乘法原理加法原理

合集下载

(完整版)小学奥数——乘法原理与加法原理

(完整版)小学奥数——乘法原理与加法原理

乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:  共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有n m1种不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有m2 n m n种不同的方法.N=m1×m2×……×m n这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数?分析 在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法. ②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析 要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A 、B 、C 、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析 由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A ,A 可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B ,由于A 已放定,那么放A 的那一行和一列中的其他方格内也不能放B ,故还剩下9个方格可以放B ,B 有9种放法;第三步放C ,再去掉B 所在的行和列的方格,还剩下四个方格可以放C ,C 有4种放法;最后一步放D ,再去掉C 所在的行和列的方格,只剩下一个方格可以放D ,D 有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析 要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决. 例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 一般地,如果完成一件事有类方法,第一类方法中有种不同做法,第二类方法中有种 k m 1 m 2 不同做法,…,第类方法中有种不同的做法,则完成这件事共有种 k m k N =m 1+m 2+……+m k 不同的方法. 这就是加法原理.例1.学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析 从甲地到丙地共有两大类不同的走法. 第一类,由甲地途经乙地到丙地. 第二类,由甲地直接到丙地.例4.如下页图,一只小甲虫要从A 点出发沿着线段爬到B 点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析 从A 点 到B 点有两类走法,一类是从A 点先经过C 点到B 点,一类是从A 点先经过D 点到B 点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A 到B 的全部走法时,只要用加法原理求和即可.例5.有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析 要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6.从1到500的所有自然数中,不含有数字4的自然数有多少个?分析 从1到500的所有自然数可分为三大类,即一位数,两位数,三位数. 一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9; 要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理. 要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个. 这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7.如图,要从A 点沿线段走到B ,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析 观察下页左图,注意到,从A 到B 要一直向右、向上,那么,经过下页右图中C 、D 、E 、F 四点中的某一点的路线一定不再经过其他的点.也就是说从A 到B 点的路线共分为四类,它们是分别经过C 、D 、E 、F 的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A 、B 、C 、D 、E ,由于某种原因,C 不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A 走最短的路线到B ,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。

《加法原理与乘法原理》 知识清单

《加法原理与乘法原理》 知识清单

《加法原理与乘法原理》知识清单一、加法原理加法原理是指完成一件事,有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事共有:N = m1 + m2 +… + mn 种不同的方法。

为了更好地理解加法原理,我们来看一个简单的例子。

假设你要从A 地去B 地,有三种交通方式可以选择:汽车、火车和飞机。

如果坐汽车有 5 条不同的路线,坐火车有 3 条不同的路线,坐飞机有 2 条不同的路线,那么从 A 地到 B 地一共有多少种不同的路线选择呢?根据加法原理,我们将三种交通方式的路线数相加,即 5 + 3 + 2 = 10 种。

需要注意的是,加法原理中的每一类方法都能够独立完成这件事情,而且这些方法之间是相互排斥的,也就是说,使用其中一类方法就不能同时使用另一类方法。

二、乘法原理乘法原理是指完成一件事,需要分成 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事共有:N = m1 × m2 × … × mn 种不同的方法。

我们通过一个例子来理解乘法原理。

比如你要从你的家去学校,需要先坐公交车到地铁站,然后再坐地铁到学校附近的站点,最后步行到学校。

假设从家到公交车站有 2 种走法,公交车到地铁站有 3 种路线,从地铁站到学校附近的站点有 4 种路线,从站点到学校有 5 种走法。

那么从家到学校一共有多少种不同的走法呢?按照乘法原理,我们将每一步的方法数相乘,即 2 × 3 × 4 × 5 = 120 种。

在乘法原理中,每一步的方法都是相互依存的,只有完成了前一步,才能进行下一步。

三、加法原理与乘法原理的区别1、适用场景不同加法原理适用于完成一件事情有多种不同的类别,每一类方法都能独立完成这件事;乘法原理适用于完成一件事情需要多个步骤,每个步骤都不可或缺,且只有完成了前一步才能进行下一步。

