八年级下学期期中考试数学试卷(新人教版)
人教版八年级下册数学《期中考试试卷》含答案

故选D.
【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()
A.变小B.不变C.变大D.无法判断
7.下列命题是假命题的为()
A. 直角三角形中两条直角边的平方和等于斜边的平方
B. 一组对边相等,一组对角相等的四边形是平行四边形
C. 三角形 中位线平行于三角形的第三边
D. 对角线相等且互相平分的四边形是矩形
8.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样 数量关系,直接写出结论不必证明.
答案与解析
一.选择题
1.下列二次根式中,是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
利用最简二次根式的定义判断即可.
【详解】A、 =3,不合题意,
13.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为_____cm.
14.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.
27.如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上 点E处,折痕AF交BC于点F,求FC的长.
人教版八年级(下)期中数学试卷(4)

人教版八年级(下)期中数学试卷(4)一、选择题(本大题满分45分,共15小题,每小题3分)1.(3分)下列式子中,是最简二次根式的是()A.B.C.D.2.(3分)如图,BD是平行四边形ABCD的对角线,∠C=58°,则下列判断正确的是()A.∠A=58°B.∠ABD=58°C.∠CBD=58°D.∠ABC=132°3.(3分)如图,原来从A村到B村,需沿道路A→C→B(∠C=90°)绕过村庄间的一座大山.打通A,B间的隧道后,就可直接从A村到B村.已知AC=3km,BC=4km,那么,打通隧道后从A村到B村比原来减少的路程为()A.7 km B.5 km C.3 km D.2 km4.(3分)要使式子在实数范围内有意义,则x的取值范围是()A.x≥1B.x<1C.x≤1D.x≠15.(3分)正方形和矩形都具有的性质是()A.对角线相互平分且垂直B.对角线相互平分且平分一组对角C.对角线相等且相互垂直D.对角线相等且相互平分6.(3分)下列各式中,与是同类二次根式的是()A.B.C.D.7.(3分)如图,菱形ABCD中,对角线AC、BD交于点O,点E是BC的中点,若OE=3,则BC的长为()A.3B.6C.9D.128.(3分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO9.(3分)2002年8月在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为()A.13B.19C.25D.16910.(3分)若是整数,则正整数n的最小值是()A.2B.3C.4D.511.(3分)如图,有两棵树,一棵高10米,另一棵高5米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.13米D.14米12.(3分)如图,若四边形ABCD是菱形,则下列结论不成立的是()A.AC=BD B.AO⊥BO C.∠BAD=∠BCD D.AB=AD13.(3分)如图,四边形ABCD是正方形,E,F分别是CD,BC上的点,∠DAE=∠EAF =∠F AB,则∠AEF的度数是()A.30°B.45°C.60°D.75°14.(3分)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形15.(3分)已知a<b,则化简二次根式的正确结果是()A.B.C.D.二、解答题(本大题满分75分,共9小题)16.(6分)计算:.17.(6分)已知:x=+1,y=﹣1,求x2+2xy+y2的值.18.(7分)已知:如图,▱ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.19.(7分)如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?20.(8分)由于全球气候变暖,导致一些冰川融化消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上丛生.每一丛苔藓都会近似长成圆形,每丛苔藓的直径d(单位:厘米)与冰川消失之后经过的时间t(单位:年)近似地满足关系式.(1)求关系中t的取值范围;(2)计算冰川消失21年后,一丛苔藓的直径;(3)如果测得一丛苔藓的直径是42厘米,那么冰川大约是在多少年前消失的?21.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).22.(10分)开学伊始,岗上中学进行了规模盛大的读书节活动,芝之同学奉命购买A,B 两种书籍若干本作为优胜者奖品,按照新华书店的初步报价,芝之同学预算只需925元即可买齐规定的数量.当她去新华书店付款时,发现预算时弄反了这两种书籍的单价,这样实际付款比预算反而少了100元,于是芝之同学用这个100元又购买了A,B这两种书籍各两本,这样刚好花完预算资金.(1)购买A,B两种书籍各一本共需要多少元?(2)芝之同学实际购买了A,B两种书籍共多少本?23.(11分)如图,矩形ABCD中,点E、F分别在边AB与CD上,点G、H在对角线AC 上,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,AB=8,BC=4,AC=4AG;①求AE的长;②求证:四边形EGFH是正方形.24.(12分)在平面直角坐标系中,A(0,4)、B(4,4)、C(4,0),点D是x轴正半轴上一动点,AD⊥DE,且AD=DE,连接CE.(1)如图1,四边形AOCB的形状是;(不必证明)(2)如图1,求证:CE是四边形AOCB外角的平分线;(3)点D在x轴正半轴上运动,BP∥DE交y轴于点P.四边形PDEB能成为菱形吗?如果可以,求出点P的坐标;如果不能,说明理由.。
人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
最新人教版八年级(下)期中模拟数学试卷(含答案)

最新人教版八年级(下)期中模拟数学试卷(含答案)一、选择题(共10小题,每小题3分,共30分)下列各题均有四个备选选项,其中有且只有一个正确,请在答题卷上将正确答案的字母涂黑.1x 的取值范围是A .1x ≥B . 1x > C. 1x ≤ D .1x < 2.下列计算错误..的是A.B.C. ÷D. 3.下列各组数是三角形的三边,不能组成直角三角形的一组数是 A. 3,4,5 B. 6,8,10 C. 1,1,2D. ,,4.点(3,-1)到原点的距离为 A.B .3C .1 D5.已知实数x 、y()210y +=,则x ﹣y 等于A. 3B. ﹣3C. 1D. ﹣16.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠A BE 为A. 100B.150C.200D. 2507.()21计算的结果为A.28-.10-28-.10-8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为 A1) B .(2,1)C .(2D.(19.如图,任意四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,对于四边形EFGH 的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各边中点,且AC=BD 时,四边形EFGH 为菱形EB .当E ,F ,G ,H 是各边中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 不是各边中点时,四边形EFGH 可以为平行四边形 D .当E ,F ,G ,H 不是各边中点时,四边形EFGH 不可能为菱形10.如图,三个相同的正方形拼成一个矩形ABCD ,点E 在BC 上,BE=2,EC=10,FM ⊥AE 交AB 于F ,交CD 的延长线于M ,则FM 的长为A .58B .56C .262D .372二、填空题(共6小题,每小题3分,共18分) 11= .12.在实数范围内分解因式:52x = .13.在菱形ABCD 中,对角线AC =2,BD =4, 则菱形ABCD 的周长是 . 14.如图,在矩形ABCD 中,∠DAC=65°,点E 是CD 上一点,BE 交AC 于点F ,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C ′处,则∠AFC ′= .15.AD 是△ABC 的高,AB=4,AC=5,BC=6,则BD= .16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC 的值为__________.三、解答题(共8小题,共72分)ABCD第15题图17.(本题8分)计算:(1) (2))(8381412---.18.(本题8分)已知:1a =,1b =.求:(1)a b -的值;(2)ab 的值;(3)a bb a+的值.19.(本题8分)如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行163n mile,“海天”号每小时航行 4n mile.它们离开港口一个半小时后分别位于点Q 、R 处,且相距10n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?20.(本题8分)已知:如图,在ABCD 中,延长线AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.21.