各种版本数学中考模拟题-(116)
2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。
中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。
可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
中考数学模拟测试试卷(附含有答案)

中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。
中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。
初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
中招考试数学模拟考试卷(附含答案)
中招考试数学模拟考试卷(附含答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题在每小题给出的四个选项中只有一项是正确的请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.1.下列计算中正确的是()A. a4+a4=a8B. a4⋅a4=2a4C. (a3)4⋅a2=a14 D. (2x2y)3÷6x3y2=x3y2.下列各式中正确的是()3=2 D. √8−√2=√2A. √4=±2B. √(−3)2=−3C. √43.如图射线OA的方向是北偏东30°若∠AOB=90°则射线OB的方向是()A. 北偏西30°B. 北偏西60°C. 东偏北30°D. 东偏北60°4.互联网“微商”经营已成为大众创业新途径某微信平台上一件商品标价为220元按标价的五折销售仍可获利10%则这件商品的进价为()A. 120元B. 100元C. 80元D. 60元5.对于任意有理数a b现用“☆”定义一种运算:a☆b=a2−b2根据这个定义代数式(x+y)☆y可以化简为()A. xy+y2B. xy−y2C. x2+2xyD. x26.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球搅匀后从中摸出一个球放回搅匀再摸出一个球两次都摸出白球的概率是()A. 49B. 29C. 23D. 137.某盏路灯照射的空间可以看成如图所示的圆锥它的高AO=8米底面半径OB=6米则圆锥的侧面积是多少平方米(结果保留π).()A. 60πB. 50πC. 47.5πD. 45.5π8.二次函数y=ax2+bx+c的图象如图所示则一次函数y=ax+b和反比例函数y=cx在同一平面直角坐标系中的图象可能是()A. B. C. D.9.如图所示△ABC与△A′B′C′关于点O成中心对称则结论不一定成立的是()A. 点A与点A′是对称点B. BO=B′OC. ∠ACB=∠CA′B′D. AB//A′B′10.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为172②△AEG的周长为8③EG2=DG2+BE2.其中正确的是()(第8题图)A. ①②③B. ①③C. ①②D. ②③第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. PM2.5是指大气中直径小于或等于0.000 0025 m 的颗粒物 将0.000 002 5用科学记数法表示为 . 12. 因式分解:8a 3−2ab 2=______.13. 某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知 11名成员射击成绩的中位数是______环.14. 不等式组{2x+13>x24x ≤3x +2的解集是______ .15. 如图 等边三角形ABC 内接于⊙O 点D E 是⊙O 上两点 且∠DOE =120° 若OD =2 则图中阴影部分的面积为______.(第10题图)(第13题图)(第15题图)16.如图是一个长为30米宽为20米的长方形花园现要在花园中修建等宽的小道剩余地方种植花草.如图所示种植花草的面积为532米 2求小道进出口的宽。
中招考试数学模拟考试卷(附含答案)
中招考试数学模拟考试卷(附含答案)(满分:120分考试时间:120分钟)一选择题(本大题共10小题每题3分,共30.0分)1.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列四个算式中正确的是()A. a2+a3=a5B. (−a2)3=a6C. a2⋅a3=a6D. a3÷a2=a3.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.若式子√m+1|m−3|有意义则实数m的取值范围是()A. m≥−1B. m>−1C. m>−1且m≠3D. m≥−1且m≠35.“赵爽弦图”巧妙地利用面积关系证明了勾股定理是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为a较短直角边长为b若(a+b)2=21大正方形的面积为13则小正方形的面积为()A. 3B. 4C. 5D. 66.圆锥的底面半径r=6高ℎ=8则圆锥的侧面积是()A. 15πB. 30πC. 45πD. 60π7.已知点A(x1,y1)B(x2,y2)C(x3,y3)都在反比例函数y=kx(k<0)的图象上且x1<x2<0< x3则y1y2y3的大小关系是()A. y2>y1>y3B. y3>y2>y1C. y1>y2>y3D. y3>y1>y28.函数y=kx与y=−kx2+k(k≠0)在同一直角坐标系中的大致图象可能是()A. B.C. D.9.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x−10234y50−4−30下列结论:①抛物线的开口向上②抛物线的对称轴为直线x=2③当0<x<4时y>0④抛物线与x轴的两个交点间的距离是4⑤若A(x1,2)B(x2,3)是抛物线上两点则x1<x2其中正确的个数是()A. 2B. 3C. 4D. 510.如图在正方形ABCD中点O是对角线AC BD的交点过点O作射线OM ON分别交BC CD于点E F且∠EOF=90°OC EF交于点G.给出下列结论:①△COE≌△DOF②△OGE∽△FGC③四边形CEOF的面积为正方形ABCD面积的14④DF2+BE2=OG⋅OC.其中正确的是()A. ①②③④B. ①②③C. ①②④D. ③④二、填空题(本大题共8小题,11-14每题3分,15-18每题4分,共28.0分)11.目前世界上能制造的芯片最小工艺水平是5纳米而我国能制造芯片的最小工艺水平是16纳米已知1纳米=10−9米用科学记数法将16纳米表示为______米.12.分解因式:3a3−12a2b+12ab2=______.13.某校调查了20名男生某一周参加篮球运动次数调查结果如表所示那么这20名男生该周参加篮球运动次数的平均数是______次.次数2345人数2210614.已知一个正数的两个平方根分别是3x−2和5x+6则这个数是.15.