问题1 教材第110页图4-6及有关图的内容.
学而不思则罔,思而不学则殆。
精品教学设计
【说明】学生通过观察,实际操作,很容易得出正确的结论.
说明:学生通过操作,掌握作一条线段等于已知线段的方法.
行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导
其他组进行补充、纠错,最后进行总结评分.
展示目标:知识模块一主要展示线段公理的内容;知识模块二主要展示线段大小的比
较方法;知识模块三主要展示用尺规作一条线段等于已知线段的方法;知识模块四主要展
示线段中点的定义、性质及其应用. 【归纳结论】两点之间的所有连线中,线段最
短.这一事实可以简述为:两点之间,线段最短.我们把两点之间线段的长度,叫做这两
点之间的距离.
知识模块二 线段的比较
问题2 教材第110页的“议一议”.
【说明】学生通过实物的比较到线段的比较,归纳比较两条线段长短的方法.
【归纳结论】如果直接观察难以判断,我们可以用两种方法进行比较:一种方法是用
刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另
一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.
知识模块三 作一条线段等于已知线段
问题3 如图,已知线段AB,用尺规作一条线段等于已知线段AB.
学而不思则罔,思而不学则殆。
精品教学设计
作图规律如下:
(1)作射线A′C′(如图所示);
(2)用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所求作的线段.
知识模块四 线段中点定义及线段中点性质的运用
师生合作共同完成下面问题的学习.
如图,点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点,这
时AM=BM=12AB(或AB=2AM=2BM).
问题4 在直线l上顺次取A、B、C三点,使得AB=4cm,BC=3cm.如果点O是线段
AC的中点,那么线段OB的长度是多少?
【说明】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质.
【归纳结论】对线段的和、差、中点进行计算时,应注意数形结合,根据已知条件画
出图形再加以分析.
交流展示 生成新知
1.小组共同探讨“自学互研”部分,将疑难问题板演到黑板上,小组间就上述疑难问
题相互释疑;
2.组长带领组员参照展示方案,分配好展示任务,同时进行组内小展示,将形成的
展示方案在黑板上进行板书规划.
知识模块一 线段公理
知识模块二 线段的比较
知识模块三 作一条线段等于已知线段
学而不思则罔,思而不学则殆。
精品教学设计
知识模块四 线段中点定义及线段中点性质的运用
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思 查漏补缺
1.收获:
________________________________________________________________________
2.存在困惑:
________________________________________________________________________