工程材料与热处理 第3章作业题参考答案
机械专业《工程材料与热处理》题库题型(附答案)

机械专业《工程材料与热处理》题库题型(附答案)机械专业《工程材料与热处理》题库题型一、填空题(每空0.5分)1. 常用测定硬度的方法有布氏硬度、洛氏硬度和维氏硬度测试法。
2. 金属材料的力学性能主要包括强度、硬度、弹性、塑性等;强度的主要判据有屈服强度和抗拉强度,强度和塑性可以用拉伸试验来测定;压入法测量方法简便、不破坏试样,并且能综合反映其它性能,在生产中最常用。
3. 铁碳合金在室温下平衡组织组成物的基本相是铁素体和渗碳体,随着碳的质量分数的增加,渗碳体相的相对量增多,铁素体相的相对量却减少。
4. 珠光体是一种复相组织,它由铁素体和渗碳体按一定比例组成。
珠光体用符号P表示。
5. 铁碳合金中,共析钢的w c=0.77%,室温平衡组织为珠光体;亚共析钢的w c=0.0218%-0.77%,室温平衡组织为铁素体和珠光体;过共析钢的w c=0.77%-2.11%,室温平衡组织为珠光体和二次渗碳体。
6. 铁碳合金结晶过程中,从液体中析出的渗碳体称为一次渗碳体;从奥氏体中析出的渗碳体称为二次渗碳体;从铁素体中析出的渗碳体称为三次渗碳体。
7. 低碳钢的碳质量分数范围是:Wc≤0.25%、中碳钢:Wc=0.25%-0.6%、高碳钢:Wc>0.6%。
8. 金属的晶粒越细,强度、硬度越高,塑性、韧性越好。
实际生产中可通过增加过冷度、变质处理和附加振动来细化晶粒。
9. 常用金属中,γ-Fe、Al、Cu 等金属具有面心立方晶格,α-Fe 具有体心立方晶格。
10. 金属的结晶是在过冷的情况下结晶的,冷却速度越快,过冷度越大,金属结晶后的晶粒越细小,力学性能越好。
11. 钢的热处理工艺是由(加热)、(保温)和(冷却)三个步骤组成的;热处理基本不改变钢件的(形状和尺寸),只能改变钢件的(结构组织)和(力学性能)。
12. 完全退火适用于(亚共析碳)钢,其加热温度为(Ac3以上30-50°C),冷却速度(缓慢),得到(铁素体和珠光体)组织。
工程材料与热处理 第1章作业题参考答案

1.写出下列力学性能符号所代表的力学性能指标的名称和含义。
σe、σs、σ r 0.2、σb、δ、ψ、a k 、σ-1、HRA、HRB、HRC、HBS(HBW)。
σe是弹性极限,是材料产生完全弹性变形时所承受的最大应力值;σs是屈服强度,是材料产生屈服现象时的最小应力值;σ r 0.2是以试样的塑性变形量为试样标距长度的0.2%时的应力作为屈服强度;σb是抗拉强度,是材料断裂前所能承受的最大应力值;δ是伸长率,试样拉断后标距长度的伸长量与原始标距长度的百分比;ψ是断面收缩率,是试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比;a k是冲击吸收功,摆锤冲击试验中摆锤冲断试样所消耗的能量称为冲击吸收功;σ-1是材料经受无数次应力循环而不被破坏的最大应力;HRA、HRB、HRC是洛氏硬度由于不同的压头和载荷组成的几种不同的洛氏硬度标尺而产生的三种表示方法;HBS(HBW)是布氏硬度,用淬火钢球做压头测得的硬度用符号HBS表示,用硬质合金做压头测得的硬度用符号HBW表示。
2.低碳钢试样在受到静拉力作用直至拉断时经过怎样的变形过程?由最初受力时的弹性变形到超过屈服极限的塑性变形到最后超过抗拉强度后的断裂。
3.某金属材料的拉伸试样l0=100mm,d0=10mm。
拉伸到产生0.2%塑性变形时作用力(载荷)F0.2=6.5×103N;F b=8.5×103N。
拉断后标距长为l l=120mm,断口处最小直径为d l=6.4mm,试求该材料的σ0.2、σb、δ、ψ。
σ0.2= F0.2/ s0=(6.5×103)/π×(10/2)2=82.8MPaσb= F b/ s0=(8.5×103)/π×(10/2)2=108.28MPaδ=(l l- l0)/ l0×100%=20%ψ=( s0- s1)/ s0=[π×(10/2)2-π×(6.4/2)2]/π×(10/2)2=59.04%4.钢的弹性模量为20.7×104MPa,铝的弹性模量为6.9×104MPa。
工程材料与热处理 第2章作业题参考答案

6。
配位数为12,原子半径为1/2a。
2实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响?点缺陷、线缺陷、面缺陷一般晶体缺陷密度增大,强度和硬度提高。