加法原理:加法原理和乘法原理区别(三年级数学)

加法原理:加法原理和乘法原理区别(三年级数学)


A地到B地共有几趟交通工具?
分步骤
分步骤进行,共有两个步骤,每个步骤里面有不同方式
来乘法
用乘法原理
总趟数:5X8=40(趟)
一步到 位加法
分步骤 来乘法
题目:分别用两个例子来解释加法原理和乘法原理的区别?
例子1:A地到B地有5趟火车、7趟飞机、8趟轮船可以选择 A地到B地共有几趟交通工具?
一步到位;3种方式;每个方式里面不同方法
用加法原理
总趟数:5+7+8=20(趟)
一步到 位加法
例子2:从A地到B地;要先到C地;A到C有两个例子来解释加法原理和乘法原理的区别?
思路1:加法原理理解方式 1、完成一件事情有不同的几种方式 2、每一种方式里面有几种方法 3、总的方法就是:每种方式里面的方法加起来
思路2:乘法原理理解方式: 1、完成一件事情分成几个步骤 2、每个步骤里面有几种方式 3、总的方式就是:每个步骤里面方式次数相乘起来

加法原理和乘法原理

加法原理和乘法原理

1 加法原理和乘法原理 1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。 2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。 P29作业 1、分四步组成四位数 第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位) 第二步:写好百位上的数,有3种选择 第三步:写好十位上的数,有2种选择 第四步:写好个位上的数,有1种选择 所以共有3×3×2×1=18个

2、分三步组成三位数 第一步:写好百位上的数,有4种选择(哪一位先考虑都行) 第二步:写好十位上的数,有3种选择 第三步:写好个位上的数,有2种选择 所以共有4×3×2=24个

3、分三步组成三位数 第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位) 第二步:写好十位上的数,有3种选择 第三步:写好百位上的数,有2种选择 所以共有2×3×2=12个

4、分三步完成借书的事情 第一步:第一个人来借书有7种选择 第二步:第二个人来借书有6种选择 第三步:第三个人来借书有5种选择 所以共有7×6×5=210种

5、分五步组成五位数 第一步:写好万位上的数,有5种选择(哪一位先考虑都行) 第二步:写好千位上的数,有4种选择 第三步:写好百位上的数,有3种选择 第四步:写好十位上的数,有2种选择 第五步:写好个位上的数,有1种选择 所以共有5×4×3×2×1=120个

6、分三步完成种菜的任务 第一步:第一块田里种菜有4种选择 第二步:第一块田里种菜有3种选择 第三步:第一块田里种菜有2种选择 所以共有4×3×2=24种

7、分类完成选书的事情 第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种) 第二类:选数学、外语(同理,有4×5=20种) 2