(本题8分)如图,每个小正方形的边长都为1.ABODFCE(1)请直接写出:四边形ABCD 的面积是 ; (2)求点B 到AD 的距离.22.(本题10分)如图,在矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(1)若PCD ∆是等腰三角形时,求AP 的长; (2)求证:PC ⊥CF .23.(本题10分)已知在Rt △ABC 中,∠ACB=90°.(1)如图1,点O 是AB 的中点,OM ⊥AC 于M ,求证:AM=CM ;CBDA2017∼2018学年度下学期八年级期中考试数学参考答案1 .A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.2 12.(x x 13. 14. 40︒ 15. 9416. 217.(1)解:原式=263⨯=. (4分) (2)解:原式=(8分)18.(1) 解:原式)11-=2-. (2分)(2) 解:原式=)11=1. (4分)(3)解:原式2211(8分)19.根据题意,161.58,4 1.56,10.3PQ PR QR =⨯==⨯==(2分)222228610,P QP RQ R +=∴+=.(4分) 90QPR ∴∠=︒.(6分)由"远航"号沿东北方向航行可知,45,45NPQ RPN ∠=︒∴∠=︒.(7分) 答:"海天"号沿西北方向航行.(8分)20.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥DC ,(2分)∴∠F =∠E ,∠DCA =∠CAB ,(4分) ∵AB =CD ,FD =BE ,∴CF =AE ,(5分) ∴△COF ≌△AOE ,(7分) ∴OE =OF .(8分)(方法二:连接FA 、CE,证四边形FAEC 是平行四边形,也可.)21 . 解:(1)14.5 (4分)(2)连BD ,设B 到AD 的距离为d ,可求90BCD ∠=︒ , AD ==5分)152B C D S=⨯=(6分)114.552ABD S h ∆∴=-=(7分) h ∴=(8分)22.解:(1)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;(1分)要使△PCD 是等腰三角形,有如下三种情况: ①当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2分)②当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°, ∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3分) ③当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = 185= ,∴PC=2CQ =365,∴AP=AC-PC=145 .(6分)综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145.(2)连接PF 、DE ,记PF 与DE 的交点为O ,连接OC , 四边形ABCD 是矩形,190,,2BCD OE OD OC ED ∴∠=︒=∴=(7分)在矩形PEFD中,PF DE =,∴12OC PF =,(8分)12OP OF PF ==,OC OP OF ∴==, OCF OFC ∴∠=∠,OCP OPC ∠=∠(9分)又180OPC OFC PCF ∠+∠+∠=︒,22180O C P O C F ∴∠+∠=︒,90PCF ∴∠=︒(10分),ACB ∠=O A 又OM AC ⊥ ②证明:取AB 的中点E ,AC 的中点F ;连接EF,DF ,过P 作PH AQ ⊥于H ,在Rt APH ∆中 2AP t = 30A ∠=︒,AH ∴=又CQ =, AF=CFHF QF ∴=(7分) 又∵D 是PQ 的中点 DF PH ∴PH AC ⊥90ACB ∠=︒PH BC ∴DF BC ∴(8分) ∵E 、F 分别是AB 、AC 的中点 EF BC ∴(9分)∴D 在△ABC 的中位线EF 上.(10分)24.证明:(1)∵EM 垂直平分BD 90EOD MOB ∴∠=∠=︒ OB=OD ∵四边形ABCD 是平行四边形 AD BC ∴ ADB CBD ∴∠=∠ ∴△DOE ≌△BOM ∴OE=OM(2分)又OB=OD EM ⊥BD ∴四边形BMDE 是菱形(3分)(2)延长MN 分别交AB 、AD 的延长线于点E 、F ,作M A F M A E'∠=∠,截取AM AM '=,连接,M N M F '',则有45AFN FND CNM CMN BME E ∠=∠=∠=∠=∠=∠=︒, 45M AN M AF FAN MAE FAN MAN ''∠=∠+∠=∠+∠=︒=∠,又∵AM AM '=AN AN =,MAN ∴∆≌M AN '∆(4分) M N MN '∴=,45MFA E ︒∠=∠= AF AE ∴= 又∵AM AM '= MAF MAE '∠=∠MAF '∴∆≌MAE ∆(5分) ∴M F ME '= M FA E '∠=∠ 则90M FN '∠=︒, 在Rt M FN '∆中,222M N FN M F ''=+,(6分)在Rt MBE ∆中,222ME MB =, 在Rt FDN ∆中,222FN DN =,在Rt MCN ∆中,222MN MC =,2222222M C M N M NBM D N '∴===+,222MC BM DN ∴=+(8分)(3)在矩形ABCD 及四边形EFMN 是平行四边形可证明AF=CN, (9分)如图,延长DC 至N ’,截CN ’=CN,连接FN ’交BC 于M ’,连接MN ’、AC.则有MN ’=MN, 由三角形中两边之和大于第三边易知,无论F 点在什么位置,点M 在M ’处时 FM+MN=FN ’=AC=, (11分) 故四边形EFMN 周长的最小值为.(12分)最新八年级下册数学期中考试题及答案AD FB N 图3CM EM人教版八年级下学期期中数学试卷八年级数学一、选择题1、若二次根式5-x 有意义,则x 的取值范围是( a )A 、5≥xB 、5≤xC 、5 xD 、5 x 2、下面各式是最简二次根式的是( d )A 、8B 、21C 、9D 、2 3、下列各组数中不能作为直角三角形的三边长的是( c )A 、6,8,10B 、5,12,13C 、1.5,2,3D 、9,12,15 4、下列计算正确的是( c ) A 、532=+ B 、3223=- C 、632=⨯ D 、322324= 5、在平面直角坐标系中,点P (1,-3)到原点的距离是( b )A 、4B 、10C 、22D 、无法确定 6、如图所示,在平行四边形ABCD 中,已知AC=3cm ,若△ABC 的周长为9cm , 则平行四边形的周长为( b )A 、6cmB 、12cmC 、16cmD 、11cm 7、下列命题是真命题的是( c )A 、一组对边平行,另一组对边相等的四边形是平行四边形B 、对角线互相垂直的平行四边形是矩形C 、四条边相等的四边形是菱形D 、对角线相等的矩形是正方形8、甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发, 他们离出发地的距离s (km )和骑行时间t (h )之间的函数关系如图所示, 根据图像信息,以上说法正确的是( d )A 、甲和乙两人同时到达目的地;B 、甲在途中停留了0.5h;C 、相遇后,甲的速度小于乙的速度;D 、他们都骑了20km9、已知菱形的面积为24cm ²,一条对角线长为6cm ,则这个菱形的边长是( b )cm A 、8 B 、5 C 、10 D 、410如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于 F ,连接EF ,给出下列四个结论:①AP=EF,②△APD 一定是等腰三角形,G ,③∠PFE=∠BAP,④PD=2EC.其中正确结论的序号是( d ) A 、①②④ B 、②④ C 、①②③ D 、①③④ 二、填空题11、=÷218__3_____12、在实数范围内因式分解:32-x =__)3)(3(-+x x _13、如图,在直角三角形ABC 中,点D 为AC 的中点,BC=3,AB=4,则BD=____2.5______ 14、“全等三角形的对应角相等”的逆命题 对应角相等的三角形是全等三角形 ,这个命题是__假__命题。
最新人教版八年级下册数学《期中考试题》(附答案)

2021年人教版数学八年级下册期中测试学校________ 班级________ 姓名________ 成绩________一. 选择题中自变量x的取值范围为()1.函数y x-1A. x>1B. x≠1C. x≥1D. 任意实数2.下列图形中,是轴对称图形的是()A. B. B. C. D.3.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )A. 5cmB. 4cmC. 3cmD. 不能确定4.如图,在□ABCD中,BE平分∠ABC,若∠D=64°,则∠AEB等于()A. 64°B. 32°C. 116°D. 30°5.下列能够判定一个四边形是平行四边形的条件是()A. 一对邻角的和为180°B. 两条对角线互相垂直C. 一组对角相等D. 两条对角线互相平分6.正比例函数y=2x的图象向左平移1个单位后所得函数解析式为( )A. y=2x+1B. y=2x﹣1C. y=2x+2D. y=2x﹣27.某校要从四名学生中选拔一名参加市风华小主播大赛,在校的挑战赛中,四名学生的平均成绩x 和方差如表所示,如果要选一名成绩高且发挥稳定的学生参赛,那么应选的学生是( )A. 甲B. 乙C. 丙D. 丁 8.对一组数据:2,2,1,3,3 分析不正确的是( ) A. 中位数是1B. 众数是3和2C. 平均数是2.2D. 方差是0.56 9.检查一个门框是否为矩形,下列方法中正确的是( ) A. 测量两条对角线,是否相等 B. 测量两条对角线,是否互相平分 C. 测量门框的三个角,是否都是直角 D. 测量两条对角线,是否互相垂直10.