3什么叫过冷现象、过冷度?过冷度与冷却速度有何关系?它对结晶后的晶粒大小有何影响?金属实际结晶温度低于理论结晶温度的现象称为过冷现象。
理论结晶温度与实际结晶温度之差称为过冷度。
金属结晶时的过冷度与冷却速度有关,冷却速度愈大,过冷度愈大,金属的实际结晶温度就愈低。
结晶后的晶粒大小愈小。
4金属的晶粒大小对力学性能有何影响?控制金属晶粒大小的方法有哪些?一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。
控制金属晶粒大小的方法有:增大过冷度、进行变质处理、采用振动、搅拌处理。
5.如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小:(1)金属型浇注与砂型浇注:(2)浇注温度高与浇注温度低;(3)铸成薄壁件与铸成厚壁件;(4)厚大铸件的表面部分与中心部分(5)浇注时采用振动与不采用振动。
(6)浇注时加变质剂与不加变质剂。
(1)金属型浇注的冷却速度快,晶粒细化,所以金属型浇注的晶粒小;(2)浇注温度低的铸件晶粒较小;(3)铸成薄壁件的晶粒较小;(4)厚大铸件的表面部分晶粒较小;(5)浇注时采用振动的晶粒较小。
(6)浇注时加变质剂晶粒较小。
6.金属铸锭通常由哪几个晶区组成?它们的组织和性能有何特点?(1)表层细等轴晶粒区金属铸锭中的细等轴晶粒区,显微组织比较致密,室温下力学性能最高;(2)柱状晶粒区在铸锭的柱状晶区,平行分布的柱状晶粒间的接触面较为脆弱,并常常聚集有易熔杂质和非金属夹杂物等,使金属铸锭在冷、热压力加工时容易沿这些脆弱面产生开裂现象,降低力学性能。
(3)中心粗等轴晶粒区由于铸锭的中心粗等轴晶粒区在结晶时没有择优取向,不存在脆弱的交界面,不同方向上的晶粒彼此交错,其力学性能比较均匀,虽然其强度和硬度低,但塑性和韧性良好。
7.为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性?因为单晶体中的不同晶面和晶向上的原子密度不同,导致了晶体在不同方向上的性能不同的现象,因此其性能呈现各向异性的。
工程材料与热处理 第4章作业题参考答案

1.滑移和孪晶的变形机制有何不同?为什么在一般条件下进行塑性变形时锌中容易出现孪晶,而纯铁中容易出现滑移带?主要的不同:(1)晶体位向在滑移前后不改变,而在孪生前后晶体位向改变,形成镜面对称关系。
(2)滑移的变形量为滑移方向原子间距的整数倍,而孪生过程中的位移量正比于该层至孪晶面的距离。
(3)孪生是一部分晶体发生了均匀的切变,而滑移是不均匀的。
锌的晶体结构为密排六方,密排六方金属滑移系少,所以容易出现孪晶,而纯铁为体心立方结构,滑移系多,所以容易出现滑移带。
2.多晶体塑性变形与单晶体塑性变形有何不同?多晶体的每一晶粒滑移变形的规律与单晶体相同,但由于多晶体中存在晶界,且各晶体的取向也不相同,多晶体的塑性变形具有以下特点:(1)各晶粒不同同时变形;(2)各晶粒变形的不均匀性;(3)各变形晶粒相互协调。
3.什么是滑移、滑移线、滑移带和滑移系?滑移线和滑移带是如何在金属表面形成的?列举金属中常见晶体结构最重要的滑移系,并在其晶胞内画出一个滑移系。
哪种晶体的塑性最好?哪个次之?为什么?所谓滑移是指在切应力的作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生相对滑动,滑动后原子处于新的稳定位置。
晶体材料的滑移面与晶体表面的交线称为滑移线。
由数目不等的滑移线或滑移台阶组成的条带称为滑移带。
一个滑移面和该面上的一个滑移方向组成一个滑移系。
滑移线是由于晶体的滑移变形使试样的抛光表面产生高低不一的台阶所造成的;相互靠近的小台阶在宏观上反映的是一个大台阶,所以形成了滑移带。
滑移系越多,金属发生滑移的可能性越大,塑性就越好。
滑移方向对滑移所起的作用比滑移面大,所以面心立方晶格金属比体心立方晶格金属的塑性更好。
密排六方由于滑移少,塑性最差。
4.简述一次再结晶与二次再结晶的驱动力,并说明如何区分冷、热加工。
动态再结晶与静态再结晶后的组织结构的主要区别是什么?一次再结晶的驱动力是冷变形所产生的储存能的释放。
二次再结晶的驱动力是由于界面能变化引起的。
工程材料与热处理-第5章作业题参考答案

工程材料与热处理-第5章作业题参考答案(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.奥氏体晶粒大小与哪些因素有关为什么说奥氏体晶粒大小直接影响冷却后钢的组织和性能奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小。