如图在平面直角坐标系中长方形OACB的顶点O为坐标原点顶点A B分别在x轴y轴的正半轴上OA=3OB=4D为边OB的中点连接CD E是边OA上的一个动点当△CDE的周长最小时点E的坐标为.16.如图点O是半圆圆心BE是半圆的直径点A D在半圆上且AD//BO∠ABO=60°AB=8过点D作DC⊥BE于点C则阴影部分的面积是______.17.如图在平面直角坐标系xOy中直线y=√33x+2√33与⊙O相交于A B两点且点A在x轴上则弦AB的长为.18.如图已知等边△OA1B1顶点A1在双曲线y=√3x(x>0)上点B1的坐标为(2,0).过B1作B1A2//OA1交双曲线于点A2过A2作A2B2//A1B1交x轴于点B2得到第二个等边△B1A2B2过B2作B2A3//B1A2交双曲线于点A3过A3作A3B3//A2B2交x轴于点B3得到第三个等边△B2A3B3以此类推…则点B6的坐标为____.三、解答题(本题共7小题共62.0分)19.(8分)(1)计算:−14−|√3−1|+(√2−1.414)0+2sin60°−(−12)−1(2)先化简(m2+4mm−2−m−2)÷m2+2m+1m−2然后从−2<m≤2中选一个合适的整数作为m的值代入求值.20. (8分)为深化课程改革提高学生的综合素质某校开设了形式多样的校本课程.为了解哪门校本课程在学生中最受欢迎学校随机抽取了部分学生进行调查从A:天文地理:B:科学探究;C:文史天地;D:趣味数学四门课程中选你喜欢的课程(被调查者限选一项)并将调查结果绘制成两个不完整的统计图如图所示.根据以上信息解答下列问题:(1)本次调查的总人数为人扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查估计该校400名学生中最喜欢“科学探究”的学生人数为多少⋅(4)为激发学生的学习热情学校决定举办学生综合素质大赛采取“双人同行合作共进”小组赛形式比赛题目从上面四个类型的校本课程中产生每个类型题目被抽到的概率一样并且规定:同一小组的两名同学的题目类型不能相同且每人只能抽取一次.小琳和小金组成了一组他们抽到“天文地理”和“趣味数学”类题目的概率是多少?(请用画树状图或列表的方法求)21. (8分)如图在Rt△ABC中∠B=90°∠BAC的平分线AD交BC于点D点E在AC上以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线②CD2=CE⋅CA(2)若点F是劣弧AD的中点且CE=3试求阴影部分的面积.22. (8分)为了维护国家主权和海洋权力海监部门对我国领海实现了常态化巡航管理.如图所示正在执行巡航任务的海监船以每小时40海里的速度向正东方向航行在A处测得灯塔P在北偏东60°方向上继续航行30分钟后到达B处此时测得灯塔P在北偏东45°方向上.(1)求∠APB的度数(2)已知在灯塔P的周围25海里内有暗礁问海监船继续向正东方向航行是否安全?(参考数据:√2≈1.41423. (8分)为助力我省脱贫攻坚某村在“农村淘宝网店”上销售该村优质农产品.该网店于今年六月底收购一批农产品七月份销售256袋八九月该商品十分畅销销售量持续走高.在售价不变的基础上九月份的销售量达到400袋.(1)求八九这两个月销售量的月平均增长率(2)该网店十月降价促销经调查发现若该农产品每袋降价1元销售量可增加5袋当农产品每袋降价多少元时这种农产品在十月份可获利4250元?(若农产品每袋进价25元原售价为每袋40元)24. (10分)已知如图抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9)经过抛物线上的两点A(−3,−7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A M两点之间的部分(不包含A M两点)是否存在点D使得S△DAC=2S△DCM若存在求出点D的坐标若不存在请说明理由.(3)若点P在抛物线上点Q在x轴上当以点A M P Q为顶点的四边形是平行四边形时直接写出满足条件的点P的坐标.25. (12分)在矩形ABCD中AB=3BC=8F是BC边上的中点动点E在边AD上连接EF过点F作FP⊥EF分别交射线AD射线CD于点P Q.(1)如图1当点P与点Q重合时求PF的长(2)如图2当点Q在线段CD上(不与C D重合)且tanP=1时求AE的长2(3)线段PF将矩形分成两个部分设较小部分的面积为y AE长为x求y与x的函数关系式.参考答案1.【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:A.a2和a3不能合并故本选项不符合题意B.(−a2)3=−a6故本选项不符合题意C.a2⋅a3=a5故本选项不符合题意D.a3÷a2=a故本选项符合题意故选:D.根据幂的乘方与积的乘方合并同类项法则同底数幂的乘法同底数幂的除法逐个判断即可.本题考查了幂的乘方与积的乘方合并同类项法则同底数幂的乘法同底数幂的除法等知识点能熟记知识点是解此题的关键.3.【答案】A【解析】 【分析】本题考查了计算器−数的开方 解决本题的关键是认识计算器.根据计算器的功能键即可得结论. 【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5. 故选:A .4.【答案】D【解析】 【分析】本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案. 【解答】解:依题意得:{m +1≥0m −3≠0.解得m ≥−1且m ≠3. 故选:D .5.【答案】C【解析】 【分析】此题主要考查了勾股定理的应用有关知识.熟练掌握勾股定理是本题解题的关键.观察图形可知 小正方形的面积=大正方形的面积−4个直角三角形的面积 利用已知(a +b)2=21 大正方形的面积为13 可以得出四个直角三角形的面积 进而求出答案. 【解答】解:如图所示:∵(a+b)2=21∴a2+2ab+b2=21∵大正方形的面积为a2+b2,又∵大正方形的面积为(a−b)2+2ab=13∴a2+b2=13∴2ab=21−13=8即4个直角三角形的面积之和为8∴小正方形的面积为13−8=5.故选C.6.【答案】D【解析】解:圆锥的母线l=√ℎ2+r2=√62+82=10∴圆锥的侧面积=π⋅10⋅6=60π故选:D.⋅2πr⋅l=πrl求出圆锥的母线l即可解决问题.圆锥的侧面积:S侧=12本题考查圆锥的侧面积勾股定理等知识解题的关键是记住圆锥的侧面积公式.7.【答案】A(k<0)的图象分布在第二四象限【解析】解:∵反比例函数y=kx在每一象限y随x的增大而增大而x1<x2<0<x3∴y3<0<y1<y2.即y2>y1>y3.故选:A.(k<0)的图象分布在第二四象限则y3最小y2最大.根据反比例函数性质反比例函数y=kx本题考查反比例函数图象上点的坐标特征:反比例函数图象上点的坐标满足其解析式.也考查了反比例函数的性质.8.