小学思维数学讲义:简单乘法原理-带答案解析

合集下载

乘法的基本原理与运算技巧引导孩子掌握乘法的本质与方法

乘法的基本原理与运算技巧引导孩子掌握乘法的本质与方法

乘法的基本原理与运算技巧引导孩子掌握乘法的本质与方法乘法作为数学的基本运算之一,对于孩子的数学学习和发展具有重要的意义。

掌握乘法的基本原理和运算技巧,能够帮助孩子建立起对数学乘法的正确认知,提高计算能力,并应用到实际生活中。

一、乘法的基本原理乘法可以理解为多个相同的数相加的结果。

具体来说,乘法由被乘数、乘数和积三个要素组成,被乘数表示需要重复的次数,乘数表示重复的对象,积表示乘法的结果。

例如,3 × 4 = 12中,3是被乘数,4是乘数,12是积。

乘法可以通过多种方法和模型进行理解。

其中,集合模型是最常见且易于理解的方法之一。

通过集合模型,孩子可以将乘法问题转化为多个集合中的对象总数的问题。

例如,3 × 4可以表示为三个集合中每个集合有4个对象,最终总共有多少个对象。

另一个常用的乘法理解模型是区域模型。

通过区域模型,可以将乘法问题转化为矩形区域中的面积问题。

例如,3 × 4可以表示为一条长为3,宽为4的矩形的面积是多少。

通过这样的乘法理解模型,孩子可以更加直观地理解乘法的基本原理,从而建立起正确的乘法概念。

二、乘法的运算技巧理解乘法的基本原理之后,孩子还需要掌握一些乘法的运算技巧。

这些技巧有助于孩子更高效地进行乘法计算,提高计算速度和准确性。

1.倍数关系孩子需要理解倍数与乘法的关系。

倍数指的是一个数是另一个数的几倍。

通过理解倍数概念,孩子可以将乘法问题转化为倍数之间的关系,从而更好地解决问题。

例如,8 × 3可以理解为8的3倍,即8 + 8 + 8 = 24。

2.分解与重组孩子可以通过分解和重组乘法问题,简化计算过程。

例如,对于6× 5,可以将其分解为6 × 4 + 6,再进行计算。

这样的分解与重组技巧可以使复杂的乘法问题简化为更容易计算的部分。

3.交换律和结合律交换律指的是乘法中乘数的交换不会改变积的结果,结合律指的是乘法中被乘数和乘数的括号可以任意改变次序。

小学思维数学讲义:乘法原理之染色问题-带详解

小学思维数学讲义:乘法原理之染色问题-带详解

乘法原理之染色问题教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 地图上有A ,B ,C ,D 四个国家(如下图),现有红、黄、蓝三种颜色给地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?DC B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有3种颜色可选;当B ,C 取相同的颜色时,有2种颜色可选,此时D 也有2种颜色可选.根据乘法原理,不同的涂法有32212⨯⨯=种;当B ,C 取不同的颜色时,B 有2种颜色可选,C 仅剩1种颜色可选,此时D 也只有1种颜色可选(与A 相同).根据乘法原理,不同的涂法有32116⨯⨯⨯=种.综上,根据加法原理,共有12618+=种不同的涂法.【答案】18【巩固】 如果有红、黄、蓝、绿四种颜色给例题中的地图染色,使相邻国家的颜色不同,但不是每种颜色都必须要用,问有多少种染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,首先对A 进行染色一共有4种方法,然后对B 、C 进行染色,如果B 、C 取相同的颜色,有三种方式,D 剩下3种方式,如果B 、C 取不同颜色,有326⨯=种方法,D 剩下2种方法,对该图的染色方法一共有43332284⨯⨯+⨯⨯=()种方法.【注意】给地图染色问题中有的可以直接用乘法原理解决,有的需要分类解决,前者分类做也可以解决问题.【答案】84【例 2】 在右图的每个区域内涂上A 、B 、C 、D 四种颜色之一,使得每个圆里面恰有四种颜色,则一共有__________种不同的染色方法.7654321【考点】乘法原理之染色问题 【难度】4星 【题型】解答【解析】 因为每个圆内4个区域上染的颜色都不相同,所以一个圆内的4个区域一共有43224⨯⨯=种染色方法.如右图所示,当一个圆内的1、2、3、4四个区域的颜色染定后,由于6号区域的颜色不能与2、3、4三个区域的颜色相同,所以只能与1号区域的颜色相同,同理5号区域只能与4号区域的颜色相同,7号区域只能与2号区域的颜色相同,所以当1、2、3、4四个区域的颜色染定后,其他区域的颜色也就相应的只有一种染法,所以一共有24种不同的染法.【答案】24【例 3】 如图,地图上有A ,B ,C ,D 四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?例题精讲DCB A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:第一步:给A 染色,有5种颜色可选.第二步:给B 染色,由于B 不能与A 同色,所以B 有4种颜色可选.第三步:给C 染色,由于C 不能与A 、B 同色,所以C 有3种颜色可选.