最新皮肤组织工程生物材料研究进展

最新皮肤组织工程生物材料研究进展
最新皮肤组织工程生物材料研究进展

皮肤组织工程生物材料研究进展

摘要:现在,越来越多的生物材料涌现出来,并且应用到了很多领域,它给我们带来了很多便利,也让我们能够拥有更健康的身体。皮肤组织工程生物材料的发展是其中一个正在高速发展的方面,其中发展最快的就是人造皮肤工程了。

关键词:皮肤组织工程生物材料人造皮肤支架材料种子细胞

生长因子

一、皮肤

(一)、结构

皮肤是人体最大的器官,由位于表层的表皮和位于深层的真皮组成,借皮下组织与深部的结构相连构成一个完整的屏障结构,一些部位有毛发、皮脂腺、汗腺和指甲等表皮衍生的皮肤附属器。此外,皮肤中还有丰富的血管、淋巴管,肌肉和神经。它是人体面积最大的器官,是人体与外部环境相接触的屏障,具有排泄、感觉、防止水分蒸发,调节体温,免疫等重要功能。

(二)、皮肤组织工程发展之因

皮肤对人体的重要性不言而喻,然而在现实生活中,常会因为烧伤、创伤等原因造成皮肤的缺损。任何直径大于4cm的全层皮肤缺损,人体将无法通过自身来完全愈合。在这些情况下,就需要一种合适的创面修复材料来促进伤口的愈合。组织工程皮肤在临床上已经使用了25年,为大面积皮肤损伤患者的康复带来了诸多益处,可以从根本上解决皮肤修复问题,因而具有良好的发展前景。

二、皮肤组织工程

目前最成功的的组织工程产品是人工皮肤,并且已经商业化,但现在的人工皮肤并不具备完整的皮肤结构和功能,没有达到人工重建皮肤的目的。皮肤组织工程的原理是将种子细胞与适当的支架材料相结合,构建皮肤替代物,然后移植于创面,从而达到修复皮肤的目的。

(一)、种子细胞

增加皮肤附属器,提高人工皮肤的完整性,提高毛细血管和神经末梢的长入速度等是今后皮肤组织工程研究的重点。Colin A B Ja ho da发现真皮鞘细胞在正常情况下除了具有生长毛发的作用,在真皮受损后还能被激发出参与创面修复的潜能,认为这对提高创面修复愈合质量与减轻疤痕具有重要意义。

随着细胞生物学,组织工程学的快速发展,人们逐渐认识到表皮干细胞在皮肤形成过程中所起的重要作用,皮肤的多层表皮结构通常是由表皮干细胞再生而来,因此,表皮干细胞就是解决这一问题的关键。理论上,完全可以利用表皮干细胞构建出新型的,具有完整的表皮、真皮和皮肤附属器的组织工程皮肤。各国在皮肤干细胞上面的研究不断取得突破。

1、Chris tell Cora u x在含有骨形态形成蛋白和抗坏血酸盐的胶原膜细胞外基质中培养鼠胚胎干细胞,发现在角质细胞层下有系统形成的成纤维胞层,并且与正常的胚胎皮肤具有相似的结构形态,这个实验说明能利用胚胎干细胞进行体外重建全层皮肤。

2、最近美国加州大学的研究人员发现老鼠的皮肤底层的干细胞含量与骨髓中的含量相当,这些干细胞在组织工程皮肤的研究中有诸多潜在的可能性。旧金山V A医学中心的研究员成功的在老鼠的皮肤细胞中观察到干细胞存在的现象,目前他们正试图把这个存在比例相当低的干细胞纯化出来,希望能发展出治疗伤烫皮肤移植病人的新方法。相信不久的将来,皮肤干细胞技术在人工皮肤上

的应用必然取得重大突破。

(二)、支架材料

支架材料不仅为种植细胞提供生长、迁移、增殖和分化的环境, 还决定着移植后皮肤替代物能否与机体很好的适应, 因此支架材料在皮肤组织工程的构建过程起十分重要的作用。目前支架材料主要两大类, 一类是人工合成材料, 另一类是天然生物材料。与人工合成材料相比,天然材料具有无法比拟的优点: 一方面, 天然材料直接取自生物体内, 有良好的生物相容性和生物可降解性, 且降解产物无毒副作用; 另一方面, 天然生物材料本身就具有相同或类似于细胞外基质的结构, 可促进细胞黏附、增殖和分化。