【答案】B【解析】解:由解析式y=−kx2+k可得:抛物线对称轴x=0A由双曲线的两支分别位于二四象限可得k<0则−k>0抛物线开口方向向上抛物线与y轴的交点为y轴的负半轴上本图象与k的取值相矛盾故A错误B由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象符合题意故B正确C由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象与k的取值相矛盾故C错误D由双曲线的两支分别位于一三象限可得k>0则−k<0抛物线开口方向向下抛物线与y轴的交点在y轴的正半轴上本图象与k的取值相矛盾故D错误.故选:B.本题可先由反比例函数的图象得到字母系数的正负再与二次函数的图象相比较看是否一致.本题主要考查了二次函数及反比例函数和图象解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.9.【答案】B【解析】解:设抛物线解析式为y=ax(x−4)把(−1,5)代入得5=a×(−1)×(−1−4)解得a=1∴抛物线解析式为y=x2−4x所以①正确抛物线的对称性为直线x=2所以②正确∵抛物线与x轴的交点坐标为(0,0)(4,0)∴当0<x<4时y<0所以③错误抛物线与x轴的两个交点间的距离是4所以④正确若A(x1,2)B(x2,3)是抛物线上两点则x2<x1<2或2<x1<x2所以⑤错误.故选:B.先利用交点式求出抛物线解析式则可对①进行判断利用抛物线的对称性可对②进行判断利用抛物线与x轴的交点坐标为(0,0)(4,0)可对③④进行判断根据二次函数的增减性可对⑤进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.10.【答案】B【解析】解:①∵四边形ABCD是正方形∴OC=OD AC⊥BD∠ODF=∠OCE=45°∵∠MON=90°∴∠COM=∠DOF∴△COE≌△DOF(ASA)故①正确②∵∠EOF=∠ECF=90°∴点O E C F四点共圆∴∠EOG=∠CFG∠OEG=∠FCG∴△OGE∽△FGC故②正确③∵△COE≌△DOF∴S△COE=S△DOF∴S四边形CEOF =S△OCD=14S正方形ABCD故③正确④∵△COE≌△DOF∴OE=OF又∵∠EOF=90°∴△EOF是等腰直角三角形∴∠OEG=∠OCE=45°∵∠EOG=∠COE ∴△OEG∽△OCE∴OE:OC=OG:OE∴OG⋅OC=OE2∵OC=12AC OE=√22EF∴OG⋅AC=EF2∵CE=DF BC=CD∴BE=CF又∵Rt△CEF中CF2+CE2=EF2∴BE2+DF2=EF2∴OG⋅AC=BE2+DF2故④错误故选:B.①由正方形证明OC=OD∠ODF=∠OCE=45°∠COM=∠DOF便可得结论②证明点O E C F四点共圆得∠EOG=∠CFG∠OEG=∠FCG进而得OGE∽△FGC便可③先证明S△COE=S△DOF∴S四边形CEOF=S△OCD=14S正方形ABCD便可④证明△OEG∽△OCE得OG⋅OC=OE2再证明OG⋅AC=EF2再证明BE2+DF2=EF2得OG⋅AC=BE2+DF2便可.本题属于正方形的综合题主要考查了正方形的性质全等三角形的判定与性质相似三角形的判定与性质勾股定理的综合运用.解题时注意:全等三角形的对应边相等相似三角形的对应边成比例.11.【答案】1.6×10−8【解析】解:∵1纳米=10−9米∴16纳米=1.6×10−8米.故答案为:1.6×10−8.由1纳米=10−9米可得出16纳米=1.6×10−8米此题得解.本题考查了科学记数法中的表示较小的数掌握科学记数法是解题的关键.12.【答案】3a(a−2b)2【解析】解:原式=3a(a2−4ab+4b2)=3a(a−2b)2故答案为:3a(a−2b)2原式提取公因式再利用完全平方公式分解即可.此题考查了因式分解−提公因式法熟练掌握提取公因式的方法是解本题的关键.13.【答案】4【解析】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).∴这20名男生该周参加篮球运动次数的平均数是4次.故答案为:4.加权平均数:若n个数x1x2x3…x n的权分别是w1w2w3…w n则(x1w1+x2w2+⋯+x n w n)÷(w1+w2+⋯+w n)叫做这n个数的加权平均数依此列式计算即可求解.本题考查的是加权平均数的求法.本题易出现的错误是求2345这四个数的平均数对平均数的理解不正确.14.【答案】494【解析】略15.【答案】(1,0)【解析】【分析】此题主要考查轴对称--最短路线问题解决此类问题一般都是运用轴对称的性质作D关于x轴的对称点D′连接D′C交x轴于点E如图则此时△CDE的周长最小易得点C和D′坐标故可利用待定系数法求出直线CD′的解析式然后求直线CD′与x轴的交点即得答案.【解答】如图作点D关于x轴的对称点D′连接CD′与x轴交于点E此时△CDE的周长最小.∵OB=4OA=3D是OB的中点∴OD=2C的坐标是(3,4)则D的坐标是(0,2)∴D′的坐标是(0,−2).设直线CD′所对应的函数解析式是y=kx+b(k≠0)将D′(0,−2)代入y=kx+b得b=−2将C(3,4)代入y=kx−2得4=3k−2解得k=2则直线CD′所对应的函数解析式是y=2x−2令y=0得2x−2=0解得x=1则点E的坐标为(1,0)故答案为(1,0).16.【答案】643π−8√3【解析】【分析】本题考查了扇形的面积等边三角形的判定和性质解直角三角形熟练掌握扇形的面积公式是解题的关键.连接OA易求得圆O的半径为8扇形的圆心角的度数然后根据S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD即可得到结论.【解答】解:连接OA∵∠ABO=60°OA=OB∴△AOB是等边三角形∵AB=8∴⊙O的半径为8∵AD//OB∴∠DAO=∠AOB=60°∵OA=OD∴∠AOD=60°∵∠AOB=∠AOD=60°∴∠DOE=60°∵DC⊥BE于点C∴CD=√32OD=4√3OC=12OD=4∴BC=8+4=12S阴影=S△AOB+S扇形OAD+S扇形ODE−S△BCD=12×8×4√3+2×60π×82360−12×12×4√3=64π3−8√3.故答案为64π3−8√3.17.【答案】2√3【解析】设直线AB交y轴于点C过点O作OD⊥AB于点D如图所示.在y=√33x+2√33中令x=0得y=2√33∴C(0,2√33)∴OC=2√33.在y=√33x+2√33中令y=0得√33x+2√33=0解得x=−2.∴A(−2,0).∴OA=2在Rt△AOC中tan∠CAO=OCOA =2√332=√33∴∠CAO=30∘.在Rt△AOD中AD=OA⋅cos30∘=2×√32=√3.∵OD⊥AB∴AD=BD=√3.∴AB=2√3.18.【答案】(2√6,0)【解析】【分析】本题考查了反比例函数图象上点的坐标特征等边三角形的性质正确求出B2B3B4的坐标进而得出点B n的规律是解题的关键.根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2B3B4的坐标得出规律进而求出点B6的坐标.【解答】解:如图作A2C⊥x轴于点C设B1C=a则A2C=√3aOC=OB1+B1C=2+a A2(2+a,√3a).∵点A2在双曲线y=√3(x>0)上x∴(2+a)⋅√3a=√3解得a=√2−1或a=−√2−1(舍去)∴OB2=OB1+2B1C=2+2√2−2=2√2∴点B2的坐标为(2√2,0)作A3D⊥x轴于点D设B2D=b则A3D=√3bOD=OB2+B2D=2√2+b A3(2√2+b,√3b).