根据如图所示的程序计算:若输入自变量x 的值为32,则输出的结果是( )A.72B.94C.12D.3211.下列关于一次函数 y =-x +2 的图象性质的说法中,不正确的是( ) A. 直线与 x 轴交点的坐标是(0,2) B. 直线经过第一、二、四象限 C. y 随 x 的增大而减小D. 与坐标轴围成的三角形面积为 212.如图,在一个内角为60°菱形 ABCD 中,AB =2,点P 以每秒1cm 的速度从点A 出发,沿AD→DC 的路径运动,到点C 停止,过点P 作PQ ⊥BD ,PQ 与边AD (或边CD )交于点Q ,△ABQ 的面积y (cm 2)与点P 的运动时间x (秒)的函数图象大致是( )A. B. C. D.二. 填空题13.已知y与x成正比例,且x=1时,y=-2,则当x=-1 时,y=___________.14.如图,在Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,则AB=__________.15.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是________.16.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.17.如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.18.如图,平面直角坐标系中,正方形OBAC的顶点A的坐标为(8,8),点D,E分别为边AB,AC上的动点,且不与端点重合,连接OD,OE,分别交对角线BC于点M,N,连接DE,若∠DOE=45°,以下说法正确的是________(填序号).①点O到线段DE的距离为8;②△ADE的周长为16;③当DE∥BC时,直线OE的解析式为y=22x;④以三条线段BM,MN,NC为边组成的三角形是直角三角形.三. 解答题19.已知函数y=(2-m)x+m-1,若函数图象过原点,求出此函数的解析式.20.如图,直线l1:y=kx+b(k≠0)与x轴交于点A(3,O),与y轴交于点B(0,3),直线l 2:y=2x与直线l1相交于点C.(1)求直线l1的解析式;(2)求点C的坐标和△AOC的面积.21.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.已知一次函数y=kx+b图象平行于y=-2x+1,且过点(2,-1),求:(1)这个一次函数的解析式;(2)画出该一次函数图象:根据图象回答:当x取何值时不等式kx+b>3.23.如图1,□ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD 是菱形;(2)若∠ADC=60°,BE=2,求BD的长.24.4月23日是世界读书日,某校为了营造读书好、好读书、读好书的书香校园,决定采购《简·爱》、《小词大雅》两种图书供学生阅读,通过了解,购买2本《简·爱》和3本《小词大雅》共需168元,购买3本《简·爱》和2本《小词大雅》共需172元.(1)求一本《简·爱》和《小词大雅》的价格分别是多少元;(2)若该校计划购买两种图书共300本,其中《简·爱》的数量不多于《小词大雅》数量,且不少于100件.购买《简·爱》m本,求总费用W元与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,学校在团购书籍时,商家店铺中《简·爱》正进行书籍促销活动,每本书箱降价a元(0<a <8),求学校购书的的最低总费用W1的值.25.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx-4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.26.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在平行四边形,矩形,菱形、正方形中,一定是十字形的有 ; ②若凸四边形ABCD 是十字形,AC =a ,BD =b ,则该四边形的面积为 ;(2)如图1,以等腰Rt △ABC 的底边AC 为边作等边三角形△ACD ,连接BD ,交AC 于点O , 当 3-1≤S 四边形≤23-2 时,求BD 的取值范围;(3)如图2,以十字形ABCD 的对角线AC 与BD 为坐标轴,建立如图所示的平面直角坐标系xOy ,若计 十字形ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为:S 1,S 2,S 3,S 4,且同时满足列四个条件:12S S S =;② 4S S S =ABCD 的周长为32:④∠ABC =60°; 若E 为OA的中点,F 为线段BO 上一动点,连接EF ,动点P 从点E 出发,以1cm/s 的速度沿线段EF 匀速运动到点F ,再以2cms 的速度沿线段FB 匀速运动到点B ,到达点B 后停止运动,当点P 沿上述路线运动 到点B 所需要的时间最短时,求点P 走完全程所需的时间及直线EF 的解析式.答案与解析一. 选择题中自变量x的取值范围为()1.函数y x-1A. x>1B. x≠1C. x≥1D. 任意实数【答案】C【解析】【分析】由题意直接根据被开方数大于等于0列不等式进行计算求解即可.【详解】解:由题意得,x-1≥0,解得:x≥1.故选:C.【点睛】本题考查函数自变量的范围,注意掌握一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.2.下列图形中,是轴对称图形的是()A. B. B. C. D.【答案】A【解析】【分析】由题意直接根据轴对称图形的概念对各选项进行依次判断即可.【详解】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形.故选:A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )A. 5cmB. 4cmC. 3cmD. 不能确定【答案】B【解析】【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC=22-=22AB BC-=4(cm),53∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.4.如图,在□ABCD中,BE平分∠ABC,若∠D=64°,则∠AEB等于()A. 64°B. 32°C. 116°D. 30°【答案】B【解析】【分析】∠,再运用平行线性质和角平分线性质进行分析即可求解.由题意根据对角相等得出ABC【详解】解:∵四边形ABCD 是平行四边形,∠D =64°, ∴64ABC D ∠=∠︒=, ∵BE 平分∠ABC ,//AD BC , ∴16432,,2ABE EBC AEB EBC ︒︒∠=∠=⨯=∠=∠ ∴32AEB ABE ︒∠=∠=. 故选:B.【点睛】本题考查平行四边形相关,熟练掌握平行四边形对角相等以及平行线性质和角平分线的性质是解题的关键.5.下列能够判定一个四边形是平行四边形的条件是( ) A. 一对邻角的和为180° B. 两条对角线互相垂直 C. 一组对角相等 D. 两条对角线互相平分【答案】D 【解析】 【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可. 【详解】解:根据平行四边形的判定可知D 正确. 故选:D .【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法. 6.正比例函数y =2x 的图象向左平移1个单位后所得函数解析式为( ) A. y =2x +1 B. y =2x ﹣1C. y =2x +2D. y =2x ﹣2【答案】C 【解析】 【分析】依据一次函数图象平移的规律(左加右减)即可得出平移后的函数解析式.【详解】正比例函数y =2x 的图象向左平移1个单位后所得函数解析式为y =2(x +1), 即y =2x +2.故选:C.【点睛】本题主要考查了一次函数图象的性质,熟练掌握相关概念是解题关键.7.某校要从四名学生中选拔一名参加市风华小主播大赛,在校的挑战赛中,四名学生的平均成绩x和方差如表所示,如果要选一名成绩高且发挥稳定的学生参赛,那么应选的学生是()A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】根据题意首先比较出四名学生的平均成绩的高低,判断出乙、丙两名学生的平均成绩高于甲、丁两名学生;然后比较出乙、丙的方差,判断出发挥稳定的是哪名学生,即可确定应选择哪名学生去参赛.【详解】解:∵9>8,∴乙、丙两名学生的平均成绩高于甲、丁两名学生,又∵1<1.2,∴丙的方差小于乙的方差,∴丙发挥稳定,∴要选一名成绩高且发挥稳定的学生参赛,则应选择的学生是丙.故选:C.【点睛】本题主要考查方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.对一组数据:2,2,1,3,3 分析不正确的是()A. 中位数是1B. 众数是3和2C. 平均数是2.2D. 方差是0.56【答案】A【解析】【分析】根据题意分别利用中位数的定义以及众数的定义和平均数的求法以及方差公式分别计算与判断即可得出答案.【详解】解:A. 2,2,1,3,3按从小到大排列为:1,2,2, 3,3,中位数是2 ,故此选项符合合题意;B. 2,2,1,3,3 中,3和2出现的次数最多,众数是3和2,故此选项不合题意;C. 平均数是(22133)5 2.2++++÷=,故此选项不合题意;D. 方差是22222(2 2.2)(2 2.2)(1 2.2)(3 2.2)(3 2.2)0.565-+-+-+-+-=,故此选项不合题意. 故选:A.【点睛】本题主要考查中位数的定义以及众数的定义和平均数的求法以及方差公式,熟练掌握相关计算方法是解题的关键.9.检查一个门框是否为矩形,下列方法中正确的是( )A. 测量两条对角线,是否相等B. 测量两条对角线,是否互相平分C. 测量门框的三个角,是否都是直角D. 