1、胶原类天然材料

胶原蛋白又称胶原 , 是动物体内含量最丰富的蛋白质, 广泛存在于脊椎动物的结缔组织、皮肤和肌腱中。胶原本身包含的细胞黏附信号肽序列, 可以介导细胞特定的识别, 有利于细胞的黏附和生长。胶原抗原性低, 降解产物不会引起不良反应, 已成为应用最广泛的天然生物材料, 胶原应用于皮肤组织工程具有独特的优势。在皮肤组织工程的研究中, 胶原类支架主要以两种形式构建: 一为胶原凝胶支架, 一为胶原海绵支架。

(1)Ehrmamm 和Gey 将真皮成纤维细胞与胶原溶液、酸性溶液、培养基等混合, 首先构建出胶原凝胶真皮替代物。在此基础上,Bell 在含有成纤维细胞的凝胶上滴加表皮细胞, 构建全层皮肤替代物, 并将该皮肤替代物成功移植到创口, 封闭创面。

(2)胶原海绵支架中大量孔隙, 有利于细胞的长入和创面组织的浸润。纯胶原支架易降解, 过早失去应有的支撑作用, 故人们将胶原与其他天然材料复合使用以增加力学性能。在20 世纪80 年代早期, 有学者率先应用牛Ⅰ型胶原与硫酸软骨素制备了多孔的海绵支架, 表面涂有机硅胶, 构建人工皮肤替代物。随后Boyce 等简化了制备方法, 提高了机械强度, 并使支架的形状、大小、厚度可调。(3)Park以胶原与透明质酸交联, 构建collage HA 海绵支架, 并将抗生素及细胞生长因子加载于支架上, 以期促进伤口的愈合。实验表明: 含有妥布霉素的Collagen HA 在体外保持抗生素活性96h 以上。而体内实验表明,含有妥布霉素并加载细胞生长因子的Collagen HA 支架, 可分别在移植7-14d 显著提高创口的愈合速度。

2、纤维蛋白类天然材料

(1)纤维蛋白原是一类水溶性血浆糖蛋白, 在凝血酶的作用下, 生成纤维蛋白, 经Ⅷ因子催化聚合, 纤维蛋白分子交联聚合形成纤维蛋白凝胶。在皮肤组织工程的研究中, 胶原应用支架的构建主要是得益于胶原为真皮的主要成分, 具有天然的抗张性。与胶原应用原理不同, FG 参与创面愈合过程, 通过释放血小板衍生生长因子和转化生长因子Ⅷ, 促进表皮的增生, 组织的修复。

(2)FG 来源于血液制品的冷凝沉淀, 造价昂贵, 制备过程繁琐, 这在一定程度上限制了其应用范围。Llames 应用血浆凝胶为支架自体细胞构建组织工程皮肤, 并应用于临床治疗大面积烧伤患者, 取得良好效果。血浆凝胶制备的原理是在钙离子的作用下, 血浆中的纤维蛋白原聚合成纤维蛋白, 从而形成凝胶, 为种子细胞提供三维生长环境。与PG 相比较, 血浆材料造价低、方法简便, 全血浆具有更多的活性因子, 故血浆材料有望在皮肤组织工程的研究中发挥广阔的应用空间。

3、壳聚糖类天然材料

壳聚糖及其衍生物是一类天然聚阳离子多糖,自然界分布广, 结构类似硫酸软骨素。由于壳聚糖降解生成的寡糖能够促进表皮细胞和血管内皮细胞的增殖, 加快创面愈合, 体内移植无炎症和变态反应, 在皮肤组织工程中显示出广泛的应用前景。

(1)用N甲酰化壳聚糖制成的人工皮肤透气性好, 渗透性好, 对创面治疗方

便而有效。

(2)杨军等利用患者自体正常皮肤培养、扩增表皮细胞, 接种于壳聚糖一明胶膜, 构建成表皮细胞膜片; 断层削除患者增殖性瘢痕, 将膜片移植于创面, 适度加压, 术后10d, 30d, 90d 行大体观察、组织学检查、术后随访, 结果显示:创面愈合时间为(16. 2 ±15) d, 移植膜片存活良好, 结构较完整, 90d 随访, 无明显瘢痕增生, 疗效肯定。