∵点A3在双曲线y=√3x(x>0)上∴(2√2+b)⋅√3b=√3解得b=−√2+√3或b=−√2−√3(舍去)∴OB3=OB2+2B2D=2√2−2√2+2√3=2√3∴点B3的坐标为(2√3,0)同理可得点B4的坐标为(2√4,0)即(4,0)以此类推…∴点B n的坐标为(2√n,0)∴点B6的坐标为(2√6,0).故答案为(2√6,0).19.(1)【答案】解:原式=−1−(√3−1)+1+2×√32+2=−1−√3+1+1+√3+2=3.【解析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值绝对值的性质分别化简得出答案.此题主要考查了实数运算正确化简各数是解题关键.(2)【答案】解:(m2+4mm−2−m−2)÷m2+2m+1m−2=m2+4m−(m+2)(m−2)m−2⋅m−2(m+1)2=4(m+1)(m+1)2=4m+1当m=0时原式=40+1=4.20.【答案】解:(1)6036(2)选B课程的人数为60−(6+18+24)=12(人)如图.=80(人).(3)估计最喜欢“科学探究”的学生人数为400×1260(4)画树状图如图所示共有12种等可能的结果数其中抽到“天文地理”和“趣味数学”类题目的结果数为2.他们抽到“天文地理”和“趣味数学”类题目的概率是16【解析】根据分式的减法和除法可以化简题目中的式子然后在−2<m≤2中选一个使得原分式有意义的整数作为m的值代入化简后的式子即可解答本题.本题考查分式的化简求值解答本题的关键是明确分式化简求值的方法.21.【答案】解:(1)①连接OD∵AD是∠BAC的平分线∴∠DAB=∠DAO∵OD=OA∴∠DAO=∠ODA∴∠DAB=∠ODA ∴DO//AB而∠B=90°∴∠ODB=90°∴BC是⊙O的切线②连接DE∵BC是⊙O的切线∴∠CDE=∠DAC∠C=∠C∴△CDE∽△CAD∴CDCA=CECD∴CD2=CE⋅CA(2)连接DF OF设圆的半径为R∵点F是劣弧AD的中点∴OF是DA中垂线∴DF=AF∴∠FDA=∠FAD∵DO//AB∴∠ODA=∠DAF∴∠ADO=∠DAO=∠FDA=∠FAD∴DF//OA∴四边形AODF是平行四边形又OA=OD∴AF=DF=OA=OD∴△OFD△OFA是等边三角形∴S△OFD=S△OFA, ∠DOC=60°∴∠C=30°∴OD=12OC=OE+EC而OE=OD∴CE=OE=R=3S阴影=S扇形DFO=60360×π×32=3π2.【解析】此题属于圆的综合题涉及了平行四边形的性质等边三角形的判定与性质含30度角的直角三角形的知识相似三角形的判断与性质综合性较强解答本题需要我们熟练各部分的内容对学生的综合能力要求较高一定要注意将所学知识贯穿起来.(1)①证明DO//AB即可求解②证明CDE∽△CAD即可求解(2)证明△OFD△OFA是等边三角形S阴影=S扇形DFO即可求解.22.【答案】解:(1)由题意得∠PAB=90°−60°=30°∠ABP=90°+45°=135°∴∠APB=180°−∠PAB−∠ABP=180°−30°−135°=15°(2)作PH⊥AB于H如图:则△PBH是等腰直角三角形∴BH=PH设BH=PH=x海里由题意得:AB=40×3060=20(海里)在Rt△APH中tan∠PAB=tan30°=PHAH =√33即x20+x =√33解得:x=10√3+10≈27.32>25且符合题意∴海监船继续向正东方向航行安全.【解析】(1)由题意得∠PAB=30°∠APB=135°由三角形内角和定理即可得出答案(2)作PH⊥AB于H则△PBH是等腰直角三角形BH=PH设BH=PH=x海里求出AB=20海里在Rt△APH中由三角函数定义得出方程解方程即可.本题考查的是解直角三角形的应用−方向角问题以及等腰直角三角形的判定与性质熟练掌握锐角三角函数的概念是解题的关键.23.【答案】解:(1)设89这两个月的月平均增长率为x根据题意可得:256(1+x)2=400解得:x1=14x2=−94(不合题意舍去).答:89这两个月的月平均增长率为25%(2)设当每袋降价m元时根据题意可得:(40−25−m)(400+5m)=4250解得:m1=5m2=−70(不合题意舍去)答:当每袋降价5元时获利4250元.【解析】本题主要考查了一元二次方程的应用本题的关键在于理解题意找到等量关系准确的列出方程是解决问题的关键.(1)由题意可得7月份的销售量为:256件设8月份到9月份销售额的月平均增长率则8月份的销售量为:256(1+x)9月份的销售量为:256(1+x)(1+x)又知三月份的销售量为:400袋由此等量关系列出方程求出x的值即求出了平均增长率(2)利用销量×每件商品的利润=4250求出即可.24.【答案】解:(1)二次函数表达式为:y=a(x−1)2+9将点A的坐标代入上式并解得:a=−1故抛物线的表达式为:y=−x2+2x+8…①则点B(3,5)将点A B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x−1(2)存在理由:二次函数对称轴为:x=1则点C(1,1)过点D作y轴的平行线交AB于点H设点D(x,−x2+2x+8)点H(x,2x−1)∵S△DAC=2S△DCM则S△DAC=12DH(x C−x A)=12(−x2+2x+8−2x+1)(1+3)=12(9−1)(1−x)×2解得:x=−1或5(舍去5)故点D(−1,5)(3)设点Q(m,0)点P(s,t)t=−s2+2s+8①当AM是平行四边形的一条边时点M向左平移4个单位向下平移16个单位得到A同理点Q(m,0)向左平移4个单位向下平移16个单位为(m−4,−16)即为点P 即:m−4=s−16=t而t=−s2+2s+8解得:s=6或−4故点P(6,−16)或(−4,−16)②当AM是平行四边形的对角线时由中点公式得:m+s=−2t=2而t=−s2+2s+8解得:s=1±√7故点P(1+√7,2)或(1−√7,2)综上点P(6,−16)或(−4,−16)或(1+√7,2)或(1−√7,2).【解析】(1)设二次函数表达式为:y=a(x−1)2+9即可求解(2)S△DAC=2S△DCM则S△DAC=12DH(x C−x A)=12(−x2+2x+8−2x+1)(1+3)=12(9−1)(1−x)×2即可求解(3)分AM是平行四边形的一条边AM是平行四边形的对角线两种情况分别求解即可.本题考查的是二次函数综合运用涉及到一次函数平行四边形性质图形的面积计算等其中(3)要注意分类求解避免遗漏.25.