(1)加热温度和保温时间。
加热温度越高,保温时间越长,奥氏体晶粒越粗大。
(2)加热速度。
加热速度越快,过热度越大,奥氏体的实际形成温度越高,形核率和长大速度的比值增大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大。
(3)钢的化学成分。
在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小。
(4)钢的原始组织。
钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小。
传统多晶金属材料的强度与晶粒尺寸的关系符合Hall-Petch关系,即σs=σ0+kd-1/2,其中σ0和k是细晶强化常数,σs是屈服强度,d是平均晶粒直径。
显然,晶粒尺寸与强度成反比关系,晶粒越细小,强度越高。
然而常温下金属材料的晶粒是和奥氏体晶粒度相关的,通俗地说常温下的晶粒度遗传了奥氏体晶粒度。
所以奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响。
奥氏体晶粒度越细小,冷却后的组织转变产物的也越细小,其强度也越高,此外塑性,韧性也较好。
2.过冷奥氏体在不同的温度等温转变时,可得到哪些转变产物试列表比较它们的组织和性能。
3.共析钢过冷奥氏体在不同温度的等温过程中,为什么550℃的孕育期最短,转变速度最快因为过冷奥氏体的稳定性同时由两个因素控制:一个是旧与新相之间的自由能差ΔG;另一个是原子的扩散系数D。
等温温度越低,过冷度越大,自由能差ΔG也越大,则加快过冷奥氏体的转变速度;但原子扩散系数却随等温温度降低而减小,从而减慢过冷奥氏体的转变速度。
工程材料与热处理第1章作业题参考答案

⼯程材料与热处理第1章作业题参考答案1.写出下列⼒学性能符号所代表的⼒学性能指标的名称和含义。
σe、σs、σ r 0.2、σb、δ、ψ、a k 、σ-1、HRA、HRB、HRC、HBS(HBW)。
σe是弹性极限,是材料产⽣完全弹性变形时所承受的最⼤应⼒值;σs是屈服强度,是材料产⽣屈服现象时的最⼩应⼒值;σ r 0.2是以试样的塑性变形量为试样标距长度的0.2%时的应⼒作为屈服强度;σb是抗拉强度,是材料断裂前所能承受的最⼤应⼒值;δ是伸长率,试样拉断后标距长度的伸长量与原始标距长度的百分⽐;ψ是断⾯收缩率,是试样拉断后,缩颈处横截⾯积的缩减量与原始横截⾯积的百分⽐;a k是冲击吸收功,摆锤冲击试验中摆锤冲断试样所消耗的能量称为冲击吸收功;σ-1是材料经受⽆数次应⼒循环⽽不被破坏的最⼤应⼒;HRA、HRB、HRC是洛⽒硬度由于不同的压头和载荷组成的⼏种不同的洛⽒硬度标尺⽽产⽣的三种表⽰⽅法;HBS(HBW)是布⽒硬度,⽤淬⽕钢球做压头测得的硬度⽤符号HBS表⽰,⽤硬质合⾦做压头测得的硬度⽤符号HBW表⽰。
2.低碳钢试样在受到静拉⼒作⽤直⾄拉断时经过怎样的变形过程?由最初受⼒时的弹性变形到超过屈服极限的塑性变形到最后超过抗拉强度后的断裂。
3.某⾦属材料的拉伸试样l0=100mm,d0=10mm。
拉伸到产⽣0.2%塑性变形时作⽤⼒(载荷)F0.2=6.5×103N;Fb=8.5×103N。
拉断后标距长为l l=120mm,断⼝处最⼩直径为d l=6.4mm,试求该材料的σ0.2、σb、δ、ψ。
σ0.2= F0.2/ s0=(6.5×103)/π×(10/2)2=82.8MPaσb= F b/ s0=(8.5×103)/π×(10/2)2=108.28MPaδ=(l l- l0)/ l0×100%=20%ψ=( s0- s1)/ s0=[π×(10/2)2-π×(6.4/2)2]/π×(10/2)2=59.04%4.钢的弹性模量为20.7×104MPa,铝的弹性模量为6.9×104MPa。
工程材料与热处理 第1章作业题参考答案
1.写出下列力学性能符号所代表的力学性能指标的名称和含义。
σe、σs、σ r 0.2、σb、δ、ψ、a k 、σ-1、HRA、HRB、HRC、HBS(HBW)。