4、除了上述中的天然支架材料,还有合成材料。

(1)、目前,合成类支架材料中主要是聚交酯、聚内酯、聚羟基烷酸酯、聚碳酸酯类等聚酯类支架材料,其中聚乳酸、聚L乳酸、聚羟基乙酸、乳酸和乙醇酸的共聚物是研究的热点,并已被美国FDA批准用于人工皮肤中。国内王新文等人在多孔聚乳酸海绵中接种皮肤成纤维细胞构建组织工程真皮,观察细胞在材料上的生长、增殖及分泌情况,实验证明聚乳酸能支持皮肤成纤维细胞正常的生理代谢和分泌。

(2)、王身国等人通过分子设计,采用一定比例的乳酸与乙交酯、已内酯进行无规或嵌段共聚,合成了聚乙交酯-丙交酯、聚丙交酯-已内酯-聚乙二醇等聚酯类支架材料,经本体和表面改性后其细胞亲和性明显提高。

(三)、生长因子

从目前国内外实验研究和临床应用的报道来看,许多工作仍是初步的,美国FDA也仅仅是将表皮细胞生长因子和成纤维细胞生长因子批准进入Ⅱ期临床试用。伍津津等人的实验表明表皮细胞生长因子能显著促进毛乳头细胞、真皮鞘细胞和成纤维细胞的生长。龙剑虹等人研究了重组人表皮细胞生长因子对植皮创面成活的影响。

三、总之,皮肤组织工程生物材料的发展还是相当快的,相信它能给我们带来更美好的生活,让我们共同为了这个目标而努力吧!

文献:高分子材料科学与工程美国李效军陈立功姚康德

组织工程相关生物材料北京姚康德尹玉姬

生物医学材料学天津徐国风顺汉卿

新型双层皮肤组织工程支架构建厦门任磊张其清

纤维蛋白凝胶立体培养诱导血管样结构的形成

国内徐迎新吴仕和阎锡蕴

组织工程化表皮片的构建及其在增殖性疤痕治疗中的应用

上海杨军杨光辉刘伟

组织工程学原理与技术西安金岩

复合生物材料的研究进展

综 述复合生物材料的研究进展 郝建原3,邓先模 (中国科学院成都有机化学研究所,成都 610041) 摘要:从力学性能的改善和降解速率的可调性等角度,总结了复合生物材料与单一组分的材料 相比,在生物医用领域应用中所表现出的综合使用性能的优越性。综述了复合生物材料,特别是用 于骨修复的各类有机/无机复合材料近年来的研究进展状况。提出将与人骨中磷灰石微晶类似的 羟基磷灰石纳米粒子与可降解聚酯材料进行复合,能够得到具有优越骨诱导性能并且能够降解的 新型骨修复材料。这方面的研究代表了有机/无机复合生物材料领域新的发展方向。 关键词:复合生物材料;骨修复材料;羟基磷灰石纳米粒子 生物材料也称为生物医学材料,是指以医疗为目的,用于与组织接触以形成功能的无生命的材料[1]。生物医学材料发展和应用的高级阶段就是其在组织工程中的应用,通过构建具有一定活性的基体材料,制备具有生物相容性的器件或器官,实现对人体损害或缺损组织的修复或替代[2]。 由于人体功能的复杂性,随着生物材料在人体具体应用形式和场合的不同,对材料各项性能指标的要求也不尽相同;另外,即便是某一特定应用场合,对生物材料的性能要求也不是单一的,而是多样性能的综合平衡。例如人体组织的修补材料,理想的组织修补材料随着人体新组织的长出,应逐渐被人体吸收,直至完全被新组织替代。在这一替代过程中,修复材料的降解速度要适应于机体对材料机械力学性能的要求。对于缺损的硬组织来说,修补材料要承受一定的载荷,因此必须有一定的起始强度和韧性,而且其强度随降解过程的衰减要与新组织的形成速度相匹配。而对于受到损害的软组织来说,修复材料也需在一定的降解周期内保持适当的强度,从而可以将生物力学的刺激传递给活细胞,引导新组织在基体材料内定向生长[3]。然而在很多应用场合下,单一组分或单一结构的材料都无法很好满足机体对材料性能多样性的要求。这时就需要综合多种组分或结构的性能优势,形成所谓的复合生物材料,更好地实现对人体受损组织的修复作用。 1 复合生物材料的性能优势 与单一组分或结构的生物材料相比,复合生物材料的性能具有可调性。通过选择合适的复合组分或结构,改变组分之间的配比,可以得到降解特性和机械力学性能均可调,并相互匹配以适应实际应用场合的新材料。复合生物材料的性能优势主要表现在以下两个方面。 111 降解模式和降解速率的可调性 人体内除一些功能复杂的脏器器官发生损害或有大面积的组织发生创伤需要永久性替换外, 作者简介:郝建原(1972-),男,山西省忻州市人。1994年毕业于合肥工业大学化学工程系。翌年考入中科院成都有机化学研究所,从事生物医用材料方面的研究工作,并分别于1998年和2001年获得高分子化学与物理专业理学硕士学位,以及有机化学专业博士学位。曾参加过多项国家自然科学基金项目和国家“863”高科技项目的研究,在国际“SCI”收录刊物上发表论文近10篇; 3通讯联系人。