第三类:选外语、语文(同理,有3×5=15种) 一共有12+20+15=47种(分类的要相加) 综合列式:3×4+4×5+3×5=47种

初中数学重点梳理:加法原理和乘法原理

初中数学重点梳理:加法原理和乘法原理

加法原理和乘法原理知识定位加法原理和乘法原理是计数研究中最常用、也是最基本的两个原理.所谓计数,就是数数,把一些对象的具体数目数出来.当然,情况简单时可以一个一个地数.如果数目较大时,一个一个地数是不可行的,利用加法原理和乘法原理,可以帮助我们计数.知识梳理知识梳理1.加法原理完成一件工作有n种方式,用第1种方式完成有m1种方法,用第2种方式完成有m2种方法,…,用第n种方式完成有m n种方法,那么,完成这件工作总共有m+m2+…+m n1种方法.例如,从A城到B城有三种交通工具:火车、汽车、飞机.坐火车每天有2个班次;坐汽车每天有3个班次;乘飞机每天只有1个班次,那么,从A城到B 城的方法共有2+3+1=6种.知识梳理2.乘法原理完成一件工作共需n个步骤:完成第1个步骤有m1种方法,完成第2个步骤有m2种方法,…,完成第n个步骤有m n种方法,那么,完成这一件工作共有m·m2·…·m n1种方法.例如,从A城到B城中间必须经过C城,从A城到C城共有3条路线(设为a,b,c),从C城到B城共有2条路线(设为m,t),那么,从A城到B城共有3×2=6条路线,它们是:am,at,bm,bt,cm,ct.下面我们通过一些例子来说明这两个原理在计数中的应用.例题精讲【试题来源】【题目】利用数字1,2,3,4,5共可组成(1)多少个数字不重复的三位数?(2)多少个数字不重复的三位偶数?(3)多少个数字不重复的偶数?【答案】(1)60 (2)24 (3)130【解析】(1)百位数有5种选择;十位数有4种选择;个位数有3种选择.所以共有5×40×3=60个数字不重复的三位数.(2)先选个位数,共有两种选择:2或4.在个位数选定后,十位数还有4种选择;百位数有3种选择.所以共有2×4×3=24个数字不重复的三位偶数.(3)分为5种情况:一位偶数,只有两个:2和4.二位偶数,共有8个:12,32,42,52,14,24,34,54.三位偶数由上述(2)中求得为24个.四位偶数共有2×(4×3×2)=48个.括号外面的2表示个位数有2种选择(2或4).五位偶数共有2×(4×3×2×1)=48个.由加法原理,偶数的个数共有2+8+24+48+48=130.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1到300的自然数中,完全不含有数字3的有多少个?【答案】242【解析】解法1将符合要求的自然数分为以下三类:(1)一位数,有1,2,4,5,6,7,8,9共8个.(2)二位数,在十位上出现的数字有1,2,4,5,6,7,8,98种情形,在个位上出现的数字除以上八个数字外还有0,共9种情形,故二位数有8×9=72个.(3)三位数,在百位上出现的数字有1,2两种情形,在十位、个位上出现的数字则有0,1,2,4,5,6,7,8,9九种情形,故三位数有2×9×9=162个.因此,从1到300的自然数中完全不含数字3的共有8+72+162=242个.解法2将0到299的整数都看成三位数,其中数字3不出现的,百位数字可以是0,1或2三种情况.十位数字与个位数字均有九种,因此除去0共有3×9×9-1=242(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】在小于10000的自然数中,含有数字1的数有多少个?【答案】3439【解析】不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为9×9×9×9=6561,其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.【知识点】加法原理和乘法原理【适用场合】当堂练习题【难度系数】3【试题来源】【题目】求正整数1400的正因数的个数.【答案】24【解析】因为任何一个正整数的任何一个正因数(除1外)都是这个数的一些质因数的积,因此,我们先把1400分解成质因数的连乘积1400=23527所以这个数的任何一个正因数都是由2,5,7中的n个相乘而得到(有的可重复).于是取1400的一个正因数,这件事情是分如下三个步骤完成的:(1)取23的正因数是20,21,22,33,共3+1种;(2)取52的正因数是50,51,52,共2+1种;(3)取7的正因数是70,71,共1+1种.所以1400的正因数个数为(3+1)×(2+1)×(1+1)=24.说明利用本题的方法,可得如下结果:若p i是质数,a i是正整数(i=1,2,…,r),则数的不同的正因数的个数是(a1+1)(a2+1)…(ar+1).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】求五位数中至少出现一个6,而被3整除的数的个数.