σe是弹性极限,是材料产生完全弹性变形时所承受的最大应力值;σs是屈服强度,是材料产生屈服现象时的最小应力值;σ r 0.2是以试样的塑性变形量为试样标距长度的0.2%时的应力作为屈服强度;σb是抗拉强度,是材料断裂前所能承受的最大应力值;δ是伸长率,试样拉断后标距长度的伸长量与原始标距长度的百分比;ψ是断面收缩率,是试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比;a k是冲击吸收功,摆锤冲击试验中摆锤冲断试样所消耗的能量称为冲击吸收功;σ-1是材料经受无数次应力循环而不被破坏的最大应力;HRA、HRB、HRC是洛氏硬度由于不同的压头和载荷组成的几种不同的洛氏硬度标尺而产生的三种表示方法;HBS(HBW)是布氏硬度,用淬火钢球做压头测得的硬度用符号HBS表示,用硬质合金做压头测得的硬度用符号HBW表示。
2.低碳钢试样在受到静拉力作用直至拉断时经过怎样的变形过程?由最初受力时的弹性变形到超过屈服极限的塑性变形到最后超过抗拉强度后的断裂。
3.某金属材料的拉伸试样l0=100mm,d0=10mm。
拉伸到产生0.2%塑性变形时作用力(载荷)F0.2=6.5×103N;F b=8.5×103N。
拉断后标距长为l l=120mm,断口处最小直径为d l=6.4mm,试求该材料的σ0.2、σb、δ、ψ。
σ0.2= F0.2/ s0=(6.5×103)/π×(10/2)2=82.8MPaσb= F b/ s0=(8.5×103)/π×(10/2)2=108.28MPaδ=(l l- l0)/ l0×100%=20%ψ=( s0- s1)/ s0=[π×(10/2)2-π×(6.4/2)2]/π×(10/2)2=59.04%4.钢的弹性模量为20.7×104MPa,铝的弹性模量为6.9×104MPa。
工程材料课后习题答案
《工程材料及机械制造基础》习题参考答案第一章材料的种类与性能(P7)1、金属材料的使用性能包括哪些?力学性能、物理性能、化学性能等。
2、什么是金属的力学性能?它包括那些主要力学指标?金属材料的力学性能:金属材料在外力作用下所表现出来的与弹性和非弹性反应相关或涉及力与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、一根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最大载荷为多少?断面收缩率是多少?F=35325N ψ=27.75%4、简述洛氏硬度的测试原理。
以压头压入金属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应力松弛?蠕变:金属在长时间恒温、恒应力作用下,发生缓慢塑性变形的现象。
应力松弛:承受弹性变形的零件,在工作过程中总变形量不变,但随时间的延长,工作应力逐渐衰减的现象。
6、金属腐蚀的方式主要有哪几种?金属防腐的方法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐方法:1)改变金属的化学成分;2)通过覆盖法将金属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第二章材料的组织结构(P26)1、简述金属三种典型结构的特点。
体心立方晶格:晶格属于立方晶系,在晶胞的中心和每个顶角各有一个原子。
每个体心立方晶格的原子数为:2个。
塑性较好。
面心立方晶格:晶格属于立方晶系,在晶胞的8个顶角和6个面的中心各有一个原子。
每个面心立方晶格的原子数为:4个。
塑性优于体心立方晶格的金属。
密排六方晶格:晶格属于六方棱柱体,在六棱柱晶胞的12个项角上各有一个原子,两个端面的中心各有一个原子,晶胞内部有三个原子。
每个密排六方晶胞原子数为:6个,较脆2、金属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和面缺陷。
使金属抵抗塑性变形的能力提高,从而使金属强度、硬度提高,但防腐蚀能力下降。
3、合金元素在金属中存在的形式有哪几种?各具备什么特性?存在的形式有固溶体和金属化合物两种。
工程材料与热处理试卷
08机电一体化《程材料与热处理》复习题一、填空1、根据采用的渗碳剂的不同,将渗碳分为固体渗碳、__液体渗氮__和__气体渗氮_三种。
2、金属的力学性能主要有__强度__、_硬度_、塑性等。
3、理论结晶温度与实际结晶温度之差称为_过冷度_。
冷却速度越_快_,过冷度也越大。
4、铁碳合金室温的基本组织有_铁素体___、__奥氏体__、渗碳体、珠光体和莱氏体等.5、实际金属晶体的缺陷有点缺陷、__线缺陷__、_面缺陷_.6、常见碳素钢按含碳量分为高碳钢、_中碳钢__、_低碳钢_。