第四步:给D 染色,由于D 不能与B 、C 同色,但可以与A 同色,所以D 有3种颜色可选.根据分步计数的乘法原理,用5种颜色给地图染色共有5433180⨯⨯⨯=种不同的染色方法.【答案】180【巩固】 如图,一张地图上有五个国家A ,B ,C ,D ,E ,现在要求用四种不同的颜色区分不同国家,要求相邻的国家不能使用同一种颜色,不同的国家可以使用同—种颜色,那么这幅地图有多少着色方法?ED C BA【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 第一步,给A 国上色,可以任选颜色,有四种选择;第二步,给B 国上色,B 国不能使用A 国的颜色,有三种选择;第三步,给C 国上色,C 国与B ,A 两国相邻,所以不能使用A ,B 国的颜色,只有两种选择;第四步,给D 国上色,D 国与B ,C 两国相邻,因此也只有两种选择;第五步,给E 国上色,E 国与C ,D 两国相邻,有两种选择. 共有4322296⨯⨯⨯⨯=种着色方法.【答案】96【例 4】 如图:将一张纸作如下操作,一、用横线将纸划为相等的两块,二、用竖线将下边的区块划为相等的两块,三、用横线将最右下方的区块分为相等的两块,四、用竖线将最右下方的区块划为相等的两块……,如此进行8步操作,问:如果用四种颜色对这一图形进行染色,要求相邻区块颜色不同,应该有多少种不同的染色方法?【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 对这张纸的操作一共进行了8次,每次操作都增加了一个区块,所以8次操作后一共有9个区块,我们对这张纸,进行染色就需要9个步骤,从最大的区块从大到小开始染色,每个步骤地染色方法有:4、3、2、2、2……,所以一共有:4322222221536⨯⨯⨯⨯⨯⨯⨯⨯=种.【答案】1536【巩固】 用三种颜色去涂如图所示的三块区域,要求相邻的区域涂不同的颜色,那么共有几种不同的涂法?ABC【考点】乘法原理之染色问题【难度】2星【题型】解答【解析】涂三块毫无疑问是分成三步.第一步,涂A部分,那么就有三种颜色的选择;第二步,涂B部分,由于要求相邻的区域涂不同的颜色,A和B相邻,当A确定了一种颜色后,B只有两种颜色可选择了;第三步,涂C部分,C和A、B都相邻,A和B确定了两种不相同的颜色,那么C只有一种颜色可选择了.然后再根据乘法原理.3216⨯⨯=【答案】6【例 5】如图,有一张地图上有五个国家,现在要用四种颜色对这一幅地图进行染色,使相邻的国家所染的颜色不同,不相邻的国家的颜色可以相同.那么一共可以有多少种染色方法?【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】这一道题实际上就是例题,因为两幅图各个字母所代表的国家的相邻国家是相同的,如果将本题中的地图边界进行直角化就会转化为原题,所以对这幅地图染色同样一共有4322296⨯⨯⨯⨯=种方法.【讨论】如果染色步骤为----C A BD E,那么应该该如何解答?答案:也是4322296⨯⨯⨯⨯=种方法.如果染色步骤为----C AD B E那么应该如何解答?答案:染色的前两步一共有4×3种方法,但染第三步时需要分类讨论,如果D与A颜色相同,那么B有2种染法,E也有2种方法,如果D与A染不同的颜色,那么D有2种染法那么B只有一种染法,E有2种染法,所以一共应该有43(122212)96⨯⨯⨯⨯+⨯⨯=种方法,(教师应该向学生说明第三个步骤用到了分类讨论和加法原理,加法原理在下一讲中将会讲授),染色步骤选择的经验方法:每一步骤所染的区块应该尽量和之前所染的区块相邻.【答案】96【巩固】某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色,共有多少种不同的染色方法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】为了便于分析,把地图上的7个县分别编号为A、B、C、D、E、F、G(如左下图).GF DC B AE为了便于观察,在保持相邻关系不变的情况下可以把左图改画成右图.那么,为了完成地图染色这件工作需要多少步呢?由于有7个区域,我们不妨按A 、B 、C 、D 、E 、F 、G 的顺序,用红、黑、绿、蓝、紫五种颜色依次分7步来完成染色任务.第1步:先染区域A ,有5种颜色可供选择;第2步:再染区域B ,由于B 不能与A 同色,所以区域B 的染色方式有4种;第3步:染区域C ,由于C 不能与B 、A 同色,所以区域C 的染色方式有3种;第4步:染区域D ,由于D 不能与C 、A 同色,所以区域D 的染色方式有3种;第5步:染区域E ,由于E 不能与D 、A 同色,所以区域E 的染色方式有3种;第6步:染区域F ,由于F 不能与E 、A 同色,所以区域F 的染色方式有3种;第7步:染区域G ,由于G 不能与C 、D 同色,所以区域G 的染色方式有3种.根据分步计数的乘法原理,共有54333334860⨯⨯⨯⨯⨯⨯=种不同的染色方法.【答案】4860【例 6】 用3种颜色把一个33⨯的方格表染色,要求相同行和相同列的3个格所染的颜色互不相同,一共有 种不同的染色法.