【答案】12504【解析】要使一个数能被3整除,只要确保该数各数位的和是3的倍数即可:于是分别讨论如下:(1)从左向右计,如果最后一个6出现在第5位,即a5=6,那么a2,a3,a4可以是0,1,2,3,4,5,6,7,8,9这十个数字之一,但a1不能是任意的,它是由a2+a3+a4+a5被3除后的余数所决定.因此,为了保证a1+a2+a3+a4+a5能被3整除,a1只有3种可能,根据乘法原理,5位数中最后一位是6,而被3整除的数有3×10×10×10=3000(个).(2)最后一个6出现在第四位,即a4=6,于是a5只有9种可能(因为a5不能等于6),a2,a3各有10种可能,为了保证a1+a2+a3+a4+a5被3整除,a1有3种可能.根据乘法原理,属于这一类的5位数有3×10×10×9=2700(个).(3)最后一个6出现在第3位,即a3=6,被3整除的数应有3×10×9×9=2430(个).(4)最后一个6出现在第2位,即a2=6,被3整除的数应有3×9×9×9=2187(个).(5)a1=6,被3整除的数应有3×9×9×9=2187(个).根据加法原理,5位数中至少出现一个6而被3整除的数应有3000+2700+2430+2187+2187=12504(个).【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,A,B,C,D,E五个区域分别用红、蓝、黄、白、绿五种颜色中的某一种着色.如果使相邻的区域着不同的颜色,问有多少种不同的着色方式?【答案】360【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域A,B同色,故共有3种着色方式;(4)区域D因不能与区域A,C同色,故共有3种着色方式;(5)区域E因不能与区域A,C,D同色,故共有2种着色方式.于是,根据乘法原理共有5×4×3×3×2=360种不同的着色方式.【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】在6×6的棋盘上剪下一个由四个小方格组成的凸字形,如图1-64,有多少种不同的剪法?【答案】64【解析】我们把凸字形上面那个小方格称为它的头,每个凸字形有并且只有一个头.凸字形可以分为两类:第一类凸字形的头在棋盘的边框,但是棋盘的四个角是不能充当凸字形的头的.于是,边框上(不是角)的小方格共有4×4=16个,每一个都是一个凸字形的头,所以,这类凸字形有16个.第二类凸字形的头在棋盘的内部,棋盘内部的每一个小方格可以作为4个凸字形的头(即头朝上,头朝下,头朝左,头朝右),所以,这类凸字形有4×(4×4)=64(个).由加法原理知,有16+64=80种不同的凸字形剪法.【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】把数、理、化、语、英5本参考书,排成一行放在书架上.(1)化学不放在第1位,共有多少种不同排法?(2)语文与数学必须相邻,共有多少种不同排法?(3)物理与化学不得相邻,共有多少种不同排法?(4)文科书与理科书交叉排放,共有多少种不同排法?【答案】(1)96 (2)48 (3)72 (4)12【解析】【知识点】加法原理和乘法原理【适用场合】课后两周练习【难度系数】3【试题来源】【题目】在一个圆周上有10个点,把它们两两相连,问共有多少条不同的线段?【答案】45【解析】【知识点】加法原理和乘法原理【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】用1,2,3,4,5,6,7这七个数,(1)可以组成多少个数字不重复的五位奇数?(2)可以组成多少个数字不重复的五位奇数,但1不在百位上?【答案】(1)1440 (2)1260【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】从1,2,3,4,5这五个数字中任取三个数组成一个三位数,问共可得到多少个不同的三位数?【答案】60【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】由1,2,3,4,5,6这六个数字能组成多少个大于34500的五位数?【答案】420【解析】【知识点】加法原理和乘法原理【适用场合】阶段测验【难度系数】3【试题来源】【题目】今有一角币一张,两角币一张,伍角币一张,一元币四张,伍元币两张,用这些纸币任意付款,可以付出不同数额的款子共有多少种?【答案】119【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3【试题来源】【题目】将三封信投到5个邮筒中的某几个中去,有多少种不同的投法?【答案】125【解析】【知识点】加法原理和乘法原理【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】从字母a,a,a,b,c,d,e中任选3个排成一行,共有多少种不同的排法?【答案】73【解析】【知识点】加法原理和乘法原理【适用场合】当堂例题【难度系数】3。