【答案】解:(1)当P Q重合时PF=DF∵F为BC中点∴CF=12BC=12×8=4∵四边形ABCD是矩形∴AB=CD=3∠C=90°∴PF=DF=√CF2+CD2=√42+32=5 (2)过E作EG⊥BC于G如图②所示:则∠EGF=90°∴四边形ABGE是矩形∴EG=AB=3AE=BG四边形ABCD是矩形∴AD//BC∠ADC=90°又tanP=12则DQDP=12∵AD//BC∴△PDQ∽△FCQ∴DQDP=CQFC=12∵∠EFP=90°∴∠EFG+∠QFC=90°∠QFC+∠FQC=90°∴∠EFG=∠FQC ∴△EGF∽△FCQ∴CQFC=GFEG=12∴GF=12EG=32∴AE=BG=BF−GF=4−32=52(3)①当Q在线段CD上时如图②所示:∵△EGF∽△FCQ∴EGFC =GFQC即34=4−xQC∴QC=43(4−x)∴y=12QC⋅FC=12×43(4−x)×4=83(4−x)②当Q在线段CD的延长线上时过P作PH⊥BC于H过E作EG⊥BC于G如图③所示:则∠PHF=∠EGF=90°四边形ABGE四边形EGHP四边形CDPH都是矩形∴AB=EG=PH=CD=3PD=CH∵∠EFP=90°∴∠EFG+∠PFH=90°∠PFH+∠FPH=90°∴∠EFG=∠FPH∴△EGF∽△FHP∴EGFH =GFPH即:3FH=4−x3∴FH=94−x∴CH=PD=CF−FH=4−94−x∴y=12FH⋅PH+CH⋅CD=12×94−x×3+(4−94−x)×3=12−278−2x.【解析】(1)当P Q重合时PF=DF求出CF=12BC=4由勾股定理即可得出结果(2)过E作EG⊥BC于G则∠EGF=90°四边形ABGE是矩形得出EG=AB=3AE=BG由tanP=12则DQDP =12易证△PDQ∽△FCQ得出DQDP=CQFC=12证得∠EFG=∠FQC则△EGF∽△FCQ得出CQFC=GF EG =12则GF=12EG=32即可得出结果(3)①当Q在线段CD上时由△EGF∽△FCQ得出EGFC =GFQC求出QC=43(4−x)由y=12QC⋅FC即可得出结果②当Q在线段CD的延长线上时过P作PH⊥BC于H过E作EG⊥BC于G则∠PHF=∠EGF=90°证明△EGF∽△FHP得出EGFH =GFPH求出FH=94−x得出CH=PD=CF−FH=4−94−x由y=12FH⋅PH+CH⋅CD即可得出结果.本题是四边形综合题主要考查了矩形的判定与性质勾股定理相似三角形的判定与性质三角形面积与矩形面积的计算等知识熟练掌握矩形的性质证明三角形相似是解题的关键.。
中考数学模拟测试试卷-带有答案
中考数学模拟测试试卷-带有答案学校:___________姓名:___________班级:___________考号:___________本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分,本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分共40分一.选择题(本大题共10小题,每小题4分,共40分.在每个小题给出四个选项中,只有一项符合题目要求)1.如图所示,水平放置的几何体的左视图是( )2.2023年12月,中国空间站入选了2023年全球十大工程成就.中国空间站离地球的正视方向最近距离约为400000米,数据400000用科学记数法可表示为( )A.0.4×104B.0.4×105C.4x104D.4x1053.如图,现将一块含有60角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°(第3题图)(第6题图)4.2022年2月,第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会微设计的部分图形,其中既是轴对称图形又是中心对称图形的是()5.下列运算正确的是()A.a2+a³=a5B.(a³)2=a6C.(a-b)2=a2-b2D.x6÷x3=x26.实数a、b在数轴上对应点的位置如图所示,则下列结论正确的是()A.ab>0B.a+b>0C.a+3<b+3D.-3a<-3b的图像上,则a、b、c的大小关系是()7.点A(a,-3)、B(b,-2)、C(c,1)在反比例函数y=k2+1xA.c<a<bB.c<b<aC.a<b<cD.b<a<c活动三项中的某一项,那么小冰和小雪同时选择"体育活动"的概率为( )A.13B.23C.19D.299.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为圆心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H,点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.在平面直角坐标系中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+6x-254(a≠0)的图象上有且只有一个完美点,且当0≤x≤m时,二次函数y=ax2+6x-5(a≠0)的最小值为﹣5,最大值为4,则m的取值范围是( )A.1≤m≤3B.3≤m≤5C.3≤m≤6D.m≥3非选择题部分共110分二.填空题(本大题共6小题,每小题4分,共24分)11.分解因式:x2-9y2= .12."二十四节气"是中华上古农耕文明的智慧结晶,小文购买了"二十四节气"主题邮票中的4张:"立春""立夏""秋分""大寒",他想把"立夏"送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张,小乐抽到一张邮票恰好是"立夏"的概率是.13.若关于x的一元二次方程x2+6x+m=0有实数根,则m的取值范围是.14.如图,扇形AOB的圆心角是直角,半径为2√3,C为OB边上一点,将△AOC沿AC边折叠,圆心O恰好落在弧AB上的点D,则阴影部分面积为。
中招考试数学模拟试卷(附带有答案)
中招考试数学模拟试卷(附带有答案)(满分:120分;考试时间:120分钟)第I卷(选择题共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
)1.关于0,下列说法中正确的是( )A. 0没有倒数B. 0没有绝对值C. 0没有相反数D. 0没有平方根2.下列运算正确的是()A.x6+x6=2x12B. a2•a4-(-a3)2=0C. (x-y)2=x2-2xy-y2D. (a+b)(b-a)=a2+b23.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=34°,则∠2的度数是()A. 68°B. 56°C. 65°D. 43°4.下列各式计算错误的是()A. B.C. D.5.在使用科学计算器时,依次按键的方法如图所示,显示的结果在数轴上对应的点可以是()A. 点AB. 点BC. 点CD. 点D6.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B. “汽车累积行驶10000km,从未出现故障”是不可能事件C. 襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D. 若两组数据的平均数相同,则方差小的更稳定7.如图已知扇形的半径为6cm,圆心角的度数为,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为( )A. 4B. 6C. 9D. 128.如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.9.如图,某舰艇以28海里小时向东航行.在A处测得灯塔M在北偏东方向,半小时后到B处.