测量两条对角线,是否互相垂直【答案】C【解析】【分析】对角线相等的平行四边形是矩形或有三个角是直角的四边形是矩形的原理即可突破此题.【详解】解:根据“三个角是直角的四边形是矩形”可以得到测量门框的三个角,是否都是直角即可检验该四边形是不是矩形,故选C .【点睛】本题考查矩形的判定.10.根据如图所示的程序计算:若输入自变量x 的值为32,则输出的结果是( )A. 72B. 94C. 12D. 32【答案】C【解析】【分析】根据x 的值得出应该输入的公式,计算即可.【详解】根据题意得y=-32+2= 12 即输入的结果为12 故答案选C.【点睛】本题考查的知识点是函数值,解题的关键是熟练的掌握函数值.11.下列关于一次函数 y =-x +2 的图象性质的说法中,不正确的是( )A. 直线与 x 轴交点的坐标是(0,2)B. 直线经过第一、二、四象限C. y 随 x 的增大而减小D. 与坐标轴围成的三角形面积为 2 【答案】A【解析】【分析】根据题意由题目中的函数解析式利用一次函数图象的性质可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:A. 直线与 x 轴交点的坐标是(2,0),直线与 y 轴交点的坐标是(0,2),故当选;B. y =-x +2的图象中10,20k b =-<=>,有直线经过第一、二、四象限,故排除;C. y =-x +2的图象中10k =-< ,有y 随 x 的增大而减小,故排除;D. 由一次函数 y =-x +2可知与坐标轴的交点坐标分别为(0,2)和(2,0), 与坐标轴围成的三角形面积为12222⨯⨯=,故排除. 故选:A.【点睛】本题考查一次函数图象上点的坐标特征以及一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.12.如图,在一个内角为60°的菱形ABCD中,AB=2,点P以每秒1cm的速度从点A出发,沿AD→DC 的路径运动,到点C停止,过点P 作PQ⊥BD,PQ 与边AD(或边CD)交于点Q,△ABQ的面积y(cm2)与点P 的运动时间x(秒)的函数图象大致是()A. B. C. D.【答案】C【解析】【分析】由题意根据动点P的运动过程分两种情况说明:①PQ与边CD交于点Q时,过点D作DE⊥AB于点E,根据在边长为2一个内角为60°的菱形ABCD中,即可求当0≤x≤2时,y=3;②当PQ与边AD交于点Q 时,过点Q作QE⊥AB于点E,即可求当2<x≤4时,y=-3x+43,进而可判断,△ABQ的面积y(cm2)与点P的运动时间x(秒)的函数图象.【详解】解:①PQ与边CD交于点Q时,如图,过点D作DE⊥AB于点E,∴∠DEA=90°,在边长为2一个内角为60°的菱形ABCD中,AD=DC=2,∠DAB=60°,∴AE=1,22DE=-=213∴1123322ABQ S AB DE ==⨯⨯=, 即当0≤x ≤2时,3y =. 该函数图象是平行于x 轴的一段线段;②当PQ 与边AD 交于点Q 时,如图,过点Q 作QE ⊥AB 于点E ,∴∠QEA=90°,∵PQ ⊥BD ,∴∠DFP=∠DFQ=90°, ∵四边形ABCD 是菱形,∴BD 平分∠ADC ,∴∠CDB=∠ADB ,DF=DF , ∴△DFP ≌△DFQ (ASA ),∴DP=DQ ,∵AD=DC=2,∴AQ=PC=4-x ,∴在Rt △AQE 中,∠QAE=60°, ∴33(4)QE AQ x ==-, ∴1123(4)34322ABQ S AB QE x x ==⨯-=-+即当2<x ≤4时,343y x =-+,该函数图象是y 随x 的增大而减小的一段线段.所以△ABQ 的面积y (cm 2)与点P 的运动时间x (秒)的函数图象大致是选项C .故选:C .【点睛】本题考查动点问题的函数图象,解决本题的关键是根据动点的运动过程分两种情况画图说明. 二. 填空题13.已知y 与x 成正比例,且x =1时,y =-2,则当x=-1 时,y =___________.【答案】2【解析】【分析】根据题意设y=kx(k是常数,且k≠0),再把x=1,y=-2代入求出正比例函数的解析式,进而代入x=-1即可求得y值.【详解】解:已知y与x成正比例,设y=kx(k是常数,且k≠0),k=-,即该正比例函数的解析式为:y=-2x,把x=1时,y=-2代入,得2y=-⨯-=.又把x=-1代入y=-2x,得到(2)(1)2故答案为:2.【点睛】本题考查正比例函数相关,熟练运用待定系数法建立函数解析式以及熟练掌握待定系数法是解题的关键.14.如图,在Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,则AB=__________.【答案】4【解析】【分析】由题意根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,以此进行分析计算即可.【详解】解:∵Rt△ABC中,∠ACB=90°,D 为AB 中点,CD=2,∴AB=2CD=2×2=4.故答案为:4.【点睛】本题考查直角三角形的性质,注意掌握直角三角形斜边上的中线等于斜边的一半的性质,熟记此性质是解题的关键.15.如图,已知一次函数y=kx+3和y=-x+b的图象交于点P (2,4).则关于x的方程kx+3=-x+b 的解是________.【答案】x=2【解析】试题分析:∵已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),∴关于x的方程kx+3=﹣x+b的解是x=2,故答案为x=2.考点:一次函数与一元一次方程.16.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.【答案】2【解析】【分析】根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12DO=2.【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12 BD,∴OD=12BD=4,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.故答案为2.【点睛】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.17.如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.【答案】24【解析】【分析】由题意先根据勾股定理求得BD ,再根据菱形的面积等于对角线乘积的一半进行运算即可求出答案.【详解】解:∵菱形ABCD 的对角线AC 与BD 相交于点O ,AC =8,AD =5, ∴22824,543,26AO DO BD DO =÷==-===,∴菱形ABCD 的面积为11862422AC BD ⨯⨯=⨯⨯=. 故答案为:24.【点睛】本题主要考查菱形的性质,注意掌握利用对角线求菱形面积的方法以及勾股定理的应用. 18.如图,平面直角坐标系中,正方形OBAC 的顶点A 的坐标为(8,8),点D ,E 分别为边AB ,AC 上的动点,且不与端点重合,连接OD ,OE ,分别交对角线BC 于点M ,N ,连接DE ,若∠DOE =45°, 以下说法正确的是________(填序号).①点O 到线段DE 的距离为8;②△ADE 的周长为16;③当DE ∥BC 时,直线OE 的解析式为y =2x ; ④以三条线段BM ,MN ,NC 为边组成的三角形是直角三角形.【答案】①②④.【解析】【分析】如图(见解析),过点O 作OG DE ⊥于点G ,OF OD ⊥,交AC 延长线于点F ,①先根据正方形的性质可得,90OB OC BOC =∠=︒,从而可得45BOD COE ∠+∠=︒,再根据角的和差可得45COF COE ∠+∠=︒,从而可得BOD COF ∠=∠,然后根据三角形全等的判定定理与性质可得OD OF =,ODB F ∠=∠,最后根据三角形全等的判定定理与性质即可得;②在①的基础上可证BOD GOD ≅,COE GOE ≅,再根据三角形全等性质可得,BD GD CE GE ==,然后根据三角形的周长公式、等量代换即可得;③先根据平行线的性质可得45ADE ABC ∠=∠=︒,从而可得Rt ADE 是等腰直角三角形,设CE x =,则BD x =,从而可得2DE x =,然后在Rt ADE 中利用勾股定理可求出x 的值,从而可得点E 的坐标,最后利用待定系数法求出直线OE 的解析式即可;④设,,BM a MN b NC c ===,先根据正方形的性质可得BC =,从而可得a b c ++=OB BN CM OC=,然后代入化简,利用勾股定理逆定理即可得. 