气力输送计算
气力输送设计计算书

广东南海梅山电场气力输送设计计算书1.仓泵技术参数:2.除尘器一个输送单元输送系统校核2.1.仓泵出口处管道内气流速度:按浓相仓泵运行要求,出口处气流速度:< 5.0m/s2.2.仓泵运行时输送压力(泵内工作压力):0.15~0.18MPa2.3.输送管未端气流速度:按管道内灰气混合物流动的热力学过程介于等温和绝热过程之间,取k=1.1则: P1(V1×S1)1.1=P2(V2×S2)1.1式中:P1 、P2为输送管始端压力和管道未端压力(绝对压力)V1、V2为输送管进口和出口的流速S1 电场仓泵出口输灰管截面积 0.0078m2S2 电场输送管出口截面积0.0078m2令P2=1,P1=2.8代入得: V2 =12.43m/s管道内气流平均速度:U p=8.71m/s在上列无缝管配置下实际耗气量:耗气量按下式确定(近似计算式):Q实= S2×V2=0.096m3/s = 5.8m3/min2.4.仓泵的工作过程主要分为下列几个过程:㈠进料㈡加压㈢输送㈣吹扫等四个过程.2.5.仓泵输送质量流率:G MS=Q×μ气×μ=2.84g/s上式中: G MS质量流率Q 耗气量 (0.069m3/s)μ气空气比重 (1.25)μ混合比 (33)仓泵主要技术参数见上表, 一个输送过程的时间按下式计算:t=t1+t2+t3+t4+t5上式中:t1 进料时间(多组仓泵进行交替输送时,不计时料时间) t2 有效输送时间t3 管道吹扫时间t4加压时间t5辅助时间(各种动作过程时间)每组泵的有效输送时间: t2=w÷(Q×μ气×μ) =598.6s上式中: w 一台仓泵装灰量, 为1700kg.吹扫时间: t3 = L÷V p+60=85s上式中: L 按输送最远几何距离215m计算V p气流平均速度:8.7m/s加压时间: T4 30s辅助时间: T5 5s总的输送时间为:718.6每小时最大输送能力: (3600÷718.6)×1.7t =8.5t/h根据以上计算,电除尘器一台炉采用一根DN100输灰管,分二组进行交替输送,其输送能力为8.5t/h,大于实际出力的300%,满足招标文件中的设计出力要求。
气力输送计算excel

气力输送计算excel【最新版】目录1.气力输送计算概述2.气力输送计算的工具选择3.Excel 在气力输送计算中的应用4.气力输送计算的步骤与方法5.实例分析6.总结正文一、气力输送计算概述气力输送是一种将物料通过气流进行输送的技术,广泛应用于矿山、冶金、化工、建材等行业。
在气力输送系统中,计算是非常重要的一个环节,它涉及到系统的稳定性、经济性和安全性。
气力输送计算主要包括物料的输送能力、气力输送速度、管道直径、弯头、阀门等部件的阻力损失等。
二、气力输送计算的工具选择在气力输送计算中,可以采用手工计算、计算机软件计算和在线计算工具等方式。
然而,手工计算过程繁琐且容易出错,计算机软件计算需要专业知识和操作技能,而在线计算工具也往往需要付费购买。
因此,对于大部分人来说,Excel 是一种便捷且实用的计算工具。
三、Excel 在气力输送计算中的应用Excel 具有强大的数据处理和分析功能,可以轻松进行气力输送计算。
在 Excel 中,可以利用公式和函数实现物料的输送能力、气力输送速度、管道直径、弯头、阀门等部件的阻力损失等计算。
同时,Excel 还可以进行数据可视化,便于分析和比较。
四、气力输送计算的步骤与方法1.确定物料的物理性质,如密度、粒度、湿度等,以便计算物料的输送能力。
2.根据物料的输送能力,确定气力输送速度。
3.计算管道直径,根据气力输送速度、物料密度和输送距离等因素。
4.计算弯头、阀门等部件的阻力损失,以确定整个系统的阻力损失。
5.根据阻力损失,调整气力输送速度和管道直径,以保证系统的稳定性和经济性。
五、实例分析假设一个矿山企业需要将矿石从矿井输送到选矿厂,输送距离为1000 米,物料密度为 2.5t/m,输送能力为 1000t/h。
首先,根据物料的物理性质,计算出物料的输送能力为 400m/h。
然后,根据输送能力,确定气力输送速度为 20m/s。
接下来,计算管道直径,根据气力输送速度、物料密度和输送距离等因素,得出管道直径为 300mm。
气力输送系统基本参数计算(全)

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。
灰气比的选择取决于管道的长度、灰的性质等因素。
对于输送干灰的系统,μ值一般取7-20 kg/kg。
当输送距离短时,取上限值;当输送距离长时,则取下限值。
3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。
因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。
根据经验,每100m的温降值一般为6—20℃。
当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。
5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。
正压密相气力输送基本计算2

正压密相气力输送基本计算2
正压密相系统基本参数计算
1.正压密相输送管径D计算
正压密相输送管径D=(m)
Qa--------输送耗气量(m³/min)
Va--------输送风速(m/s)
当输送风速为4m/s,输送量为16t/h,混合比为30时管径是多少呢?