7、在机械零件中,要求表面具有耐磨性和__硬度__,而心部要求足够塑性和__强度_时,应进行表面热处理。
8、热处理工艺过程都由 _加热__、保温、_冷却_ 三个阶段组成..9、工厂里淬火常用的淬火介质有_水_、__油_和盐水溶液等.10、常用的整体热处理有退火、 _正火_、__淬火_ 回火等.11、根据构成合金元素之间相互作用不同,合金组织可分为___纯金属___、___固溶体、混合物三种类型。
12、铸铁按碳存在形式分_灰铸铁_ _蠕墨铸铁_可锻铸铁、球墨铸铁等。
13、从金属学观点来说,凡在再结晶温度以下进行的加工,称为_冷轧_;而在再结晶温度以上进行的加工,称为_热轧_.14、常用的淬火缺陷有_氧化___与脱碳、过热与_过烧__、畸变与开裂和硬度不足与软点等。
15、常见的金属晶体结构有体心立方晶格、_面心立方晶格___和__密排六方晶格__三种。
16、工业上广泛应用的铜合金按化学成分的不同分__黄铜_、__青铜__ 、白铜。
17、合金常见的相图有_匀晶、__共晶__、包晶相图和具有稳定化合物的二元相图。
18、调质是__淬火__和_高温回火_的热处理。
19、铁碳合金相图是表示在___及其缓慢冷却__的条件下,不同成分的铁碳合金的_组织状态_,随温度变化的图形。
20、金属材料的性能包括物理性能、化学性能、__工艺__性能和___经济__性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 置换固溶体中,被置换的溶剂原子哪里去了? 答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。
2. 间隙固溶体和间隙化合物在晶体结构与性能上的区别何在?举例说明之。 答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。 间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比rX/rM>0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。
3. 现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确?为什么? (1) 形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。 (2) K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B量总是高于原液相中含B量. (3) 固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。
答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。 (2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。 (3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。
4. 共析部分的Mg-Cu相图如图所示: — 欢迎下载 2 (1) 填入各区域的组织组成物和相组成物。在各区域中是否会有纯Mg相存在?为什么? 答: Mg-Mg2Cu系的相组成物如下图:(α为Cu在Mg中的固溶体)
Mg-Mg2Cu系的组织组成物如下图:(α为Cu在Mg中的固溶体,) —
欢迎下载 3 在各区域中不会有纯Mg相存在,此时Mg以固溶体形式存在。 (2) 求出20%Cu合金冷却到500℃、400℃时各相的成分和重量百分比。 答: 20%Cu合金冷却到500℃时,如右图所示: α相的成分为a wt%, 液相里含Cu 为b wt%,根据杠杆原理可知: Wα=O1b/ab*100%, WL= O1a/ab*100% 同理: 冷却到400℃时,α相的成分为m wt%, Mg2Cu相里含Cu 为n wt%, Wα=O2n/mn*100%, Wmg2Cu= O2m/mn*100% (3) 画出20%Cu合金自液相冷却到室温的曲线,并注明各阶段的相与相变过程。 答:各相变过程如下(如右图所示):
xp: 液相冷却,至p点开始析出Mg的固熔体α相 py: Mg的固熔体α相从p点开始到y点结束 — 欢迎下载 4 yy,: 剩余的液相y开始发生共晶反应,L↔α+ Mg2Cu y,q:随着T的降低, Cu在Mg的固熔体α相的固溶度降低.