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理

两个基本计数原理加法原理和乘法原理两个基本计数原理:加法原理和乘法原理在我们日常生活和数学学习中,计数是一项非常重要的活动。

无论是计算物品的数量、安排活动的方案,还是解决各种数学问题,都离不开计数原理。

而其中最基本的两个计数原理就是加法原理和乘法原理。

加法原理,简单来说,就是完成一件事情,如果有 n 类办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn 种不同的方法。

比如说,我们要从 A 地去 B 地,有三种交通方式可以选择:坐火车、坐汽车或者坐飞机。

如果坐火车有 5 个车次可选,坐汽车有 8 个班次可选,坐飞机有 3 个航班可选,那么从 A 地去 B 地总的出行方式就有 5 + 8 + 3 = 16 种。

再举个例子,一个班级组织活动,同学们可以选择参加体育运动、文化活动或者艺术表演。

参加体育运动有篮球、足球、羽毛球三种项目;参加文化活动有书法、朗诵、写作三种形式;参加艺术表演有唱歌、跳舞、小品三种类型。

那么同学们选择参加活动的方式就有 3 + 3 + 3 = 9 种。

从这些例子可以看出,加法原理的关键在于“分类”,各类办法之间相互独立,每一类办法中的方法都能单独完成这件事情。

接下来我们再看乘法原理。

乘法原理是指完成一件事情,如果需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有N =m1 × m2 × … × mn 种不同的方法。

比如,我们要给一个密码锁设置密码,密码由三位数字组成。

第一位数字可以从 0 到 9 这 10 个数字中任选一个,第二位数字同样有 10 种选择,第三位数字也有 10 种选择。

那么设置密码的总方案数就是 10 × 10 × 10 = 1000 种。

加法乘法原理

加法乘法原理

加法乘法原理
加法乘法原理是数学中常用的计算原则,它们被广泛应用于各个领域。

加法原理指的是当有多个事件同时发生时,可以将这些事件的数量相加来计算总数。

乘法原理则是用于计算事件之间的组合情况。

加法原理可以简单地理解为“或”的概念。

例如,某班级有男生
和女生两个组别,男生有20人,女生有30人,那么整个班级的总人数就是20+30=50人。

这里的加法原理就是将两个事件
的结果相加来得到总数。

乘法原理则可以理解为“和”的概念。

例如,某班级举行篮球比赛,共有10名男生和8名女生报名参赛。

由于男生和女生是
两个组别,所以男生和女生组成的队伍数就是10乘以8=80个。

这里的乘法原理就是将两个事件的结果相乘来得到组合数。

加法乘法原理在实际生活中有着广泛的应用。

比如,在购物时,如果有3种商品可供选择,每种商品有4种颜色可选,那么总的购买方案数就是3乘以4=12种。

在排列组合问题中,加法
乘法原理也是必不可少的计算工具。

总之,加法乘法原理是数学中重要的计算原则,通过运用加法和乘法,可以灵活地计算事件的数量和组合方式。

加法原理和乘法原理

加法原理和乘法原理

加法原理和乘法原理1、加法原理:做一件事情分几类,每一类方法数之和就是完成这件事情的总方法数。

2、乘法原理:做一件事情分几步,每一步方法数之积就是完成这件事情的总方法数。

P29作业1、分四步组成四位数第一步:写好千位上的数,有3种选择(0不能作千位数)(所以一定要先考虑千位)第二步:写好百位上的数,有3种选择第三步:写好十位上的数,有2种选择第四步:写好个位上的数,有1种选择所以共有3×3×2×1=18个2、分三步组成三位数第一步:写好百位上的数,有4种选择(哪一位先考虑都行)第二步:写好十位上的数,有3种选择第三步:写好个位上的数,有2种选择所以共有4×3×2=24个3、分三步组成三位数第一步:写好个位上的数,有2种选择(个位一定是2或4)(所以一定要先考虑个位)第二步:写好十位上的数,有3种选择第三步:写好百位上的数,有2种选择所以共有2×3×2=12个4、分三步完成借书的事情第一步:第一个人来借书有7种选择第二步:第二个人来借书有6种选择第三步:第三个人来借书有5种选择所以共有7×6×5=210种5、分五步组成五位数第一步:写好万位上的数,有5种选择(哪一位先考虑都行)第二步:写好千位上的数,有4种选择第三步:写好百位上的数,有3种选择第四步:写好十位上的数,有2种选择第五步:写好个位上的数,有1种选择所以共有5×4×3×2×1=120个6、分三步完成种菜的任务第一步:第一块田里种菜有4种选择第二步:第一块田里种菜有3种选择第三步:第一块田里种菜有2种选择所以共有4×3×2=24种7、分类完成选书的事情第一类:选语文、数学(这一类在分2步完成,第一步选语文有3种选择,第二步选数学有4种选择,所以一共有3×4=12种)第二类:选数学、外语(同理,有4×5=20种)第三类:选外语、语文(同理,有3×5=15种)一共有12+20+15=47种(分类的要相加)综合列式:3×4+4×5+3×5=47种8、为叙述方便,设五个人为ABCDE,不能坐两端的是A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法原理加法原理
乘法原理和加法原理是数学中重要的计数原理,它们常被应用于组合数学和概率论等领域。