Qa=16000/30/60/1.2=7.4m³/min
D==0.039m
2.物料透气性和持气性
当物料具有足够的透气性,就可以作栓流密相输送。
若物料具有足够的持气能力,就可以作运动床密相气力输送。
当物料没有足够的透气性又无持气能力,只能作稀相气力输送。
物料透气性和特气测定:
将物料置于圆筒状容器中,通过器底的多孔板向料层(层高h)供气,并改变供气量来测出料层的气体压力降,从面得出气体速度与压降的关系曲线,就可以判断出物料透气性和持气性了。
气力输送罗茨风机风量计算

气力输送罗茨风机风量计算一、罗茨风机的基本原理罗茨风机是一种常见的气力输送设备,其主要原理是通过两个旋转的齿轮产生负压,从而吸入空气并将其输送至出口。
它具有结构简单、运行稳定、噪音低、维修方便等优点。
二、气力输送系统的基本构成气力输送系统主要由罗茨风机、输送管道、阀门、物料收集器等组成。
在实际应用中,根据需要还可以配置输送控制器、压力传感器、流量计等辅助设备。
三、风量计算公式及参数解析1.风量计算公式:Q = π×D×n×v其中,Q表示风量(立方米/小时),D表示风机出口直径(米),n表示风机转速(转/分钟),v表示风机出口速度(米/秒)。
2.参数解析:(1)风机出口直径(D):直接影响风量的大小,直径越大,风量越大。
(2)风机转速(n):与风量成正比,转速越快,风量越大。
(3)风机出口速度(v):与风量成正比,出口速度越快,风量越大。
四、影响风量的因素1.风机本身参数:包括风机的类型、转速、出口直径等。
2.输送管道:包括管径、管道长度、管道弯头数量、管道粗糙度等。
3.系统阻力:包括阀门阻力、管道摩擦阻力等。
4.环境条件:如温度、湿度、大气压力等。
五、提高罗茨风机风量的方法1.选择合适的风机参数:根据实际需求选择适当的风机类型、转速和出口直径。
2.优化输送管道设计:减小管道阻力,提高管道粗糙度,减少弯头数量。
3.合理配置辅助设备:如压力传感器、流量计等,以实现精确控制。
4.调整运行参数:如改变风机转速、出口阀门开度等,以适应实际需求。
六、总结与建议罗茨风机在气力输送系统中具有重要应用价值。
为确保风机的稳定运行和高效输送,需掌握风量计算方法,了解影响风量的因素,并采取相应措施提高风量。
气力输送计算excel

气力输送计算excel【最新版】目录1.气力输送计算概述2.气力输送计算的工具选择3.气力输送计算的具体方法4.Excel 在气力输送计算中的应用5.气力输送计算 excel 模板的使用正文1.气力输送计算概述气力输送是一种将物料通过气流进行输送的技术,广泛应用于粉体、颗粒等物料的输送。
在气力输送系统中,需要进行一系列的计算,以确保系统的正常运行。
这些计算包括物料的输送能力、气流的速度、管道的直径等。
2.气力输送计算的工具选择随着计算机技术的发展,气力输送计算的工具也越来越多。
其中,Excel 作为一款功能强大的办公软件,被广泛应用于气力输送计算中。
Excel 具有数据处理、图表制作、公式计算等功能,可以方便地进行气力输送计算。
3.气力输送计算的具体方法在进行气力输送计算时,需要首先确定物料的物理性质,如密度、颗粒大小等。
然后,根据物料的输送能力、气流的速度、管道的直径等参数,选择合适的输送设备。
在计算过程中,还需要考虑气力输送系统的安全性、经济性等因素。
4.Excel 在气力输送计算中的应用Excel 在气力输送计算中的应用主要体现在数据处理、公式计算和图表制作等方面。
例如,可以使用 Excel 的“VLOOKUP”函数进行物料的输送能力计算,使用“IF”函数进行系统安全性判断等。
此外,Excel 还可以根据计算结果制作图表,便于对气力输送系统进行分析和优化。
5.气力输送计算 excel 模板的使用为了方便进行气力输送计算,可以使用 Excel 模板。
这些模板通常包含了常用的气力输送计算公式和图表,可以直接套用模板进行计算。
使用气力输送计算 excel 模板时,需要注意模板的适用范围和计算参数的准确性,以确保计算结果的正确性。