【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 根据题意可知,染完后这个33⨯的方格表每一行和每一列都恰有3个颜色.用3种颜色染第一行,有336P =种染法;染完第一行后再染第一列剩下的2个方格,有2种染法;当第一行和第一列都染好后,再根据每一行和每一列都恰有3个颜色对剩下的方格进行染色,可知其余的方格都只有唯一一种染法.所以,根据乘法原理,共有326⨯=种不同的染法.【答案】6【例 7】 如右图,有A 、B 、C 、D 、E 五个区域,现用五种颜色给区域染色,染色要求:每相邻两个区域不同色,每个区域染一色.有多少种不同的染色方式?EDC BA 【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 先采用分步:第一步给A 染色,有5种方法;第二步给B 染色,有4种方式;第三步给C 染色,有3种方式;第四步给D 染色,有3种方式;第五步,给E 染色,由于E 不能与A 、B 、D 同色,但可以和C 同色.此时就出现了问题:当D 与B 同色时,E 有3种颜色可染;而当D 与B 异色时,E 有2种颜色可染.所以必须从第四步就开始分类:第一类,D 与B 同色.E 有3种颜色可染,共有5433180⨯⨯⨯=(种)染色方式;第二类,D 与B 异色.D 有2种颜色可染,E 有2种颜色可染,共有54322240⨯⨯⨯⨯=(种)染色方式.根据加法原理,共有180240420+=(种)染色方式.【注意】给图形染色问题中有的可以直接用乘法原理解决,但如果碰到有首尾相接的图形往往需要分类解决.【答案】420【巩固】 如右图,有A ,B ,C ,D 四个区域,现用四种颜色给区域染色,要求相邻区域的颜色不同,每个区域染一色.有多少种染色方法?D C B A【考点】乘法原理之染色问题 【难度】3星 【题型】解答【解析】 A 有4种颜色可选,然后分类:第一类:B ,D 取相同的颜色.有3种颜色可染,此时D 也有3种颜色可选.根据乘法原理,不同的染法有43336⨯⨯=(种);第二类:当B ,D 取不同的颜色时,B 有3种颜色可染,C 有2种颜色可染,此时D 也有2种颜色可染.根据乘法原理,不同的染法有432248⨯⨯⨯=(种).根据加法原理,共有364884+=(种)染色方法.【答案】84【巩固】用四种颜色对右图的五个字染色,要求相邻的区域的字染不同的颜色,但不是每种颜色都必须要用.问:共有多少种不同的染色方法?学奥而思数【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】第一步给“而”上色,有4种选择;然后对“学”染色,“学”有3种颜色可选;当“奥”,“数”取相同的颜色时,有2种颜色可选,此时“思”也有2种颜色可选,不同的涂法有32212⨯⨯=种;当“奥”,“数”取不同的颜色时,“奥”有2种颜色可选,“数”剩仅1种颜色可选,此时“思”也只有1种颜色可选(与“学”相同),不同的涂法有32116⨯⨯⨯=种.所以,根据加法原理,共有43(222)72⨯⨯⨯+=种不同的涂法.【答案】72【例 8】分别用五种颜色中的某一种对下图的A,B,C,D,E,F六个区域染色,要求相邻的区域染不同的颜色,但不是每种颜色都必须要用.问:有多少种不同的染法?【考点】乘法原理之染色问题【难度】4星【题型】解答【解析】先按A,B,D,C,E的次序染色,可供选择的颜色依次有5,4,3,2,3种,注意E与D的颜色搭配有339⨯=(种),其中有3种E和D同色,有6种E和D异色.最后染F,当E与D同色时有3种颜色可选,当E与D异色时有2种颜色可选,所以共有542(3362)840⨯⨯⨯⨯+⨯=种染法.【答案】840【例 9】将图中的○分别涂成红色、黄色或绿色,要求有线段相连的两个相邻○涂不同的颜色,共有多少种不同涂法?D CBA【考点】乘法原理之染色问题【难度】3星【题型】解答【解析】如右上图,当A,B,C,D的颜色确定后,大正方形四个角上的○的颜色就确定了,所以只需求A,B,C,D有多少种不同涂法.按先A,再B,D,后C的顺序涂色.按---A B D C的顺序涂颜色:A有3种颜色可选;当B,D取相同的颜色时,有2种颜色可选,此时C也有2种颜色可选,不同的涂法有32212⨯⨯=种;当B,D取不同的颜色时,B有2种颜色可选,D仅剩1种颜色可选,此时C也只有1种颜色可选(与A相同),不同的涂法有32116⨯⨯⨯=(种).所以,根据加法原理,共有12618+=种不同的涂法.【答案】18【例 10】用4种不同的颜色来涂正四面体(如图,每个面都是完全相同的正三角形)的4个面,使不同的面涂有不同的颜色,共有________种不同的涂法.(将正四面体任意旋转后仍然不同的涂色法,才被认为是不同的)【考点】乘法原理之染色问题【难度】4星【题型】填空【关键词】迎春杯,中年级,复赛,第9题【解析】不旋转时共有4×3×2×1=24种染色方式,而一个正四面体有4×3=12种放置方法(4个面中选1个作底面,再从剩余3个面中选1个作正面),所以每种染色方式被重复计算了12次,则不同的染色方法有24÷12=2种。