又M在北偏东方向,此时灯塔与舰艇的距离MB是.A.海里B. 海里C. 海里D. 14海里10.如图,抛物线与轴交于点,与轴的交点在点与点之间(不包括这两点),对称轴为直线.有下列结论:abc<0;5a+3b+c>0;-< a<-;④若点,在抛物线上,则.其中正确结论的个数是()A. B. C. D.第II卷(非选择题共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.华为公司始终坚持科技创新,她堪称为中国企业的脊梁.华为麒麟990芯片是目前市场运行速度最快的芯片,它采用7纳米制造工艺,已知7纳米=0.000000007米,用科学记数法将0.000000007表示为________.12.分解因式:=___________13.我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了200名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这1万多名学生的抽考成绩的全体是总体;②每个学生是个体;③200名考生是总体的一个样本;④样本容量是200.你认为说法正确的有______ 个.14.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树________棵.15.已知关于x,y的二元一次方程组的解满足x+y>1,则满足条件的k的最小整数是.16.如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为______.三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)17. (本题满分8分)(1)(2)化简:,并从0≤x <5中选取合适的整数代入求值.18. (本题满分8分)电子政务、数字经济、智慧社会…一场数字革命正在神州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,赛后对全体参赛学生成绩按A ,B ,C ,D 四个等级进行整理,得到如图所示的不完整的统计图表.(1)参加此次比赛的学生共有________人,a =________,b =________;(2)请计算扇形统计图中C 等级对应的扇形的圆心角的度数;(3)已知A 等级五名同学中包括来自同一班级的甲、乙两名同学,学校将从这五名同学中随机选出两名参加市级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.19. (本题满分8分)如图,AB 是⊙O 的直径,射线BC 交⊙O 于点D ,E 是劣弧AD 上一点,且,过点E 作EF ⊥BC 于点F ,延长FE 和BA的等级频数 频率 A 5 0.1 B a 0.4 C 15 b D100.2延长线交与点G.(1)证明:GF是⊙O的切线;(2)若AG=6,GE=6,求△GOE的面积.20.(本题满分8分)如图,在直角坐标系中,直线y1=ax+b与双曲线y2=(k≠0)分别相交于第二、四象限内的A(m,4),B(6,n)两点,与x轴相交于C点.已知OC=3,tan∠ACO=.(1)求y1,y2对应的函数表达式;(2)求△AOB的面积;(3)直接写出当x<0时,不等式ax+b>的解集.21.(本题满分8分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.(本题满分10分)如图,已知二次函数的图像经过点A(-4,0),顶点为B,一次函数的图像交y轴于点M,P是抛物线上一点,点M关于直线AP的对称点N恰好落在抛物线的对称轴直线BH上(对称轴直线BH与x轴交于点H).(1)求二次函数的表达式;(2)求点P的坐标;(3)若点G是第二象限内抛物线上一点,G关于抛物线的对称轴的对称点是E,连接OG,点F是线段OG上一点,点D是坐标平面内一点,若四边形BDEF是正方形,求点G的坐标.23.(本题满分12分)一副三角板如图1摆放,∠C=∠DFE=90°,∠B=30°,∠E=45°,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).(1)当∠AFD=___°时,DE// AB;当∠AFD=____°时,EF//AB;当∠AFD=____°时,DF//AC;(2)在旋转过程中,DF与AB的交点记为P,如图2,若△BFP有两个内角相等,求∠AFD的度数;(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由.参考答案1.A2.B3.B4.C5.D6.D7.A8.A9.C 10.C11. 7×10-9 12. 13. 14. 2 15. 500 16.317. 18. 2018.519.解:(1)=-1+4+-2-2×=-1+4+-2-=1(2)=[-]•=•=从0≤x<5可取x=1此时原式==120.解:(1)50,20,0.3;(2)由图表可知,C等级的人数占总参赛人数的30%,360°×30%=108°,即扇形统计图中C 等级对应的扇形的圆心角的度数为108°(3)设A等级中甲,乙两名同学以外的其他三位同学分别为A1,A2,A3,树状图如图,则甲、乙两名同学都被选中的概率为.21.解:(1)如图,连接OE∵∴∠1=∠2∵OB=OE∴∠2=∠3∴∠1=∠3∴OE∥BF∵BF⊥GF∴OE⊥GF∴GF是⊙O的切线(2)设OA=OE=r在Rt△GOE中,∵AG=6,GE=6∴由OG2=GE2+OE2可得(6+r)2=(6)2+r2解得:r=3即OE=3则S△GOE=•OE•GE=×3×=922.解:(1)设直线y1=ax+b与y轴交于点D在Rt△OCD中,OC=3,tan∠ACO=.∴OD=2即点D(0,2)把点D(0,2),C(3,0)代入直线y1=ax+b得b=2,3a+b=0,解得,a=-∴直线的关系式为y1=-x+2;把A(m,4),B(6,n)代入y1=-x+2得m=-3,n=-2∴A(-3,4),B(6,-2)∴k=-3×4=-12∴反比例函数的关系式为y2=-因此y1=-x+2,y2=-(2)由S△AOB=S△AOC+S△BOC=×3×4+×3×2=9(3)由图象可知,当x<0时,不等式ax+b>的解集为x<-323解:(1)设每次下降的百分率为a根据题意,得:50(1-a)2=32解得:a=1.8(舍)或a=0.2答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500-20x)=6000整理,得x2-15x+50=0解得:x1=5,x2=10因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.24.解:(1)把x=-4,y=0代入得,解这个方程,得b=2∴二次函数的表达式是(2)∵一次函数的图像交y轴于点M(0,2)∴OM=2∴.∵∴AH=OH=2∴NH=4.∵△APM≌△APN∴PM=PN,则PM2=PN2过点P作PQ⊥BH于Q,交y轴于R.设点①如图1,当点N在AM上方时,N(-2,4)由PM2=PN2得.解得x1=-4(舍去),x2=2∴P1(2,6).