生物工程专业分析 复习资料

第一章:分析概论 1.分析的分类 (1)按生物工程分析的对象及检测项目的性质,可分为: A.感官、理化指标的测定 B.结构分析及序列分析 C.活体、生物活性及功能成分的检测。 D.实时分析及过程参数检测 ⑵. 按照分析方法的技术原理可将其内容划分为一下几个主要方面 ①感官检验法 ②物理检验法 ③化学检验法 ④物理化学检验法 ⑤生物检验法 2.分析中的常识 常量分析——样品中组分> 1 % 微量分析——样品中组分= 0.1 %~1 % 痕量分析——样品中组分< 0.1 % 超微量分析——样品中组分 PPM ——parts per million ( mg / kg )或( mg / L ) 10-6 PPB —— parts per billion 10-9 PPT —— parts per trillion 10-12 3.分析中的一般规定 水为蒸馏水、去离子水 常用带刻度的玻璃仪器是在20℃条件下标注的。 分样筛——用来筛分体积大小不同的固体颗粒的筛子。 分子筛——具有均一微孔结构而能将不同大小分子分离的固体吸附剂。 “称取”——称至0.1g 。 “精密称取”——必须按所列数值称取,精确至 0.0001g 。 “精密称取约”——必须精确至0.0001g ,可接近所列数值,不超过所列数值的10% 。 分析中所用的试剂,除特别标明的外均为分析纯溶液;未指明用何种溶剂配制时均指水溶液。盐酸、硫酸、硝酸、氨水等未指明具体浓度时,均指市售试剂规格的浓度 液体的“滴”系指自滴定管留下的一滴的量,在20℃时20滴相当于1.0ml 吸取是指用移液管或吸量管取液体物质的操作;量取是指用量筒或量杯取液体的操作,其精度要求均用数值的有效位数表示 空白试验是化学分析中作比较常用的分析方法,当进行某一试样分析时,同时做一空白试验(即操作条件和所用试剂均相同,但无试样存在),以校正有关因素对分析结果的影响 恒重是指在规定的条件下,连续两次干燥或灼烧后的质量之差不超过规定的范围(一般在0.2~0.5mg 以下) 4.不同分析方法结果差异性的检验 (一)t 检验法 检验样本均值与总体均值是否有差异时,使用: S 为标准差,x 为样本均值,μ为总体均值 样本计算值的统计量大于t 分布表中相应显著性水平α和相应自由度f 下的临界值,则表明被检验的均值有显著性差异,反之差异不显著。 (二)F 检验法 计算两组数据的方差之比来检验两组数据是否存在显著性差异。 当计算所得F 值大于F 分布表中相应显著性水平α和自由度f1、f2下的临界值,则两组方差之间有显著性差异,反之无。 n s x t /μ-=