四年级下册数学思维训练:乘法原理(解析版)全国通用

四年级下册数学思维训练:乘法原理(解析版)全国通用

备课说明:1、本讲为第一期加法原理的延续,例1为乘法原理的基础题,目的在于让学生认识并理解乘法原理(15分钟),例2、5为乘法原理的应用(分别用时15分钟、20分钟).例3为乘法原理与加法原理的综合题,本题分类较为复杂,所需时间较长(25分钟左右).例4为染色问题(15分钟左右).思考题为较复杂的染色问题(20分钟左右).注:本讲内容对于部分班级可能题量偏少,上课教师可适当添加几道备用题.2、重点:理解并能运用乘法原理,利用乘法原理与加法原理计数;难点:计数时,能合理分类,并准确判断出每一类事的步骤.乘法原理:做一件事,完成它需要分成n 个步骤,第一个步骤有1m 种不同的方法,第二个步骤有2m 种不同的方法,……,第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m m N ⨯⨯⨯⨯= 321种不同的方法.乘法原理的关键在于分步,它与加法原理是计数中最常用、也是最基本的两个原理.如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条.从A 村经B 村去C 村,共有多少种不同的走法?分析:要从A 村到C 村要分两步进行,第一步从A 村到B 村,有3种方法;第二步从B 村到C 村,有2种方法.所以应用乘法原理计算.解:623=⨯ (种)答:共有6种不同的走法.某班级有男三好学生5人,女三好学生4人.从中任意选出男、女三好学生各一人去参加座谈会,有 种不同的选法.解:2045=⨯ (种)小琴、小惠、小梅三人报名参加运动会的跳绳、跳高和短跑三个项目的比赛,每人参加一项,报名的情况有_________种.(希望杯,第一届1试)解:27333=⨯⨯(种)由1、2、3、4、5这5个数字,可组成多少个没有重复数字的三位数?多少个三位数?多少个数字不重复的三位数偶数?分析:没有重复数字的三位数,分三步来完成:第一步确定百位上的数字,有5种选择;第二步确定十位上的数字,去除百位上的数字,有4种选择;第三步确定个位上的数字,去除百位上和十位上的这两个数字,有3种选择.允许有重复数字的三位数,仍然分三步来完成:第一步确定百位上的数字,有5种选择;第二步确定十位上的数字,仍有5种选择;第三步确定个位上的数字,还是有5种选择.数字不重复的三位偶数,分三步来完成:第一步确定个位上的数字,有2种选择(个位上只能为2或4);第二步确定十位上的数字,有4种选择;第三步确定百位上的数字,有3种选择.解:组成没有重复数字的三位数有:60345=⨯⨯ (个)组成允许有重复数字的三位数有:125555=⨯⨯ (个)组成数字不重复的三位偶数有:24342=⨯⨯ (个)答:可组成60个没有重复数字的三位数.可组成125个允许有重复数字的三位数.可组成数字不重复的三位偶数有24个.由四张数字卡片:0,2,4,6可以组成_________个数字不重复的三位数.【希望杯,第三届1试】解:注意到百位上不能出现0,因此百位上有3种选择,其次十位上出去百位上的一个数字,还有3个选择,个位除去百位上和十位上的两个数字外,还有2个选择.可以组成数字不重复的三位数 18233=⨯⨯(个).由0、1、2、3、4这5个数,可组成多少个没有重复数字的三位数?多少个允许有重复数字的三位数?解:(注意0不能放在百位上)组成没有重复数字的三位数有:48344=⨯⨯ (个)组成允许有重复数字的三位数有:100554=⨯⨯ (个)答:可组成48个没有重复数字的三位数.可组成100个允许有重复数字的三位数.用1,2,3,4这四种数码组成五位数,数字可以重复,至少有连续三位是3的五位数有多少个?分析与解:将至少有连续三位数是3的五位数分成三类:连续五位是3、恰有连续四位是3、恰有连续三位是3.(1)连续五位是3,只有33333一种;(2)恰有连续四位是3,有3333A 与A 3333两种情况,其中A 可以是2,3,4中任一个,所以有633=+(种);(3)恰有连续三位是3,有AB 333,333BA ,C A 333三种情况,其中A ,C 可以是2,3,4之一,B 可以是1,2,3,4之一,所以对于AB 333有1243=⨯(种),对于333BA 有1234=⨯(种),对于C A 333有933=⨯(种),共3391212=++(种). 由加法原理,这样的五位数共有403361=++(种).用1,2,3这三种数码组成四位数,在可能组成的四位数中,至少有连续两位是2的有多少个?解析:将至少有连续两位是2的四位数分为三类:连续四位都是2,有1种;恰有连续三位都是2,有422=+(种);恰有两位连续两位是2,有16466=++(种).综上,共有211641=++(种)如图,地图上有A 、B 、C 、D 四个区域,现用红、黄、蓝、绿四种颜料给地图染色,使区域的颜色不同,问有多少种不同的染色方法?DC BA 解:先给A 涂色,有4种选择;接着给B 涂色,有3种选择(扣除A 涂的颜色);给C 涂色,有2种选择(扣除A 、B 涂的颜色);给D 涂色,有2种选择(扣除B 、C 涂的颜色). 