5. 试分析比较纯金属、固溶体、共晶体三者在结晶过程和显微组织上的异同之处。 答:相同的是,三者都是由原子无序的液态转变成原子有序排列的固态晶体。不同的是, 纯金属和共晶体是恒温结晶,固溶体是变温结晶,纯金属和固溶体的结晶是由一个液相结晶出一个固相,而共晶体结晶是由一个液相同时结晶两个固相。纯金属和固溶体的显微组织是单一固相,而共晶体的显微组织是两个相的机械混合物。
6. 为什么亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同? 答:共晶转变是一定液相成分在一定的温度下结晶出两个成分一定的固相。因此,共晶转变的温度是一定的。虽然亚共晶合金和共晶合金的成分不相同,但亚共晶合金结晶先析出固溶相,使剩余液相的成分达到共晶合金的成分再发生共晶反应,所以亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。
7. 根据下表所列要求,归纳比较固溶体、金属化合物及机械混合物的特点。 名称 种类 举例 晶格特点 相数 性能特点 固溶体 间隙固溶体 置换固溶体 铁素体,奥氏体 Cu(Ni),Ni(Cu) 与溶剂晶格类型相同 单相 材料的强度硬度随固
溶强化增大 金属化合物 正价化合物 电子化合物 间隙化合物 Mg2Pb CuZn TiC,Fe3C 晶格类型与组成化合物的各组元完全不同 单相 熔点较高,性能硬而
脆
机械混合物 珠光体 由两种不同晶体结构的相彼此机械混合组成 2 其性能与两相的性
能、大小和分布有关
8. 何谓金属的同素异晶转变?试以纯铁为例说明金属的同素异晶转变。 答:金属在固态下随温度的变化,由一种晶格变为另一种晶格的现象,称为金属的同素异晶转变。 液态纯铁冷却到1538℃时,结晶成具有体心立方晶格的δ-Fe;继续冷到1394℃时发生同素异晶的转变,体心立方晶格δ-Fe转变为面心立方晶格γ-Fe;再继续冷却到912℃时,γ-Fe又转变为体心立方晶格的α-Fe。纯铁变为固态后发生了两次同素异晶转变。
9. 何谓共晶转变和共析转变?以铁碳合金为例写出转变表达式。 答:共晶转变:在一定的温度下,一定成分的液体同时结晶出两种一定成分的固相的反应。 L↔A+Fe3C(共晶) 共析转变:在一定温度下,由成分一定的固相同时析出两种成分一定且不相同的新固相的转变。 A↔F+ Fe3C(共析)
10. 画出Fe-Fe3C相图钢的部分,试分析45钢,T8钢,T12钢在极缓慢的冷却条件下的组织转变过程,并绘出室温显微组织示意图。 — 欢迎下载 5 答:Fe-Fe3C相图如下图所示
(1)45钢为亚共析钢(组织图参考右) 组织转变过程如下: L→L+δ→L+δ+γ→L+γ→γ →α+γ→α+P+γ→α+ P (析出Fe3CⅢ)
(2)T8钢近似为共析钢(组织图参考右) 组织转变过程如下: L→L+γ→γ→P+γ →P(α+ Fe3C) —
欢迎下载 6 (3)T12为过共析钢(组织图参考右) L→L+γ→γ→γ+Fe3CⅡ →P + Fe3CⅡ
11. 为什么铸造合金常选用靠近共晶成分的合金,而压力加工合金则选用单相固溶体成分合金? 答:铸造合金需要流动性能好,充型能力强,而接近共晶成分合金,凝固温度区间小,且结晶温度低,恰好满足这个特点;压力加工的合金需要塑性好组织均匀,变形抗力小,有好的伸长率,单相固溶体恰好满足这些要求。
12. 根据Fe-Fe3C相图,确定下表中三种钢在指定温度下的显微组织名称。 钢号 温度(℃) 显微组织 温度(℃) 显微组织 20 770 F+A 900 A T8 680 P 770 A T12 700 P+Fe3CⅡ 770 A+Fe3CⅡ
13. 某厂仓库中积压了许多碳钢(退火状态)由于钢材混杂不知其化学成分,现找出一根,经金相分析后发现组织为珠光体和铁素体,其中铁素体量占80%。问此钢材碳的含量大约是多少?是哪个钢号? 答:由杠杆原理可知,
此钢材碳的含量大约0.17 wt%,与20钢接近 14. 有形状和大小一样的两块铁碳合金,一块是低碳钢,一块是白口铁。问用什么简便的方法可迅速将它们区分开来? 答:最简单的办法就是用钢锉,挫一挫,白口铸铁由于碳以化合物形式大量存在,比较硬,挫不动,打滑,低碳钢碳化物少,比较软,一挫就掉末。(此方法可行)
15. 现有两种铁碳合金,在显微镜下观察其组织,并以面积分数评定各组织的相对量。一种合金的珠光体占75%,铁素体占25%;另一种合金的显微组织中珠光体占92%,二次渗碳体占8%。这两种铁碳合金各属于哪一类合金?其碳的质量分数各为多少? 答:
珠光体占75%,铁素体占25%,此钢应为亚共析钢,其碳的质量分数约为0.58 wt%.