【详解】如图,过点O 作OG DE ⊥于点G ,OF OD ⊥,交AC 延长线于点 F四边形OBAC 是正方形,点A 的坐标为(8,8)8,90OB OC AB AC BOC OBA A OCA ∴====∠=∠=∠=∠=︒45DOE ∠=︒45BOD COE ∴∠+∠=︒OF OD ⊥,即90DOF ∠=︒9045EOF DOE ∴∠=︒-∠=︒,即45COF CO F E EO ∠+∠==∠︒BOD COF ∴∠=∠在BOD 和COF 中,90BOD COF OB OC OBD OCF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BOD COF ASA ∴≅OD OF ∴=,ODB F ∠=∠在ODE 和OFE △中,45OD OF DOE FOE OE OE =⎧⎪∠=∠=︒⎨⎪=⎩()ODE OFE SAS ∴≅,ODE F OED OEF ∴∠=∠∠=∠ODB ODE ∴∠=∠,即ODB ODG ∠=∠在BOD 和GOD △中,90ODB ODG OBD OGD OD OD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()BOD GOD AAS ∴≅8OB OG ∴==即点O 到线段DE 的距离为8,说法①正确由①已证:BOD GOD ≅BD GD ∴=同理可证:COE GOE ≅CE GE ∴=则ADE 的周长为AD DE AE AD GD GE AE ++=+++ AD BD CE AE =+++()()AD BD CE AE =+++AB AC =+88=+16=即说法②正确四边形OBAC 是正方形90,45A ABC ∴∠=︒∠=︒//DE BC45ADE ABC ∴∠=∠=︒Rt ADE ∴是等腰直角三角形AD AE ∴=AB AD AC AE ∴-=-,即BD CE = 设CE x =,则BD x =,且08x <<8,2AD AE AC CE x DE GD GE BD CE x ∴==-=-=+=+=在Rt ADE 中,由勾股定理得:222AD AE DE +=,即222(8)(8)(2)x x x -+-=解得8x =或8x =-(不符题设,舍去) ∴点E的坐标为8)设直线OE 的解析式为y kx =将点8)代入得:88k =,解得1k =则直线OE 的解析式为1)y x =,说法③错误设,,BM a MN b NC c ===,则,CM MN NC b c BN BM MN a b =+=+=+=+由正方形的性质得BC =BM MN NC BC ∴++==a b c ++=整理得2()642a b c ++= 四边形OBAC 是正方形45OBN MCO DBM ∴∠=∠=∠=︒,//AB OC45,DOE DBM BMD OMN ∠=∠=︒∠=∠180180DOE OMN DBM BMD ∴︒-∠-∠=︒-∠-∠,即ONM BDM ∠=∠//AB OCBDM MOC ∴∠=∠ONM MOC ∴∠=∠,即ONB MOC ∠=∠在BON △和CMO △中,45OBN MCO ONB MOC ∠=∠=︒⎧⎨∠=∠⎩BON CMO ∴~OB BN CM OC ∴=,即88a b b c +=+ 2()()()642a b c a b b c ++∴++== 整理得222b a c =+,即222MN BM NC =+由勾股定理逆定理可知,以三条线段,,BM MN NC 为边组成的三角形是直角三角形则说法④正确综上,说法正确的是①②④故答案为:①②④.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质、利用待定系数法求正比例函数的解析式、相似三角形的判定与性质等知识点,这是一道较难的综合题,通过作辅助线,构造全等三角形是解题关键.三. 解答题19.已知函数y =(2-m)x +m -1,若函数图象过原点,求出此函数的解析式.【答案】y x =【解析】【分析】根据题意将点(0,0)代入函数y =(2-m)x +m -1,即可求出m 的值进而得出函数的解析式.【详解】解:∵函数y =(2-m)x +m -1过原点,∴将点(0,0)代入函数y =(2-m)x +m -1,有10m -=,解得1m =,∴此函数的解析式为:y =(2-1)x +1-1=x ,即y x =.【点睛】本题考查求函数解析式,熟练掌握用待定系数法求函数解析式是解题的关键.20.如图,直线l 1:y =kx +b (k≠0)与x 轴交于点A (3,O ),与y 轴交于点B (0,3), 直线l 2:y =2x 与直线l 1相交于点C .(1)求直线 l 1 的解析式;(2)求点C 的坐标和△AOC 的面积.【答案】(1)3y x =-+;(2)点C 的坐标为(1,2), △AOC 的面积为3.【解析】【分析】(1)根据题意直接利用待定系数法代入A (3,0),B (0,3)进行计算求解即可得出直线 l 1 的解析式;(2)根据题意联立直线l 1和直线l 2,求出点C 的坐标,再以OA 为底利用三角形面积计算公式求出△AOC 的面积.【详解】解:(1)∵直线l 1:y =kx +b (k≠0)与x 轴交于点A (3,0),与y 轴交于点B (0,3),∴将A (3,0),B (0,3)代入y =kx +b (k≠0)有:033k b b =+⎧⎨=⎩,解得13k b =-⎧⎨=⎩, ∴直线 l 1 的解析式为:3y x =-+.(2)根据题意联立直线l 1和直线l 2,有32y x y x =-+⎧⎨⎩=,解得21y x =⎧⎨=⎩, 即点C 的坐标为(1,2);∵A (3,0),点C 的坐标为(1,2)∴OA=3,以OA 为底的高2h =,∴△AOC 的面积为:1123322h OA =⨯⨯=. 【点睛】本题考查一次函数图象和几何图形,熟练掌握利用待定系数法求解析式和三角形面积计算公式运用数形结合思维分析是解题的关键.21.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50,32;(2)16,15;(3)768.【解析】【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数;(3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人,∵16100%32% 50⨯=,32m∴=.故答案为:50;32. (2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元);本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.22.已知一次函数y=kx+b的图象平行于y=-2x+1,且过点(2,-1),求:(1)这个一次函数的解析式;(2)画出该一次函数的图象:根据图象回答:当x 取何值时不等式 kx +b >3.【答案】(1)y=-2x+3;(2)图像见解析,当x <0时, kx +b >3.【解析】【分析】(1)由一次函数的性质知k=-2,,又由图像过点(2,-1),代入y=-2x+b 可得b 的值,即可得到答案;(2)由(1)求得的解析式中,利用两点法作出图象即可,观察图象,可得答案.【详解】解:(1)根据题意,设这个一次函数的解析式为y=-2x+b ,又由过点(2,-1),代入y=-2x+b ,可得-4+b=-1,∴b=3,∴一次函数的解析式为y=-2x+3;(2)当x=0时,y=3.如图,由图像可知,当x <0时, kx +b >3.【点睛】本题考查了一次函数的性质,函数解析式的求法,以及利用函数图像解不等式,解题时注意数形结合思想的运用.23.如图1,□ABCD的对角线AC,BD相交于点O,且AE∥BD,BE∥AC,OE=CD.(1)求证:四边形ABCD 是菱形;(2)若∠ADC=60°,BE=2,求BD的长.【答案】(1)见详解;(2)43【解析】【分析】(1)首先根据平行四边形的性质和已知条件推出四边形OAEB是矩形,从而得出OA⊥OB,即可得证;(2)由(1)得四边形OAEB是矩形,四边形ABCD是菱形,从而推出OA=BE=2,∠ODA=∠ODC=30°,由此可得在Rt△OAD中,OD=tan OA ODA,即可得出BD.【详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,∵OE=CD,∴AB=OE,∵AE∥BD,BE∥AC,∴四边形OAEB是平行四边形,∴四边形OAEB是矩形,∴OA⊥OB,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)由(1)可知四边形OAEB是矩形,∴OA=BE=2,由(1)得四边形ABCD是菱形,∴∠ODA=∠ODC ,AC ⊥BD ,又∵∠ADC =60°,∴∠ODA=∠ODC=30°,∴在Rt △OAD 中,OD=tan OA ODA ∠3=∴BD=2OD=【点睛】本题考查了菱形的性质和判定,平行四边形的性质,特殊三角函数值,掌握知识点是解题关键.24.4月23日是世界读书日,某校为了营造读书好、好读书、读好书的书香校园,决定采购《简·爱》、《小词大雅》两种图书供学生阅读,通过了解,购买2本《简·爱》和3本《小词大雅》共需168元,购买3本《简·爱》和2本《小词大雅》共需172元.(1)求一本《简·爱》和《小词大雅》的价格分别是多少元;(2)若该校计划购买两种图书共300本,其中《简·爱》的数量不多于《小词大雅》数量,且不少于100件.购买《简·爱》m 本,求总费用W 元与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,学校在团购书籍时,商家店铺中《简·爱》正进行书籍促销活动,每本书箱降价a 元(0< a <8),求学校购书的的最低总费用W 1的值.【答案】(1)一本《简·爱》的价格是36元,一本《小词大雅》的价格是32元;(2)总费用W 元与m 之间的函数关系式为:W=4m+9600(100≤m ≤150);(3)当4<a <8时,W 1=-150a+10200;当a=4时,W 1=9600;当0<a <4时,W 1=-100a+10000.【解析】【分析】(1)根据题目中的等量关系列方程组求解即可;(2)根据总费用=数量×单价即可得出解析式,根据《简·爱》的数量不多于《小词大雅》数量,且不少于100件即可算出取值范围;(3)根据(2)中的解析式求出降价后的解析式W=(4-a )m+9600(100≤m ≤150),再分①当-4<4-a <0,即4<a <8时,②当4-a=0,即a=4时,③当0<4-a <4,即0<a <4时,三种情况讨论即可.【详解】解:(1)设一本《简·爱》的价格是x 元,一本《小词大雅》的价格是y 元,由题意得2316832172x y x y +=⎧⎨+=⎩,解得3632 xy=⎧⎨=⎩,答:一本《简·爱》的价格是36元,一本《小词大雅》的价格是32元;(2)学校购买《简·爱》m本,则购买《小词大雅》(300-m)本,∴W=36m+32(300-m)=4m+9600,故总费用W元与m之间的函数关系式为:W=4m+9600,∵《简·爱》的数量不多于《小词大雅》数量,且不少于100件,∴300100m m m⎩-⎧⎨≤≥解得150100 mm⎧⎨⎩≤≥,故m的取值范围是100≤m≤150,综上:总费用W元与m之间的函数关系式为:W=4m+9600(100≤m≤150);(3)W=(36-a)m+32(300-m)=(4-a)m+9600(100≤m≤150),∵0<a<8,∴-4<4-a<4,①当-4<4-a<0,即4<a<8时,W随m的增大而减小,当m=150时,W min=-150a+10200,②当4-a=0,即a=4时,W min=9600,③当0<4-a<4,即0<a<4时,W随m的增大而增大,当m=100时,W min=-100a+10000,综上:当4<a<8时,W1=-150a+10200,当a=4时,W1=9600,当0<a<4时,W1=-100a+10000.【点睛】本题考查了一元一次不等式的实际应用,一次函数的实际应用,一次函数与不等式的关系,根据题意找出等量关系是解题关键.25.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx-4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.。