共有不同的染色方法 482234=⨯⨯⨯(种).答:有48种不同的染色方法.用4种颜色给下图中的5块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?解:给图形作如下标记:给这个图形涂颜色分五步来进行:第一步给第①块区域涂颜色有4种颜色可供选择;第二步给第②块区域涂颜色除第①块涂的颜色外还有3种颜色可供选择;第三步给第③块区域涂颜色除①、②两块所涂的颜色外还有2种颜色可供选择; 第四步给第④块区域涂颜色除①、③三块所涂的颜色外只有2种颜色可供选择; 第五步给第⑤块区域涂颜色除③、④两块所涂的颜色外还有2种颜色可供选择. 根据乘法原理可知,共有不同的染法:9622234=⨯⨯⨯⨯ (种).答:共有96种不同的染色方法.将6个相同的小球放入66⨯的格子中,使得每一行每一列都只有一个小球,那么有多少种不同的放法? 解: 先在第一行放第一个小球,有6种选择;去掉第一个小球所在的行与列,在第二行放第二个小球,有5种选择;再去掉第二个小球所在的行与列,在第三行放第三个小球,有4种选择;依此类推,放第四个小球,有3个选择;放第五个小球有2个选择;放第六个小球,有1个选择.共有不同的放法 720123456=⨯⨯⨯⨯⨯(种)答:有720种不同的放法.在下图的方格中放入4个相同的棋子,使得每一行每一列至多有一个棋子,有__________种放法.【小数报杯,第五届初赛】解:183321=⨯⨯⨯(种).如下图,用红、绿、蓝、黄四种颜色涂编号为1、2、3、4的长方形,要求任何相邻的两个长方形的颜色都不同.一共有多少种不同的涂法?分析:涂色的过程可以分为三步.第一步:给1号长方形涂色,有4种涂法.可以选任意一种颜色.第二步:给2号长方形涂色,有3种涂法.对于1号长方形每种不同的涂法,2号长方形都可以在剩下的3种颜色里选任意一种,即有3种涂法.第三步:给3号、4号长方形涂色.3号长方形与1号相邻,与2号不相邻,对于1、2号长方形的每一种配色方案,3号长方形都可以选与1号不同的3种颜色,按3号长方形的涂色情况,可把本题的涂法分为两大类:第一大类,3号长方形选与2号相同的颜色.3号长方形只有一种涂法,这时4号长方形可以选与2号不同的3种颜色,有3种涂法.第二大类,3号长方形选与1、2号都不同的颜色.3号长方形有2种涂法,这时4号长方形可以选剩下的与2号、3号不同的2种颜色,有2种涂法.最后运用加法原理即能求得答案.解:84483622343134=+=⨯⨯⨯+⨯⨯⨯ (种)答:一共有84种不同的涂法.【备用】1、在图中放入四个棋子“兵”,使得每一行每一列至多有一个“兵”有多少种放法?解:从左起第一列开始,选一行放棋子,有2种选择.接着放左起第二列,去掉第一个棋子所在的行,还剩2行,选一行放第二个棋子,有2种选择;依此类推,放第三个棋子,第四个棋子,均有2种选择.162222=⨯⨯⨯(种)答:有16种放法.2、由1、2、3、4、5这5个数字,可组成多少个数字不重复的偶数?解析:数字不重复的偶数,按位数分为5种情况:一位偶数:只有2个;二位偶数:842=⨯ (个);三位偶数:已经计算过,24个;四位偶数:482342=⨯⨯⨯ (个);五位偶数:4812342=⨯⨯⨯⨯ (个);最后利用加法原理即能求得答案.组成数字不重复的偶数有:130123422342342422=⨯⨯⨯⨯+⨯⨯⨯+⨯⨯+⨯+ (个)3、从1到300的正整数中,完全不含有数字3的有多少个?解:方法一:先考虑000~300中,不含有数字3的,百位上有0,1,2共3种选择,十位上有0,1,2,4,5,6,7,8,9共9种选择,个位上有0,1,2,4,5,6,7,8,9共9种选择,因此000~300中不含有数字3的共有243993=⨯⨯(种),而1~300中不含有数字3的共有2421243=-(种).方法二:考虑1到300这300个正整数中,含有数字3的有多少个:1~100中含有3的数字有3、13、23、30、31、……、39、43、53、……93共19个,同理101~200中含有3的数字有19个,201~300中含有3的数字有19+1=20个,所以1到300中含有3的数字共有58201919=++(个),于是不含有3的数字共有24258300=-个.答:完全不含有数字3的有242个.4、甲、乙、丙、丁四人顺次坐在一张方桌四边,发5种不同的奖品给她们,要求相邻的人奖品不同,共有多少种不同的发法?解:26033454145=⨯⨯⨯+⨯⨯⨯(种)答:共有260种不同的发法.马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋.小丑的帽子和鞋共有 种不同搭配.解:623=⨯ (种)答:小丑的帽子和鞋共有6种不同搭配.在下面每个方格中各放一个围棋子(黑子或白子),有________种方法.(走美杯,第六届初赛)解:162222=⨯⨯⨯(种)用数字0,3,4,5,6,8能组成________个数字不重复的三位数.解:100455=⨯⨯(个)。