细胞培养法评价生物材料生物相容性研究进展_梁卫东

生物医学工程学杂志  1999∶16(1)∶86~90 J Biomed Eng 细胞培养法评价生物材料生物相容性研究进展 梁卫东1 综述 石应康 审校 (华西医科大学附属第一医院胸外科,成都 610041) 内容摘要 细胞培养法检测材料生物相容性是一种快速、简便、重复性好又价廉的方法,在材料生物相容性评价中起着越来越重要的作用。由于新材料不断涌现、材料植入体内的部位及使用目的日趋繁杂、材料毒性作用的强弱以及材料与机体反应的复杂性等因素决定了细胞毒性试验中实验方法及实验细胞的多样性。根据生物材料本身的理化特性、植入体内的部位及使用目的选择适当的实验方法和实验细胞至关重要。以往对材料生物相容性的评价往往着眼于细胞的形态与数量的变化,近几年来研究材料对细胞生长、附着、增殖及代谢方面影响的报道日趋增多,并提出了以有活力的细胞数和细胞生长作为材料生物相容性评价标准的观点。通过结合免疫、化学、放射及影像学等多学科的技术发展,使人们进一步深入了解细胞结构和功能的变化关系,进而阐明材料对细胞的作用机制,是今后细胞培养法评价材料生物相容性的发展方向。 关键词 生物材料 细胞培养 相容性 毒性实验 The Research of Evaluation the Compatibility of Biotic Material in Cell-cultureing Method Liang W eidong Shi Yingkang (Department of Thoracocard iac Surgery,The First University Hospital,West Ch ina University of Med ical Science,Cheng du 610041) Abstract It is quick co nv ienent g o od-r epea ting and cheap tha t ex amining th e bio tic ma teria l's co m-pa tibility thro ug h cell-culturing me tho d,a nd it is mo re and mor e impo r ta nt in ev alua ting the co mpa tibil-ity of bio tic material.The new ma teria l appea ring co ntinously complica ting o f th e par t and aim ma teria l be planted in the intensity of mate rial's toxic effec t the r eactio n's complica tio n o f ma terial and bio tic body,all o f these decide the va riety of ex periment method a nd cells in cell to xicity ex periment.It is ve ry impo r tant that choices the righ t ex periment method and cells a cco rding to the ma terial's charac ter the pa rt and aim the ma terial be pla nted in.The eva luatio n o f biotic ma teria l's co mpa tibility stressed o n the changing o f cell's fo rm a nd qua ntity befo r e.In recent y ears,mo re a nd mo r e repo rts a ppear about mate rial influences the g r ow th.adhesio n pro liferation and metabolizing o f cell,a nd pr esents the point that the eva luation standar d o f bio tic mate rial's co mpa tibility sho uld be set acco rding to the activ e cell's quantity a nd their g r ow https://www.360docs.net/doc/d5321122.html, bining many subject's technological dev elo pment,such a s immuno lo gy, ch emistr y,radia tio n and shado wg raphy,th or oughly inquires the changing relatio n o f cell's structure and funtio n,further ly clarifes the material's effect on cell.It is th e dev eloping dir ec tion in the future that e-v aluates the bio tic material's co mpa tibility in cell-culturing m eth od. Key words B io tic mate rial Cell-culturing Compatibility T oxicity ex pe riment 1现在攀钢职工总医院胸外科,攀枝花 617023