黑龙江省大庆市杜尔伯特县八年级数学下学期期中试题

1 黑龙江省大庆市杜尔伯特县2017-2018学年八年级数学下学期期中试题 考生注意:1、考试时间90分钟 2、全卷共四道大题,总分120分 一、你一定能选对!(每小题3分,共30分) 1、25的平方根是 ( )
A、5 B、-5 C、±5 D、5 2、下列各组数中不能作为直角三角形的三边长的是 ( ) A. 1.5, 2, 3; B. 7, 24, 25; C. 6 ,8, 10; D. 9, 12, 15. 3、适合下列条件的△ABC中, 是直角三角形的个数为 ( ) ① ② a = 6 ∠A=45°; ③∠A=32°, ∠B=58º;
④ ;25,24,7cba ⑤ A. 2个; B. 3个; C. 4个; D. 5个. 4、要使二次根式12x有意义,字母x必须满足的条件是 ( )
A.21x B.21x C.21x D.21x
5、直角三角形的两直角边分别为5cm、12cm,则斜边上的高是 ( ) A、6 cm B、8cm C、1380 cm D、1360cm 6、下列说法不正确的是 ( ) A、51251的平方根是; B、的算术平方根是819; C、21.0的平方根是0.1 ; D、3273 7、下列各组数中互为相反数的是 ( ) A、2)2(2与 B、382与 C、2)2(2与 D、22与 8、在下列各数中是无理数的有 ( ) -0.333…, 4, 5, , 3, 3.1415, 2.010101…(相邻两个1之间有1 个0),76.0123456…(小数部分由相继的正整数组成).
;51,41,31cba a = 2 , b = 2 ,c = 4 2
A.3个 B.4个 C. 5个 D. 6个 9、 两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6 cm ,10分钟之后两只小鼹鼠相距 ( ) A. 50cm B. 100cm C. 140cm D. 10cm 10、当14a的值为最小值时,a 的取值为 ( ) A、-1 B、0 C、41 D、1 二、你能填得又快又准吗?(每空2分,共30分) 11、36的平方根是 ;16的算术平方根是 ;-8的立方根
人教版数学八年级下册《期中考试试卷》(带答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
人教版八年级(下)期中数学试卷(8)
人教版八年级(下)期中数学试卷(8)一.选择题(共15小题,满分45分,每小题3分)1.(3分)下列二次根式是最简二次根式的是()A.B.C.D.2.(3分)如图,▱ABCD的周长为36cm,△ABC的周长为28cm,则对角线AC的长为()A.28cm B.18cm C.10cm D.8cm3.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为()A.2m B.2.5m C.2.6m D.2.7m4.(3分)若二次根式有意义,则x的取值范围是()A.x<2B.x≠2C.x≤2D.x≥25.(3分)如图,点E、F、G在正方形ABCD对角线BD上,四边AHFI,EJCK,GLCM均为矩形,它们的周长分别记为:l1、l2、l3,则下列结论正确的是()A.l3<l2<l1B.l1=l2=l3C.l3<l2=l1D.l2=l3<l16.(3分)与是同类二次根式的是()A.B.C.D.7.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.C.4D.288.(3分)如图所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是()A.若AO=OC,则ABCD是平行四边形B.若AC=BD,则ABCD是平行四边形C.若AO=BO,CO=DO,则ABCD是平行四边形D.若AO=OC,BO=OD,则ABCD是平行四边形9.(3分)直角三角形有一直角边长为11,另外两条边长是自然数,则周长是()A.132B.131C.123D.12110.(3分)已知是整数,则自然数m的最小值是()A.1B.2C.3D.411.(3分)(读诗解题)有诗曰:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士好奇,算出索长有几?”(注:一步合五尺)()A.12尺B.13.5尺C.14.5尺D.15.5尺12.(3分)如图,已知菱形ABCD中,过AD中点E作EF⊥BD,交对角线BD于点M,交BC的延长线于点F.连接DF.若CF=2,则AB的长是()A.3B.4C.4D.213.(3分)如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个14.(3分)下列说法中,错误的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形对角线的交点到一组对边的距离相等C.已知一次函数y=(a2+1)x﹣3,则随x的增大而增大D.函数y=2x+b的图像不经过第二象限,则b<015.(3分)如果一个三角形的三边长分别为1,k,3,则化简的结果是()A.﹣5B.1C.13D.19﹣4k二.解答题(共9小题,满分75分)16.(6分)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.17.(6分)若a=﹣,b=+,求:(1)+;(2)a2+b2﹣5ab.18.(7分)已知:如图,四边形ABCD是平行四边形,E、F是直线BD上的两点,且DE =BF,求证:AE=CF.19.(7分)在一块长12米,宽8米的长方形地块上,建造公共绿地(图中阴影部分),其余部分是小路,小路宽2米,修建方案如图所示,利用你所学的有关图形运动知识,求绿地面积.20.(8分)根据爱因斯坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式中的c是指光速(30万千米/秒),v是指宇宙飞船的速度.假定有一对亲兄弟,哥哥28岁,弟弟25岁.哥哥乘着飞船以光速的0.98倍作了五年的宇宙航行后返回地球,这五年是指地球上的五年,所以当哥哥回来时,弟弟的年龄是30岁,而哥哥的年龄却只有29岁.请你用该公式说明这结论.21.(8分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).22.(10分)列方程解应用题:①一个暖瓶与一个水杯共38元,2个暖瓶与3个水杯共84元,问一个暖瓶与一个水杯分别是多少元?②甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(11分)如图,在矩形ABCD中,Q是BC的中点,P是AD上一点,连接PB、PC,E、F分别是PB、PC的中点,连接QE、QF.(1)求证:四边形PEQF是平行四边形.(2)①当点P在什么位置时,四边形PEQF是菱形?证明你的结论;②矩形ABCD的边AB和AD满足什么条件时,①中的菱形PEQF是正方形?(直接写出结论,不需要说明理由)24.(12分)(1)证明推断:如图(1),在正方形ABCD中,点E,Q分别在边BC,AB上,DQ⊥AE于点O,点G,F分别在边CD,AB上,GF⊥AE.推断:的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k常数).将矩形ABCD沿GF 折叠,使点A落在BC边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE 交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用在(2)的条件下,连接CP,当k=时,若,GF=2,求CP 的长.。
人教版数学八年级下册《期中考试卷》(带答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列计算结果正确的是:( ) A. 257+= B. 3223-= C. 2510+= D. 21055= 2. 下列二次根式中,不能与2合并的是( )A. 12B. 8C. 18D. 123. 如图,x 轴、y 轴上分别有两点A (3,0)、B (0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A. (﹣1,0)B. (250)C. (13,0)D. (130) 4. 校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 10米B. 11米C. 12米D. 13米5. 下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A. AB CD ∥,AD BC ∥B. AB CD ∥,AD BC =C. AB CD ∥,AB CD =D. AB CD =,AD BC =6. 矩形、菱形、正方形都具有性质是( )A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线互相平分且相等7. 若一直角三角形的两边为5和12,则它第三边的长为( )A. 13B. 119C. 13或129D. 13或1198. 