本文将详细介绍乘法原理和加法原理的概念、应用场景以及相关实例。

一、乘法原理
乘法原理也称为乘法法则,是计算多个事件发生的总次数的原理。

它可以应用于各种情形下,通过将多个独立事件的次数相乘来计算它们组成的总数。

1.乘法原理的概念
乘法原理是指,当一个过程可以分解为多个步骤时,每个步骤的可能性均不受前一步骤结果影响,那么该过程的总可能性等于各个步骤可能性的乘积。

2.乘法原理的应用场景
乘法原理常用于计算排列和组合问题、概率和统计问题,以及各种计数问题。

3.乘法原理的实例
【例1】一个餐厅提供汉堡、薯条和可乐三种主食,每种主食都有三种不同口味的选择,那么所有可能的组合数有多少种?
解析:根据乘法原理,主食的选择有3种,口味的选择也有3种,所以总共的组合数为3×3=9种。

【例2】公司要选派草坪展示队参加草坪展览,共有4名男员工和3
名女员工可供选择。

如果每支展示队必须由1名男员工和1名女员工组成,那么可能的组合数有多少种?
解析:根据乘法原理,男员工的选择有4种,女员工的选择有3种,
所以总共的组合数为4×3=12种。

【例3】手机品牌有5种不同颜色的手机外壳可供选择,每种颜色有
3种不同配置的内部零部件可供选择,那么可能的组合数有多少种?
解析:根据乘法原理,手机外壳的选择有5种,内部零部件的选择有
3种,所以总共的组合数为5×3=15种。

二、加法原理
加法原理也称为加法法则,是计算多个事件发生总和的次数的原理。

它可以应用于多种情形下,通过将多个互斥事件的次数相加来计算它们组
成的总数。

1.加法原理的概念
加法原理是指,当一个过程可以分解为多个互斥事件时,每个事件的
可能性均不受其他事件结果影响,那么该过程的总可能性等于各个事件可
能性的求和。

2.加法原理的应用场景
加法原理常用于计算选择问题、排列和组合问题以及概率和统计问题。

3.加法原理的实例
【例1】一支足球队参加了10场比赛,其中赢了5场、输了3场,平局2场。

那么该队所有比赛的结果共有多少种可能性?
解析:根据加法原理,赢的可能性有5种,输的可能性有3种,平局的可能性有2种,所以总共的可能性为5+3+2=10种。

【例2】公司举办年会,选择了4个不同的表演节目供观众选择。

其中第一节目有2种选择,第二节目有3种选择,第三节目有4种选择,第四节目有5种选择。

那么观众的总共选择方式有多少种?
解析:根据加法原理,第一节目的选择有2种,第二节目的选择有3种,第三节目的选择有4种,第四节目的选择有5种,所以总共的选择方式有2+3+4+5=14种。

【例3】宝宝用品店推出了三种促销活动:满100元减30元、满200元减60元、满300元减100元。

如果顾客购买金额超过300元,那么该顾客能获得几种不同优惠方式?
解析:根据加法原理,满足第一个优惠条件的方式有1种,满足第二个优惠条件的方式有1种,满足第三个优惠条件的方式有1种,所以总共的优惠方式有1+1+1=3种。

综上所述,乘法原理和加法原理是计算事件总数的重要原理。

它们在排列组合、选择和概率统计等领域有广泛的应用,对于解决各种计数问题十分有帮助。

相关文档
最新文档