组织工程的现在与未来

组织工程的现在与未来 摘要:随着各项高新技术的发展,组织工程的研究也迅速发展起来,这使得组织 工程的应用范围也越来越广。本文回顾了组织工程的发展历史,重点介绍了各器 官组织工程的发展现状,并介绍了我国的组织工程的研究现状,并对组织工程的 发展做出了展望。 关键词:组织工程;种子细胞:;器官组织工程 Abstract:With the development of the high and new technology, tissue engineering research has developed rapidly, which makes the application of tissue engineering is becoming more and more widely.This paper reviews the development history of tissue engineering, this paper introduces the present development of organ tissue engineering, and introduces the present situation of the study on the tissue engineering in China, and made a prospect on the development of tissue engineering. Key words: Tissue engineering;Seed cells;Organ tissue engineering 1.引言:组织工程学是在细胞生物学与生物材料研究交叉与融合的基础上,逐步建立并发展起来的学科。它标志着医学将走出目前组织移植和器官移植的范畴,步入制造组织和器官的崭新时代。 20世纪80年代初,随着细胞生物学研究的发展、细胞体外培养技术的逐步完善,人们进行了大量的通过单纯细胞移植方法治疗组织或器官缺损的探索,远期临床观察证明单纯细胞移植不能形成理想的组织与器官。另一方面,在生物活性材料领域的大量研究与实际应用也证明,仅仅通过改善材料本身的性状,应用不具备生物学活性的材料也不能达到理想的组织再生修复效果。因此,如何从根本上解决组织、器官缺失和功能障碍问题,一直是生命科学积极努力探索的重大课题。 2.组织工程的发展历史 组织工程的创建和发展不过是最近30余年的事,早在1977年Green曾试图将分离的软骨细胞移植于脱钙的骨支架中,以复制软骨,但以失败告终[1]。1989年Wakitain将软骨细胞移植于胶质支架中进行移植,可获得一定数量的细胞繁殖,并维持它在培养基中的显形(Phenotype),同时避免了细胞间变[2]。但得到有限的成功。直到20世纪80年代,组织工程开始有了新进展。先是美国在1987年由国家科学基金会资助建立了一系列实验室;随后,日本、英国亦相继展开研究。目前美国已有相当数量的研究机构、大学以及企业都参与组织工程课题的研

生物材料与组织工程题库

一、对与错 1、PLLA和PCL通常比其共聚物有着更高的结晶度。 2、聚酯类生物材料的可降解性由分子链中碳酸含量而定,因此说PCL的降解速率快于 PLA。 3、In vitro组织再生就是让组织在体内再生。 4、组织再生需要有一个多孔支架,此支架可以支持细胞并使之增值成组织,许多材料像明 胶和PLA都被用于组织再生支架材料。 5、合成聚合物通常比天然材料有更强的免疫反应。 6、TCP被认为是一种生物活性和可降解性生物材料。 7、合成材料通常比天然材料有更好的力学性能 8、水凝胶是交联聚合物在分子间相互作用力与溶胀力之间的平衡状态。 9、水接触角通常被用于测定材料的亲水性。 10、材料的亲水性随着接触角的降低而下降。 11、自由基聚合就是加成聚合反应。 12、In vivo 组织再生就是让组织在体内再生。 13、天然材料在体内主要靠酶降解。 14、生物玻璃可以与接触组织产生牢固的结合界面。 二、名词解释 1、什么是生物材料?给出定义并举例说明。 2、什么是生物相容性?如何评价材料的生物相容性? 3、什么是生物玻璃? 4、什么是生物降解材料?什么是非生物降解材料?举例说明。 5、什么是复合材料?列出可能的复合材料制备医用制品或器材的方法。 6、什么是组织工程?有哪三要素? 7、描述静电纺纳米纤维的原理,及对纺丝液的性能要求。 8、描述用于提高生物相容性的表面改性的方法。 9、什么是医用代用品?举例出你所知道的例子。

10、列出甲壳素的医用应用并说明其特有的生物学活性。 11、什么是药物缓释?为什么要进行药物缓释? 12、什么是天然生物材料?举出几个种类。 13、什么是合成生物材料?有几种合成方法? 三、论述题 1、下列有关天然生物材料的描述是对还是错? ①大多数天然材料都来自于动物体和植物体。 ②多数是由水解而降解。 ③与合成聚合物相比,用于医用材料的成型方法较少。 ④生物相容性较好。 ⑤总是被看成是用于体内移植的安全材料。 2、陶瓷类生物材料可以以不同的方式来应用,即生物惰性、生物活性及可吸收降解性,讨 论HA、TCP、Al2O3 和Na2O-CaO-P2O5-SiO2 的生物可降解性及生物活性。 3、探讨PLA作为手性聚合物的立构规整性,有哪几种立构规整性产物,并对其结构及性能 关系进行描述。 4、描述胶原蛋白的化学结构和物理结构,并探讨导致其物理结构变化的条件是什么?其变 性产物是什么? 5、描述接触角测定材料的亲水性方法。并给出接触角与亲水性之间的关系。 6.组织工程支架的特点是什么?列出理想支架制备的可行性方法。 7.有哪几种表面改性的方法?它们的原理是什么? 8.描述将肝素固定在生物材料表面的方法。