如图,正方形ABCD的边长为4,点E在边AB上,AE=1,若点P为对角线BD上的一个动点,则△P AE周长的最小值是( )A. 3B. 4C. 5D. 69. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为( )A 12 B. 10C. 8D. 610. 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A. 1B. 2C. 3D. 4二.填空题(共10小题)x ,则x可以取最小整数是_________.11. 3512. 若y =2x -+2x -﹣3,则x+y =_____.13. 已知x +y =﹣5,xy =4,则y x+x y =_____. 14. 下列命题中逆命题成立的有_____(填序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形对应边相等;④如果两个实数相等,那么它们平方相等.15. 如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_______16. 如图,四边形ABCD 是菱形,AC =16,DB =12,DH ⊥AB 于点H ,则DH 等于____.17. 如图,ABC 中,BD 平分ABC ∠,且AD BD ⊥,为AC 的中点,6AD cm =,8BD cm =,16BC cm =,则DE 的长为_______.18. 如图,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_______cm .19. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为F ,则EF 的长为______.20. 如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标___.三.解答题(共4小题)21. 在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?22. 如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,求证:∠AEF=90°.23. 如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.24. 如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.求四边形EFGH 的周长.答案与解析一.选择题(共10小题)1. 下列计算结果正确的是:()A. =B.= C. = D. =3[答案]D[解析][分析]按照二次根式的运算法则进行计算即可.[详解]解:,不能合并,故A错误;=-=,所以B错误;B.(31C. ,不能合并,故C错误;==故D正确.[点睛]本题考查二次根式的加减运算和化简.需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.2. 下列二次根式中,合并的是( )[答案]D[解析][分析]先化简二次根式,相同,可得答案.[详解]A,故A合并;2B=故B合并;C、18=32,故C能与2合并;D、12=23,故D不能与2合并;故选D[点睛]本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.3. 如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为( )A. (﹣1,0)B. (25,0)C. (13,0) D. (130)[答案]D[解析][分析]根据勾股定理求得AB13然后根据图形推知AC=AB,则OC=AC﹣OA,所以由点C位于x轴的负半轴来求点C的坐标.[详解]解:如图,∵A(3,0)、B(0,2),∴OA=3,OB=2,∴在直角△AOB中,由勾股定理得AB2232+13又∵以点A为圆心,AB为半径的弧交x轴负半轴于点C,∴AC=AB,∴OC=AC﹣OA133.又∵点C在x轴的负半轴上,∴C(3130).故选:D .[点睛]本题考查了勾股定理,坐标与图形性质.解题时,注意点C 位于x 轴负半轴,所以点C 的横坐标为负数. 4. 校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 10米B. 11米C. 12米D. 13米[答案]D[解析][分析]如图所示,AB ,CD 为树,且AB =13,CD =8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE =BD =12,AE =AB ﹣CD =5,在直角三角形AEC 中利用勾股定理即可求出AC .[详解]解:如图所示,AB ,CD 为树,且AB =13,CD =8,BD 为两树距离12米,过C 作CE ⊥AB 于E ,则CE =BD =12,AE =AB ﹣CD =5,在直角三角形AEC 中,AC =22AE EC +=22125+=13.故选:D .[点睛]本题考查勾股定理解直角三角形,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.5. 下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A. AB CD ∥,AD BC ∥B. AB CD ∥,AD BC =C. AB CD ∥,AB CD =D. AB CD =,AD BC =[答案]B[解析][分析]根据平行四边形的判定:A、C、D可判定为平行四边形,而B不具备平行四边形的条件,即可得出答案.[详解]A、两组对边分别平行的四边形是平行四边形,故A正确;B、一组对边平行,另一组对边相等的四边形是等腰梯形不一定是平行四边形,故B不正确;C、一组对边平行且相等的四边形是平行四边形, 故C正确;D、两组对边分别相等的四边形是平行四边形,故D正确只.[点睛]本题考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法并能进行推理论证是解决问题的关键.6. 矩形、菱形、正方形都具有的性质是()A. 对角线相等B. 对角线互相平分C. 对角线互相垂直D. 对角线互相平分且相等[答案]B[解析][分析]矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.[详解]解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选B.[点睛]本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.7. 若一直角三角形的两边为5和12,则它第三边的长为( )A. 13 C. 13 D. 13[答案]D[解析][分析]存在两种情况,第一种为:5和12为直角边,另一边为斜边;第二种为:5和另一边为直角边,12是斜边. [详解]情况一:5和12为直角边根据勾股定理,设另一边为x ,则:222512x =+解得:x=13情况二:5和另一边为直角边,12为斜边根据勾股定理,设另一边为x ,则:222125x =+ x=119故选:D[点睛]本题考查勾股定理,多解是本题的关键,切不可遗漏.8. 如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△P AE 周长的最小值是( )A. 3B. 4C. 5D. 6[答案]D[解析][分析] 连接AC 、CE ,CE 交BD 于P ,此时AP +PE 的值最小,求出CE 长,即可求出答案.[详解]解:连接AC 、CE ,CE 交BD 于P ,连接AP 、PE ,∵四边形ABCD 是正方形,∴OA =OC ,AC ⊥BD ,即A 和C 关于BD 对称,∴AP =CP ,即AP +PE =CE ,此时AP +PE 的值最小,所以此时△P AE 周长的值最小,∵正方形ABCD 的边长为4,点E 在边AB 上,AE =1,∴∠ABC =90°,BE =4﹣1=3,由勾股定理得:CE =5,∴△P AE 的周长的最小值是AP +PE +AE =CE +AE =5+1=6,故选D .[点睛]本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.9. 如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A. 12B. 10C. 8D. 6[答案]B[解析][分析] 已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求,于是得到CF CD DF =-,即可得到答案.[详解]解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:.△≌△是解题的[点睛]本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB关键.10. 如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A. 1B. 2C. 3D. 4[答案]D[解析][分析]分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.[详解]证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.[点睛]此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.二.填空题(共10小题)11. ,则x可以取的最小整数是_________.[答案]2[解析]由二次根式的意义得3x-5 0,x 53,最小整数是212. 若y3,则x+y=_____.[答案]﹣1[解析][分析]直接利用二次根式有意义的条件得出x的值,进而得出答案.[详解],∴x﹣2≥0,2﹣x≥0,∴x=2,∴y =﹣3,∴x+y =﹣1.故答案为:﹣1.[点睛]本题考查二次根式成立的条件,掌握二次根式的被开方数为非负数是本题的解题关键.13. 