小学数学认识乘法的基本原理

小学数学认识乘法的基本原理

小学数学认识乘法的基本原理数学是一门重要的学科,对于小学生来说,学好数学意味着打好基础,为将来的学习奠定坚实的基础。

而乘法作为数学中的一项基本运算,对于小学生的数学认知和发展具有重要的作用。

本文将介绍小学数学认识乘法的基本原理。

一、乘法的概念和符号乘法是一种数学运算,它用于计算两个数的积。

在乘法中,我们使用乘法符号“×”表示。

例如,3 × 4 = 12。

在这个例子中,3和4是被乘数,12是积。

乘法可以简单地理解为多个相同的数相加,也可以理解为一系列一样的数按照给定的倍数相加。

二、认识乘法的基本原理为了帮助小学生更好地理解乘法的基本原理,我们可以通过具体的实例进行说明。

1. 分组法在小学数学中,我们常用分组法来解释乘法。

分组法的基本原理是将多个相同的数分成几组,然后求每组数的总和。

例如,我们有3组每组4个苹果,我们可以通过分组法计算这些苹果的总数。

首先将3组苹果分成3组,每组有4个苹果。

然后我们计算每组苹果的总数,即4 + 4 + 4 = 12。

所以,3组每组4个苹果的总数是12个苹果。

2. 多次加法除了分组法,我们还可以通过多次进行加法运算来解释乘法。

例如,我们有5个3元硬币,我们想知道这些硬币的总价值。

我们可以进行多次加法来计算这个总值。

即,3 + 3 + 3 + 3 + 3 = 15。

所以,5个3元硬币的总价值是15元。

三、乘法的性质除了基本原理,乘法还具有一些重要的性质,其中包括:1. 乘法交换律乘法交换律是指交换两个数的顺序不改变乘积的结果。

即,对于任意的实数a和b,有a × b = b × a。

2. 乘法结合律乘法结合律是指在连续进行乘法运算时,括号的位置不会改变乘积的结果。

即,对于任意的实数a、b和c,有(a × b) × c = a × (b × c)。

这些性质可以帮助我们更好地善用乘法,并简化乘法运算的过程。

四年级奥数详解答案乘法原理

四年级奥数详解答案乘法原理

四年级奥数详解答案第九讲乘法原理一、知识概要如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。

这就是乘法原理。

乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。

二、典型例题精讲1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙地共有多少种不同的走法?分析:如图,很明显,这是个乘法原理的题目。

要完成“从甲到丙的行走任务”必须分两步完成。

第一步:甲分别通过乙的三条路线到达丙,故有3种走法。

第二步:甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。

这两种走法相类似,共同完成“从甲到丙”的任务。

解:3×2=6(种) 答:共有6种不同的走法。

2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、每列只能出现一个棋子,共有多少种不同的放法?分析:(如图二)摆放四个棋子分四步来完成。

第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。

解:16×9×4×1=576(种) 答:共有576种不同的放法。

3. 有五张卡片,分别写有数字1,2,4,5,8。

现从中取出3张片排在一起,组成一个三位数,如□1□5□2,可以组成个不同的偶数。

分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位共放了两张,所以还有3张可选放,有3种放法。

小学四年级数学思维专题训练—乘法原理(含答案解析)

小学四年级数学思维专题训练—乘法原理(含答案解析)

小学四年级数学思维专题训练—乘法原理1、奥运吉祥物中的5个福娃取“北京欢迎您”的谐音:贝贝,晶晶,欢欢,迎迎,妮妮,如果在盒子中从左向右放5个不同的福娃,那么,有中不同的方法。

2、豆豆用数字卡片做游戏,剩下许多写有4、7和8的卡片,而其余数字卡片都用完了,他用这些剩下的卡片可以组成不同的三位数。

3康康到麦当娜买套餐,一份套餐包含了一个汉堡,一份小吃喝一杯饮料,服务员告诉他店里有8种汉堡,4中小吃,5中饮料可供选择,那么康康一共可以搭配出种套餐。

4、用4种颜色的水彩笔给MATH四和字母涂颜色,要求不同字母用不同的笔去涂,共有种不停的颜色搭配方式。

5、有红黄蓝三种颜色的上衣和裤子,同学们任意选择一种颜色的上衣和裤子穿,问:①上衣和裤子的搭配方式有种。

②至少要名学生,才能保证有两人穿的上衣和裤子的颜色相同。

6、在下图中的每个方格中各放1枚围棋子(黑字或白子),有种方法。

7、一副扑克牌有4中花色的牌,共52张,每种花色都写有数字为1,2,3,…,13的牌,如果在5张牌中,同一种数字的4种花色的牌都出现,便称这5张牌为天王,不同的天王共有种。

8、从1,2,3,4,5中选出四个数填入下图的方格中,使得右边的数比左边的大,下面的数比上面的大,那么共有中方法。

9、在一个国家竞赛联盟中有16支曲棍球队,他们被分成两组,每组8队,在一个赛季中,每支球队要同本组中的其他每支球队打一场球,然后同另一组的所有队各打一场球,试问在这个赛季中共有进行多少场比赛?10、右图是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有个。

A9B8C7D611、如下图所示,把ABCDE这五部分用四种不同颜色着色,且相邻的部分不能使用同一种颜色,不想相邻的部分可以使用同一种颜色,那么,这幅图一共有种不同的着色方法。

12、下图是一个区域地图,可以用红白黄蓝绿五种颜色给地图着色,要求相邻的区域必须着不同的颜色,那么不同的着色方法有种。

乘法原理讲解

乘法原理讲解

19讲乘法原理让我们先看下面几个问题。

例1马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。

问:小丑的帽子和鞋共有几种不同搭配?分析与解:由下图可以看出,帽子和鞋共有6种搭配。

事实上,小丑戴帽穿鞋是分两步进行的。

第一步戴帽子,有3种方法;第二步穿鞋,有2种方法。

对第一步的每种方法,第二步都有两种方法,所以不同的搭配共有3×2=6(种)。

例2从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。

问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?分析与解:用A1,A2表示从甲地到乙地的2条路,用B1,B2,B3表示从乙地到丙地的3条路,用C1,C2表示从丙地到丁地的2条路(见下页图)。

共有下面12种走法:A1B1C1A1B2C1A1B3C1A1B1C2A1B2C A1B3C2A2B1C1A2B2C1A2B3C1A2B1C2A2B2C2A2B3C2事实上,从甲到丁是分三步走的。