②如图2,当点N在AM下方时,N(-2,4)同理可得x1=-4(舍去),.∴(3)如图3,过F作FC⊥BH于C,FT⊥GE于T,FT交x轴于点S.∵四边形BFED是正方形∴△ETF≌△BCF∴FT=FC,ET=BC设FS=CH=m,FC=FT=t,则E(m-t,m+t).∴.化简整理,得m2+2m-2mt=-t2+6t.∵△GTF∽△OSF∴即化简整理,得m2+2m-2mt=t2+2t.∴-t2+6t=t2+2t,解得t1=0(舍去),t2=2.∴m2-2m-8=0,解得m1=-2(舍去),m2=4.∴G(-6,6)25.解:(1)30;60(2),AF平分∠CAB当如图3所示:当时,;如图4所示:当时.如图5所示:当时综上所述,∠APD的度数为或或;(3)∠FMN=∠FNM.理由:如图6所示:∵∠FNM 是△BMN的一个外角∴∠FNM=∠B+∠BMN∵∠B=30°∴∠FNM=∠B+∠BMN=30°+∠BMN∵∠BMF是△AFM的一个外角∴∠BMF=∠MAF+∠AFM即∠BMN+∠FMN=∠MAF+∠AFM又∵∠MAF=30°,∠AFM=2∠BMN∴∠BMN+∠FMN=30°+2∠BMN∴∠FMN=30°+∠BMN∴∠FNM=∠FMN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二0一一年初中学业考试数学试题一、选择题:(本题8小题,每小题3分,共24分)1、5-的相反数是A 、5-B 、5C 、5±D 、15- 2、图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是3、图1是由几个相同的小正方体搭成的一个几何体,它的俯视图是4、已知样本数据1,2,4,3,5,下列说法不正确...的是 A 、平均数是3 B 、中位数是4 C 、极差是4 D 、方差是2 5、如图2,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确...的是 A 、S △AFD =2S △EFB B 、BF=21DF C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC6、如图3,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=10,CD=8, 那么线段OE 的长为 A 、5 B 、4 C 、3 D 、27、如图4,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有 A.、内切、相交 B 、外离、相交 C 、外切、外离 D 、外离、内切 8、如图所示,在数轴上点A 所表示的数x 的范围是A 、︒<<︒60sin 30sin 23x , B 、︒<<︒45cos 2330cos x C 、︒<<︒45tan 30tan 23x D 、︒<<︒30cot 45cot 23x二、填空题(本题7小题,每小题3分,共21分)9、据报道,达州市2010年全年GDP (国内生产总值)约为819.2亿元,请把这个数用科学记数法表示为 元(保留两个有效数字).10、已知关于x 的方程02=+-n mx x 的两个根是0和3-,则m = ,n = .11、如图5,在梯形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点O ,则S △AOD S △BOC .(填“>”、“= ”或 “<”)12、我市某中学七年级甲、乙、丙三个班中,每班的学生人数都为60名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)丙班数学成绩频数统计表分这一组人数最多的班是 . 13、如图6,在等腰直角三角形ABC 中,∠C=90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AC=2,则图中阴影部分的面积为_________(结果不去近似值).14、用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n 个图形需要小圆 个(用含n 的代数式表示).15、若0121322=++++-b b a a ,则b aa -+221= .三、解答题:(55分)(一)(本题2小题,共14分)16、(1)(4分)计算:1)20101()20112011(---- (2)(4分)先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .17、(6分)我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB 水平距离60米(BD =60米)处有一居民住宅楼,该居民住宅楼CD 高15米,在该该住宅楼顶C 处测得此危房屋顶A 的仰角为30°,请你通过计算说明在实施定向爆破危房AB时,该居民住宅楼有无危险?(在地面上以点B 为圆心,以AB 长为半径的圆形区域为危险区域,参考数据:414.12≈,732.13≈)(二)(本题2小题,共12分) 18、(6分)给出下列命题:30°EDCB A命题1:直线x y =与双曲线x y 1=有一个交点是(1,1); 命题2:直线x y 8=与双曲线x y 2=有一个交点是(21,4);命题3:直线x y 27=与双曲线x y 3=有一个交点是(31,9);命题4:直线x y 64=与双曲线x y 4=有一个交点是(41,16);……………………………………………………(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.19(6分)在△ABC 和△DEF 中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示); (2)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC 和△DEF 全等的概率.∠B=∠E∠A=∠DBC=EF AC=DFAB=DE54321FE DC BA(三)(本题2个小题,共12分) 20、(6分)如图,△ABC 的边BC 在直线m 上,AC ⊥BC ,且AC=BC ,△DEF 的边FE 也在直线m 上,边DF 与边AC 重合,且DF=EF .(1)在图(1)中,请你通过观察、思考,猜想并写出AB 与AE 所满足的数量关系和位置关系;(不要求证明)(2)将△DEF 沿直线m 向左平移到图(2)的位置时,DE 交AC 于点G ,连结AE ,BG .猜想△BCG 与△ACE 能否通过旋转重合?请证明你的猜想.C21、(6分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为t秒.(1)用含t的代数式表示△DEF的面积S;(2)当t为何值时,⊙O与直线BC相切?(四)(本题2小题,共17分)22、(7分)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题: (1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.,0)两点,与y轴交于点23、(10分)如图,已知抛物线与x轴交于A(1,0),B(3C(0,3),抛物线的顶点为P,连结AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP,若存在,求出M点坐标;若不存在,请说明理由.