总之,气力输送计算是气力输送系统设计中的重要环节,Excel 作为一款功能强大的办公软件,在气力输送计算中发挥着重要作用。
气力输送计算[1]
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定 气力输送对工艺设计的要求 粮食加工厂的气力输送是为工艺服务的。但是气力输送本身也直接或 间接地担负着一定的工艺任务,所以为了更好地发挥各自的作用,并最终 地改善工艺效果,两者之间应该相互兼顾,紧密配合。一方面,风运设计 要尽量满足工艺的要求;另一方面,工艺上的安排也应该考虑风运的合理 性,进行必要的调整。 为此,在设计工艺流程时,应该结合具体条件,尽量采用先进工艺 和先进设备。要在保证成品质量的前提下,简化流程,防止回路。,要优 先选用生产效率高和有多种作用的组合设备,以减少设备数量,减少提升 次数和物料的总提升量。这些都是降低风运电耗的基础。
第四节 气力输送网络的设计与计算
一、设计依据和主要参数的确定
(二)主要参数的确定
输送量、输送风速和输送浓度是风运网路计算的主要参数。这些参 数,对网路中各个设备的尺寸大小,整个网路所需动力的多少,以及网 路工作的稳定可靠,起着决定性的作用。因此,正确而合理地确定这些 参数,对气力输送有效地和经济地工作是十分重要的。 1.输送量 输料管在正常工作中的最大物料量为: G算 =aG G算——计算输送量 G——设计输送量,根据工艺流量平衡表或其他要求确定。必要时应通 过测定,以求准确 a——储备系数,考虑到工艺上的原因,如原料品质的变化,水分含量 的高低,操作指标的改变等可能引起流量变化的因素而附加的系数
三正压输送系统的设计计算第四节第四节气力输送气力输送网络的设计与计算网络的设计与计算二推荐的计算方法2供料器的漏风量叶轮式供料器在工作时必然有一部分空气泄漏其数量的多少除与供料器的规格大小和叶轮与机壳之间的间隙有关外主要取决于供料器出料口处的压力的大小亦即取决于供料器后面全部管路的阻力包括供料器本身的阻力以及输料管选配阀和卸料器等设备的阻力
负压稀相气力输送的设计和计算
负压气力输送系统1,常见的负压气力输送装置A,低负压离心风机气力输送:采用离心风机作为气源、以落料式吸嘴作为进料装置、用串联双旋风作为气固分离装置,采用大风量连续输送并冷却略潮湿的物料,见下图。
由于采用高压离心风机作为气源输送其压力很低,因此这种输送距离不易过长(一般不超过100米),否则输送距离太长则能耗显著增加得不偿失。
由于离心风机的压头很低,多点进料时就不能采用串联形式(因为串联形式的多点进料阻力很大离心风机没有力量同时抽动多个点位的物料),因此它采用落料式吸嘴进行并联多点进料,这样就可以大大地降低吸嘴处的阻力降,在每个进料点都配有调风插板进行调节,同时在进料段管道直径应合理匹配让直径逐渐加粗使得每一点的风速都基本一致。
气固分离装置则先让二相流进入矮胖的旋风分离器将绝大部分粗粉和颗粒及一部分细粉分离出来经过安装在其底部的旋转阀连续地排泄出去,然后再将含尘气体进入细高的旋风分离器将绝大部分细粉分离出来并由旋转阀排出,尾气则经由离心风机(离心风机可以走粉尘)排空,这种方式尾气不能达到排放标准。
采用落料式吸嘴的低负压离心风机输送系统管道不会堵塞,原因是瞬间加大进料量时由于真空度很低它没有力量吸入太多的物料,多余的物料会溢出洒落到地面。
由于这种吸嘴无法吸入过多的物料因而输送管道也就不可能堵塞。
B,‘A’中讲述的略潮湿的物料低负压离心风机气力输送的尾气不能达到排放标准。
在肯定物料是干燥的无附着的情况下用布袋除尘器替代细高的旋风分离器,这样排出的尾气就能够达到排放标准,见下图。
布袋除尘器的前端保留旋风分离器的目的是用旋风分离器将绝大部分物料分离出去以降低进入布袋除尘器的粉尘浓度防止其堵塞。
由于这是气力输送系统它的负压值远比除尘系统大(一般大10倍左右),除尘系统使用的轻薄滤袋容易透灰,因此一般采用加厚或覆膜滤料来制造滤袋,来防止细粉穿透滤袋,另外与除尘系统相比其脉冲阀加大且脉冲反吹清灰的频次增加以加强清灰力度,过滤面积也要加大以抵消清灰频次增加所抵消的过滤面积,设计风量也应适当增加以抵消过多的脉冲反吹空气。