第一步甲到乙有2种方法,第二步乙到丙有3种方法,第3步丙到丁有2种方法。

对于第一步的每种方法,第二步都有3种方法,所以从甲到丙有2×3=6(种)方法;对从甲到丙的每种方法,第三步都有2种方法,所以不同的走法共有2×3×2=12(种)。

以上两例用到的数学思想就是数学上的乘法原理。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,做第2步有m2种方法……做第n步有m n种方法,那么按照这样的步骤完成这件任务共有N=m1×m2×…×mn种不同的方法。

从乘法原理可以看出:将完成一件任务分成几步做,是解决问题的关键,而这几步是完成这件任务缺一不可的。

例3用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)?分析与解:组成一个三位数要分三步进行:第一步确定百位上的数字,除0以外有5种选法;第二步确定十位上的数字,因为数字可以重复,有6种选法;第三步确定个位上的数字,也有6种选法。

【奥数小神童】小学奥数教程-简单乘法原理.教师版 (137) 全国通用(含答案)

【奥数小神童】小学奥数教程-简单乘法原理.教师版 (137)  全国通用(含答案)

7-2-1.简单乘法原理教学目标1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.知识要点一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?2号路1号路南中CBA【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村C 村中2号路1号路A 村村 C 村北2号路1号路1号路2号路南C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?C B A【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?家学校【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?例题精讲CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?CBA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例 3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单乘法原理1.使学生掌握乘法原理主要内容,掌握乘法原理运用的方法;2.使学生分清楚什么时候用乘法原理,分清有几个必要的步骤,以及各步之间的关系.3.培养学生准确分解步骤的解题能力;乘法原理的数学思想主旨在于分步考虑问题,本讲的目的也是为了培养学生分步考虑问题的习惯.一、乘法原理概念引入老师周六要去给同学们上课,首先得从家出发到长宁上8点的课,然后得赶到黄埔去上下午1点半的课.如果说申老师的家到长宁有5种可选择的交通工具(公交、地铁、出租车、自行车、步行),然后再从长宁到黄埔有2种可选择的交通工具(公交、地铁),同学们,你们说老师从家到黄埔一共有多少条路线?我们看上面这个示意图,老师必须先的到长宁,然后再到黄埔.这几个环节是必不可少的,老师是一定要先到长宁上完课,才能去黄埔的.在没学乘法原理之前,我们可以通过一条一条的数,把线路找出来,显而易见一共是10条路线.但是要是老师从家到长宁有25种可选择的交通工具,并且从长宁到黄埔也有30种可选择的交通工具,那一共有多少条线路呢?这样数,恐怕是要耗费很多的时间了.这个时候我们的乘法原理就派上上用场了.二、乘法原理的定义完成一件事,这个事情可以分成n个必不可少的步骤(比如说老师从家到黄埔,必须要先到长宁,那么一共可以分成两个必不可少的步骤,一是从家到长宁,二是从长宁到黄埔),第1步有A种不同的方法,第二步有B种不同的方法,……,第n步有N种不同的方法.那么完成这件事情一共有A×B×……×N种不同的方法.结合上个例子,老师要完成从家到黄埔的这么一件事,需要2个步骤,第1步是从家到长宁,一共5种选择;第2步从长宁到黄埔,一共2种选择;那么老师从家到黄埔一共有5×2个可选择的路线了,即10条.三、乘法原理解题三部曲1、完成一件事分N个必要步骤;2、每步找种数(每步的情况都不能单独完成该件事);3、步步相乘四、乘法原理的考题类型1、路线种类问题——比如说老师举的这个例子就是个路线种类问题;2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法;4、排队问题——比如说6个同学,排成一个队伍,有多少种排法;5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几为数的偶数,有多少种排法.教学目标知识要点【例 1】 邮递员投递邮件由A 村去B 村的道路有3条,由B 村去C 村的道路有2条,那么邮递员从A 村经B 村去C 村,共有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 把可能出现的情况全部考虑进去.第一步 第二步A 村村C 村中A 村村 C 村北南C 村村A 村由分析知邮递员由A 村去B 村是第一步,再由B 村去C 村为第二步,完成第一步有3种方法,而每种方法的第二步又有2种方法.根据乘法原理,从A 村经B 村去C 村,共有3×2=6种方法.【答案】6【巩固】 如下图所示,从A 地去B 地有5种走法,从B 地去C 地有3种走法,那么李明从A 地经B 地去C地有多少种不同的走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从A 地经B 地去C 地分为两步,由A 地去B 地是第一步,再由B 地去C 地为第二步,完成第一步有5种方法,而每种方法的第二步又有3种方法.根据乘法原理,从A 地经B 地去C 地,共有5×3=15种方法.【答案】15【例 2】 如下图中,小虎要从家沿着线段走到学校,要求任何地点不得重复经过.问:他最多有几种不同走法?【考点】简单乘法原理 【难度】1星 【题型】解答 【解析】 从家到中间结点一共有2种走法,从中间结点到学校一共有3种走法,根据乘法原理,一共有3×2=6种走法.【答案】6【巩固】 在下图中,一只甲虫要从A 点沿着线段爬到B 点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?例题精讲CBA【考点】简单乘法原理【难度】1星【题型】解答【解析】甲虫要从A点沿着线段爬到B点,需要经过两步,第一步是从A点到C点,一共有3种走法;第二步是从C点到B点,一共也有3种走法,根据乘法原理一共有3×3=9种走法.【答案】9【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,有1种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有3×1×3=9种走法.【答案】9【巩固】在右图中,一只蚂蚁要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只蚂蚁最多有几种不同走法?BDCA【考点】简单乘法原理【难度】2星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,第一步,A点到C点的走法是3种;第二步,从C点到D点,有1种走法;但第三步,从D点到B点的走法并不是3种,由D出去有2条路选择,到下一岔路口又有2条路选择,所总共有2×2=4(种)走法,根据乘法原理,这只蚂蚁最多有31412⨯⨯=(种)不同走法.【答案】12【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?D C BA【考点】简单乘法原理【难度】2星【题型】解答【解析】从A点沿着线段爬到B点需要分成三步进行,第一步,从A点到C点,一共有3种走法;第二步,从C点到D点,一共也有3种走法;第三步,从D点到B点,一共也有3种走法.根据乘法原理,一共有33327⨯⨯=种走法.【答案】27【巩固】在右图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过.问:这只甲虫最多有几种不同走法?BCA【考点】简单乘法原理【难度】3星【题型】解答【解析】解这道题时千万不要受铺垫题目的影响,A点到C点的走法不是3种,而是4种,C点到B点的走法也是4种,根据乘法原理,这只甲虫最多有4416⨯=种走法.【答案】16【例3】如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号。