数学参考答案及评分意见二、填空题:9、10102.8⨯; 10、3-=m ,0=n ; 11、=; 12、甲班; 13、π212-; 14、(n n 21212+)(或)1(21+n n ); 15、6. 三、解答题:16、解:(1)1)20101()20112011(----=)2010(1--……………………2分 =20101+……………………3分 =2011……………………4分解:(2)62296422+-÷++-a a a a a =2)3(2)3()2)(2(2-+⨯+-+a a a a a ……………………1分=342++a a ……………………2分当5-=a 时 原式=354)5(2+-+-⨯……………………3分=2410-+-=26--=3……………………4分17、(6分)解:没有危险,理由如下:……………………1分在△AEC 中,∵∠AEC=90°,∴CEAEACE =∠tan ∵∠ACE=30°,CE=BD=60,∴AE=64.34320≈(米)……………………3分 又∵AB=AE+BE ,BE=CD=15,∴AB 64.49≈(米)……………………4分∵64.4960>,即BD >AB ∴在实施定向爆破危房AB 时,该居民住宅楼没有危险……………6分18、(6分)解:(1)命题n :直线x n y 3=与双曲线x n y =有一个交点是(n1,2n )………………3分(2)将(n 1,2n )代入直线x n y 3=得:右边=231n nn =⨯,左边=2n ,∴左边=右边,∴点(n 1,2n )在直线x n y 3=上,同理可证:点(n 1,2n )在双曲线xn y =上,∴直线x n y 3=与双曲线x n y =有一个交点是(n1,2n )……………………6分(用树状图解参照给分)(2)两次摸牌所有可能出现的结果共有20种,其中满足△ABC ≌△DEF 的有18种可能, ∴P (能满足△ABC ≌△DEF )=1092018=……………………6分 20、解:(6分)(1)AB=AE, AB ⊥AE ……………………2分(2) 将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合),理由如下:……………………3分∵AC ⊥BC ,DF ⊥EF ,B 、F 、C 、E 共线,∴∠ACB=∠ACE=∠DFE=90° 又∵AC=BC ,DF=EF ,∴∠DFE=∠D=45°,在△CEG 中,∵∠ACE=90°,∴∠CGE=∠DEF=90°, ∴CG=CE ,……………………4分 在△BCG 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CG ACE ACB AC BC ∴△BCG ≌△ACE (SAS )……………………5分∴将△BCG 绕点C 顺时针旋转90°后能与△ACE 重合(或将△ACE 绕点C 逆时针旋转90°后能与△BCG 重合)……………………6分 21、(6分)解:(1)∵DE ∥BC ,∴∠ADE=∠B=60° 在△ADE 中,∵∠A=90° ∴ADAEADE =∠tan ∵AD=t t =⨯1,∴AE=t 3……………………2分 又∵四边形ADFE 是矩形, ∴S △DEF =S △ADE =22332121t t t AE AD =⨯⨯=⨯()30<≤t ∴S=223t ()30<≤t ………………3分 (2)过点O 作OG ⊥BC 于G ,过点D 作DH ⊥BC 于H , ∵DE ∥BC ,∴OG=DH ,∠DHB=90°在△DBH 中,BDDHB =sin ∵∠B=60°,BD=AD AB -,AD=t ,AB=3,∴DH=)3(23t -,∴OG=)3(23t -……………………4分 当OG=DE 21时,⊙O 与BC 相切,在△ADE 中,∵∠A=90°,∠ADE=60°,∴21cos ==∠DE AD ADE , ∵AD=t ,∴DE=2AD=t 2,HG∴2)3(232⨯-=t t , ∴936-=t∴当936-=t 时,⊙O 与直线BC 相切……………………6分22、(7分)解:(1)根据题意,得: 200)20(81012=--++y x y x200881601012=--++y x y x 202=+y x∴x y 220-=……………………2分(2)根据题意,得:⎩⎨⎧≥-≥42205x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分……………………5分 (3)设总运费为M 元,则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x 即:M=640001920+-x∵M 是x 的一次函数,且M 随x 增大而减小,∴当x =8时,M 最小,最少为48640元……………………7分 23、(10分)解(1)设此抛物线的解析式为:))((21x x x x a y --= ∵抛物线与x 轴交于A (1,0)、B ()0,3-两点, ∴)3)(1(+-=x x a y又∵抛物线与y 轴交于点C (0,3) ∴3)30)(10(=+-a , ∴3-=a∴)3)(1(+--=x x y即322+--=x x y ……………3分 用其他解法参照给分 (2)∵点A (1,0),点C (0,3) ∴OA=1,OC=3,∵DC ⊥AC ,OC ⊥x 轴 ∴△QOC ∽△COA ∴OA OC OC OQ =,即133=OQ ∴OQ=9,……………………4分又∵点Q 在x 轴的负半轴上,∴Q ()0,9-设直线DC 的解析式为:n mx y +=,则⎩⎨⎧=+-=093n m n 解之得:⎪⎩⎪⎨⎧==331n m ∴直线DC 的解析式为:331+=x y ……………………5分∵点D 是抛物线与直线DC 的交点,∴⎪⎩⎪⎨⎧+--=+=323312x x y x y 解之得:⎪⎪⎩⎪⎪⎨⎧=-=9203711y x ⎩⎨⎧==322y x (不合题意,应舍去) ∴点D ()920,37-……………………6分 用其他解法参照给分(3)如图,点M 为直线1-=x 上一点,连结AM ,PC ,PA 设点M (),1y -,直线1-=x 与x 轴交于点E ,∴AE=2 ∵抛物线322+--=x x y 的顶点为P ,对称轴为1-=x ∴P ()4,1- ∴PE=4 则PM=y -4∵S 四边形AEPC =S 四边形OEPC +S △AOC=3121)43(121⨯⨯++⨯⨯ =)37(21+⨯ =5……………………7分又∵S 四边形AEPC = S △AEP +S △ACP S△AEP =4422121=⨯⨯=⨯PE AE ∴+S △ACP =145=-……………………8分∵S △MAP =2S △ACP∴124221⨯=-⨯⨯y ∴24=-y∴21=y ,62=y ……………………9分故抛物线的对称轴上存在点M 使S △MAP =2S △ACP 点M ()2,1-或)6,1(-……………………10分EM。