0218.077.077.0%xF
0218.077.077.0%xF— 欢迎下载 7 珠光体占92%,二次渗碳体占8%,此钢应为过共析钢, 其碳的质量分数约为1.24 wt%. 16. 现有形状尺寸完全相同的四块平衡状态的铁碳合金,它们碳的质量分数分别为0.20%、0.40%、1.2%、3.5%。根据你所学过的知识,可有哪些方法来区别它们? 答:方法一:硬度测试。硬度值大小顺序是:白口铸铁>T12钢>45钢>20钢。 因为铁碳合金的硬度随含碳量的增加而升高;四种铁碳合金的含碳量是:白口铸铁(大于2.11%C) > T12钢(1.2%C)>45钢(0.45%)>20钢(0.2%C)。 方法二:分别制备四种材料的金相试样,在金相显微镜上进行显微组织观察。 亚共析钢组织为(F+P),且亚共析钢中随含碳量增加铁素体减少,珠光体增多;过共析钢组织为(P+Fe3CⅡ),且当Wc>0.9%时,Fe3CⅡ沿晶界呈网状分布;白口铸铁的组织中有莱氏体。所以,组织为(F+P)而铁素体少的为20钢、珠光体多的为45钢;组织中有Fe3CⅡ沿晶界呈网状分布的T12钢,有莱氏体组织存在的是白口铸铁。 方法三:塑性测试(断后伸长率或者断面收缩率)。塑性值大小顺序是:20钢>45钢>T12钢>白口铸铁。
17. 根据Fe-Fe3C相图解释下列现象: (1) 在进行热轧和锻造时,通常将钢加热到1000-1200℃; (2) 钢铆钉一般用低碳钢制作; (3) 绑扎物件一般用铁丝(镀锌低碳钢丝),而起重机吊重物时却用钢丝绳(60钢、65钢、70钢等制成); (4) 在1100℃时,WC=0.4%的碳钢能进行锻造,而WC=4.0%的铸铁不能进行锻造; (5) 在室温下WC=0.8%的碳钢比WC=1.2%的碳钢强度高; (6) 钢锭在正常温度(950-1100℃)下轧制有时会造成开裂; (7) 钳工锯割T8钢、T10钢等钢料比锯割10钢、20钢费力,锯条易钝; 答: (1) 此区域为单相奥氏体,相对较软,易变形 (2) 低碳钢塑性较好 (3) 铁丝强度低,塑性好;60钢、65钢、70钢等钢丝强度高 (4) 因为WC=4.0%在此温度下组织有高温莱氏体,其中含有共晶渗碳体,此组织塑性极差,不能锻造, WC=0.4%的碳钢,在此温度为单相奥氏体,塑性好,故可进行锻造工艺 (5) 硬度随含C量增加而增加,但强度不一样,强度和组织有关,WC=0.8% 和WC=1.2%钢的组织为珠光体和晶界析出的二次渗碳体,两者组织中的含量不一样,二次渗碳体是一种脆性相,对强度影响很大,而WC=1.2%钢中二次渗碳体比WC=0.8%多。 (6) 因冶金质量不高,钢中存在硫,硫与铁生成FeS, FeS与Fe能形成低熔点共晶体(FeS+Fe),熔点仅为985℃,低于钢材热加工的温度。因此,在热加工时,分布在晶界上的共晶体熔化导致钢的开裂,这种现象称为热脆。 (7) 高碳钢T8钢和T10钢比低碳钢10钢和20钢硬度高, 更耐磨,所以锯割T8钢、T10钢等钢料比锯割10钢、20钢费力,锯条易钝。