【考点】简单乘法原理【难度】1星【题型】填空【关键词】希望杯,4年级,1试【解析】4×3×2×1=24【答案】24种【巩固】按下表给出的词造句,每句必须包括一个人、一个交通工具,以及一个目的地,请问可以造出多少个不同的句子?【考点】简单乘法原理【难度】2星【题型】解答【解析】1、造一个句子必须包含三个部分,即人、交通工具、目的地.2、那么这个句子可以分成三个部分;第一个步——选择人物,有三种选择;第二步——选择交通工具,有三种选择;第三个步——选择目的地,有三种选择.3、根据乘法原理:3×3×3=27.【答案】27【巩固】小琴、小惠、小梅三人报名参加运动会的跳绳,跳高和短跑这三个项目的比赛,每人参加一项,报名的情况有______ 种。

【考点】简单乘法原理【难度】3星【题型】填空【关键词】希望杯,4年级,1试【解析】乘法原理,3×3×3=27种【巩固】题库中有三种类型的题目,数量分别为30道、40道和45道,每次考试要从三种类型的题目中各取一道组成一张试卷.问:由该题库共可组成多少种不同的试卷?【考点】简单乘法原理【难度】2星【题型】解答【解析】从该题库每一类试卷中分三步各选一道题,每一步分别有30、40、45种选法.根据乘法原理,一共有30×40×45=54000种不同的选法,所以一共可以组成54000种不同试卷.【答案】54000【巩固】文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?【考点】简单乘法原理【难度】2星【题型】解答【解析】完成这件事需要两步:一步是从女生中选1人,有4种选法;另一步是从男生中选1人,有3种选法.因此,由乘法原理,选出1男1女的方法有3412⨯=种.还可以用乘法的意义来理解这道题:男生有3种选法,每选定1个男生,再选1个女生,对应着4种选法,即3个男生,每个男生对应4种选女生的方法,因此选出1男1女共有3412⨯=种方法.【答案】12【巩固】要从四年级六个班中评选出学习、体育、卫生先进集体,有多少种不同的评选结果?【考点】简单乘法原理【难度】2星【题型】解答【解析】第一步选出学习先进集体一共有6种方法,第二步选出体育先进集体一共有6种方法,第三步选出卫生先进集体一共有6种评选方法,根据乘法原理,一共有666216⨯⨯=种评选方法.【答案】216【例4】小丸子有许多套服装,帽子的数量为5顶、上衣有10件,裤子有8条,还有皮鞋6双,每次出行要从几种服装中各取一个搭配.问:共可组成多少种不同的搭配(帽子可以选择戴与不戴)?【考点】简单乘法原理【难度】2星【题型】解答【解析】小丸子搭配服装分四步.第一步选帽子,由于不戴帽子可以看作戴了顶空帽子,所以有516+=种选法;第二步选上衣,有10种选法;第三步选裤子,有8种选法;第四步选皮鞋,有6种选法.根据乘法原理,四种服装中各取一个搭配.一共有5110862880()种选法,所以一共可以组成2880+⨯⨯⨯=种不同搭配.【答案】2880【例5】已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有()个。

(A)9 (B)8 (C)7 (D)6【考点】简单乘法原理【难度】3星【题型】选择【关键词】华杯赛,初赛,第4题【解析】两个眼睛可以去掉也可以不去掉有2种选择,同理嘴和脚也是各有两种选择,所以共有222=8⨯⨯种选择,但是题目说的新图型,所以要去掉题目已给的形式,共有81=7-种,所以答案是:C【答案】C【例6】从四年级六个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?【考点】简单乘法原理【难度】2星【题型】解答【解析】第一步选出学习先进集体共有6种方法,第二步从剩下班级中选出体育先进集体共有5种方法,第三步选出卫生先进集体只剩有4种评选方法,根据乘法原理,共有6×5×4=120种评选方法.【答案】120【巩固】奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。

如果在盒子中从左向右放5个不同的“福娃”,那么,有________种不同的放法。

相关文档
最新文档