已知x +y =﹣5,xy =4,则y x +x y =_____. [答案]52. [解析][分析]先化简y x x y+,再代入求值即可. [详解]∵x +y =﹣5,xy =4,∴x <0,y <0,y x x y +=﹣(xy xy x y +)=﹣()xy x y xy+, ∵x +y =﹣5,xy =4,∴原式=﹣()4(5)542xy x y xy +⨯-=-=. 故答案为52. [点睛]本题考查了二次根式的化简求值:先把二次根式进行化简或变形,然后运用整体思想进行计算. 14. 下列命题中逆命题成立的有_____(填序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③全等三角形的对应边相等;④如果两个实数相等,那么它们的平方相等.[答案]①③[解析][分析]根据逆命题的概念得出原命题的逆命题,判断即可.[详解]解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②如果两个角是直角,那么它们相等逆命题是如果两个角相等,那么这两个角是直角,是假命题;③全等三角形的对应边相等的逆命题是三条边对应相等的两个三角形全等,是真命题;④如果两个实数相等,那么它们的平方相等的逆命题是如果两个实数的平方相等,那么两个实数相等,是假命题;故答案为:①③.[点睛]本题考查的是逆命题的概念以及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.15. 如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______[答案]15°[解析][分析]由正方形的性质和等边三角形的性质可得BC=CD=AD=AB、∠ADC=∠BCD=∠CBA =∠BAD= 90°,AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°;再说明△ABE是等腰三角形,最后根据等腰三角形的性质解答即可.[详解]解:∵正方形ABCD∴BC=CD=AD=AB, ∠ADC=∠BCD=∠CBA =∠BAD= 90°∵等边三角形ADE∴AE=DE=AD, ∠ADE=∠DEA=∠EAD=60°∴AB=AE,∠BAE=∠BAD+∠EAD=150°∴∠AEB=1801801501522BAE -∠-== . 故答案为15°.[点睛]本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质以及等量代换思想,掌握运用等量代换思想是解答本题的关键.16. 如图,四边形ABCD 是菱形,AC =16,DB =12,DH ⊥AB 于点H ,则DH 等于____.[答案]485. [解析][分析]先根据菱形的性质得OA =OC ,OB =OD ,AC ⊥BD ,再利用勾股定理计算出AB =10,然后根据菱形的面积公式得到12•AC •BD =DH •AB ,再解关于DH 的方程即可. [详解]∵四边形ABCD 是菱形,∴OA =OC =8,OB =OD =6,AC ⊥BD ,在Rt △AOB 中,AB 22AO BO +10, ∵S 菱形ABCD =12•AC •BD , S 菱形ABCD =DH •AB ,∴DH •10=12×12×16, ∴DH =485. 故答案为485. [点睛]本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.17. 如图,ABC 中,BD 平分ABC ∠,且AD BD ⊥,为AC 的中点,6AD cm =,8BD cm =,16BC cm =,则DE 的长为_______.[答案]3cm[解析][分析]如图(见解析),先利用勾股定理可得10AB cm =,再根据等腰三角形的三线合一可得10BF AB cm ==,AD DF =,从而可得6CF cm =,然后根据三角形中位线定理即可得.[详解]如图,延长AD ,交BC 于点F ,AD BD ⊥,6AD cm =,8BD cm =, 2210AB AD BD cm ∴=+=,BD 平分ABC ∠,且AD BD ⊥,ABF ∴是等腰三角形,10BF AB cm =∴=,且BD 是AF 边上的中线,16BC cm =,6CF BC BF cm ∴=-=,又点为AC 的中点,DE ∴是ACF 中位线,231DE C c F m ∴==, 故答案为:3cm .[点睛]本题考查了等腰三角形的三线合一、勾股定理、三角形中位线定理,通过作辅助线,构造等腰三角形是解题关键.18. 如图,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_______cm .[答案];[解析][分析]根据正方形的面积可用对角线进行计算解答即可.[详解]因为正方形AECF的面积为50cm2,所以25010cmAC=⨯=,因为菱形ABCD的面积为120cm2,所以212024cm10BD⨯==,所以菱形的边长=22102413cm 22⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭.故答案为:13.[点睛]此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.19. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为______.[答案]422-[解析]∵四边形ABCD是正方形,其边长为4,BD是其对角线,∴∠BAD=90°,∠ABD=∠ADB=45°,BD=2又∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°=∠DAE, ∴DE=AD=4,∴BE=424-,∵EF⊥AB于点F,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=424422 2-=-故答案为422-.20. 如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标___.[答案](2,4)或(8,4).[解析]试题分析:∵A(10,0),C(0,4),∴OA=10,OC=4,∵点D是OA的中点,∴OD=12OA=5,过点P作PE⊥x轴于E,则PE=OC=4,∵P(3,4),∴OP=5,∴此时,OP=OD,∴DE=3,若点E在点D的左边,OE=5﹣3=2,此时,点P坐标为(2,4),若点E在点D的右边,则OE=5+3=8,此时,点P的组别为(8,4),综上所述,其余的点P的坐标为(2,4)或(8,4).故答案是(2,4)或(8,4).考点:1.矩形的性质2.坐标与图形性质3.等腰三角形的判定.三.解答题(共4小题)21. 在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?[答案]2秒后四边形ABQP是平行四边形.[解析][分析]由运动时间为t秒,则AP=t,QC=2t,而四边形ABQP是平行四边形,所以AP=BQ,则得方程t=6﹣2t求解.[详解]解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.[点睛]此题主要考查的是平行四边形的性质,难度不大,注意一组对边平行且相等的四边形是平行四边形.22. 如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,求证:∠AEF=90°.[答案]证明见解析.[解析]试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=14CD,∴BE=EC=12a,CF=14a.在Rt△ABE中,由勾股定理可得:AE2=AB2+BE2=54a2,同理可得:EF2=EC2+FC2=516a2,AF2=AD2+DF2=2516a2.∵AE2+EF2=AF2,∴△AEF为直角三角形,∴∠AEF=90°.点睛:本题考查了正方形的性质,勾股定理、勾股定理逆定理的运用,注意在正方形中的直角三角形的应用.23. 如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.[答案](1)见解析;(2)见解析.[分析](1)证得△BAC是等腰三角形后利用三线合一的性质得到AC⊥BD即可;(2)首先证得四边形ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.[详解](1)∵AE∥BF,∴∠BCA=∠CAD,∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形,∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB,∵∠CBD=∠ABD=∠BDA,∴△ABD也是等腰三角形,∴AB=AD,∴DA=CB,∵BC∥DA,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.[点睛]本题考查了菱形的判定,解题的关键是熟练掌握菱形的几个判定方法,难度不大.24. 如图,在四边形ABCD中,E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7.求四边形EFGH 的周长.[解析][分析]根据E、F、G、H分别是AD、BD、BC、AC上中点,可得出EF∥AB,GH∥AB,同理EH∥CD,FG∥CD,则四边形EFGH为平行四边形,由三角形的中位线定理得出EF,EH,从而求出四边形EFGH的周长.[详解]解:∵E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.∴EF∥AB,GH∥AB,EF=2.5,EH=3.5,同理EH∥CD,FG∥CD,∴四边形EFGH为平行四边形,∴四边形EFGH的周长=2(EF+EH)=2×6=12.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。