气力输送计算
第四节 气力输送网络的设计与计算
第四节 气力输送网络的设计与计算
气力输送网路的设计与计算的任务是,根据规定的条件设计确定网路的 组合形式以及各输料管和风运设备的规格尺寸,计算网路所需要的风量和压 力损失,从而正确选用合适的风机和电动机,以保证网路既经济,又能可靠 地工作。 一、设计依据和主要参数的确定 (一)设计依据及对工艺设计的要求 作为设计依据的条件主要有: 1.生产规模及工作制度。 2.原粮的性质及其成品的种类和等级。 3.厂房结构形式,以及仓库和附属车间的结合情况。 4.工艺流程和作业机的布置情况。 5.技术经济指标和环境保护要求。 6.操作管理条件和技术措施的可能性。 7..远景发展规划。
第四节 气力输送网络的设计与计算
三、正压输送系统的设计计算 (一)设计的原则和要求 4.罗茨鼓风机,作为输送气源,通常都集中安装在单独的房间内,这 .罗茨鼓风机,作为输送气源,通常都集中安装在单独的房间内, 样可便于管理和控制噪声。供料器的位置应尽量布置在供料点的附近, 样可便于管理和控制噪声。供料器的位置应尽量布置在供料点的附近,鼓 风机与供料器之间的连接风管, 风机与供料器之间的连接风管,在布置走向时可不必拘泥于弯头的多少和 管道的长短,主要考虑的是不过多地影响车间通道,适当照顾整齐美观。 管道的长短,主要考虑的是不过多地影响车间通道,适当照顾整齐美观。 对于气源压力较高的送风管,其水平部分应有3%的倾斜 沿气源方向), 的倾斜( 对于气源压力较高的送风管,其水平部分应有 的倾斜(沿气源方向), 以便凝结水的集中和收集。 以便凝结水的集中和收集。 5.在压送系统的设计过程中,必须同时考虑仓顶或卸料器尾气的收集 .在压送系统的设计过程中, 处理,包括供料器;漏风的收集。 处理,包括供料器;漏风的收集。这些都可按一般的通风除尘系统进行设 计。 总之,设计过程中需要考虑的因素是很多的, 总之,设计过程中需要考虑的因素是很多的,应该在坚持基本原则的 基础上,灵活掌握,不能生搬硬套,以免顾此失彼, 基础上,灵活掌握,不能生搬硬套,以免顾此失彼,必要时可列出多种方 论证对比,择善而从。 案,论证对比,择善而从。
气力输送计算(催功龙)
上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径)φ=仓泵出料管输出流量q 计算点压力工况下需要输送空输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
;.
气力输送计算
一、设计依据和主要参数确定
1、输送量(G)
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,
此速度。风速过高动力消耗过大。动力消耗几乎与风速的三次方成正
比。风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞
或掉料。所以应该在保证输送工作稳定可靠的前提下,尽量采用低风
速。通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平
输送时所需风速取大值,反之则取较低数值。一般输送粮粒的风速为
20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为
22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。
我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情
况取υ=4
4、风量(Q)
根据公式yGQ=2.1410203=4.17×103 m3/h
y—空气的比重 取1.2Kg/m
3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m3/h
.
;.
5、输料管直径D
根据公式221058.48.188.183VQD271.1
我们进行取整,得输料管直径D=300mm。
6、压力损失(P)