组织工程相关纳米生物材料

第11章组织工程相关纳米生物材料 组织工程学(Tissue Engineering)一门多学科交叉的边缘学科,其研究涉及到细胞生物学、分子生物学、发育生物学、免疫学、临床医学、生物材料学、计算机科学等多个相关学科。它是继细胞生物学和分子生物学之后,生命科学发展史上又一个新的里程碑,标志着医学将走出器官移植的范畴,步入制造组织和器官的新时代,人们试图通过组织工程学的研究,真正建造出替代人每一种组织甚至器官功能的生物性替代物。它的提出、建立和发展是对医学领域组织、器官缺损和功能障碍传统治疗方法和模式的一次革命,孕育着巨大的科学价值和广阔的临床应用前景,是21世纪生命科学研究领域的焦点之一,必将产生巨大的社会和经济效益【1-2】。 目前国内外对组织工程学研究极为重视,组织工程相关产品正逐步形成高附加值的高科技产业,有些产品已开始进入临床。如人工皮肤TransCyte、Apligraf、人工软骨Carticel TM等。其它领域如骨、膀胱、血管、角膜、神经、输尿管、肝、胰、心脏瓣膜、血细胞、食管、肠管等的研究也正处于积极的实验阶段。 但是,目前组织工程研究尚存在许多基本问题亟待解决,主要表现在:①生命现象的本质及活动规律,即各种细胞、组织和器官的基本结构及其与功能的关系;②如何调控种子细胞的特异性粘附、增殖、定向分化以使其获得良好的生物学活性,充分发挥其特定的功能;③生长因子等组织诱导因子的大规模制备及持续控制释放;④具有良好表面相容性、结构相容性、适当生物降解性和特定生物活性的仿生“智能”基质材料的研制,以引发人们所需的特异性、可控性生物反应等等【3-4】。 纳米科技给上述问题的解决带来了新的发展机遇。和它在生物医用材料领域中的意义与应用前景一样,纳米科技在组织工程学各领域的研究中也有重大的科学意义及广阔的应用前景,人们可以将纳米科技在其它领域的研究成果广泛地应用于组织工程学各相关领域【5-8】。组织工程学和纳米科技的有机结合,标志着组织工程学研究进入一个崭新的时代——纳米组织工程学时代。纳米组织工程学(Nano tissue engineering)就是将纳米科学与技术和组织工程学有机结合,从原子、分子水平认识细胞和组织的基本结构及其与功能的关系,阐明生命现象的本质及活动规律,并研制具有特定功能的仿生纳米装置和材料,为更好地恢复、维持或改善病损组织的功能奠定基础【1-4】。 纳米组织工程学的首要任务是利用纳米科学的原理和技术,从原子、分子水平进一步深入认识真核细胞基因组的结构及功能调控、基因产物如何构建成细胞结构、如何调节和行使细胞功能等,从而认识各种细胞、组织和器官的基本结构及其与功能的关系,阐明生命现象的本质及活动规律。然后从科学认识发展到工程技术,设计和制造出相应的纳米器件、纳米药物、纳米仿生“智能”基质材料,

我国生物医用材料现状

我国生物医用材料现状 我国是生物医用材料和器械的需求大国,医疗保健服务人口基数大,医疗费用近十年平均增长率近20%,远远高于同期国民经济增长率,已逐渐成为社会和公民的沉重负担。因此,利用现代高科技,加速生物材料及制品的开发,解除千百万患者的痛苦,提高生活及健康水平,无疑是非常有意义的,也是社会发展的呼唤。生物材料及制品投入产出比高,经济效益十分显著,易于形成科技经济一体化发展,并可带动相关产业的改造。加速生物材料科技经济一体化发展,对于我国参与世界经济发展竞争具有重要意义。 但我国生物医用材料产业基础薄弱,生物医用材料及器械产品单一,技术落后,科研与产业脱节,70-80%要依靠进口。目前,植入体内的技术含量高的生物医用材料产品约80%为进口产品。常用的生物医用材料产品约20%为进口产品,2002年进口产品约100亿元人民币,此外还有大量的医用级原材料大多需要进口。同时,我国材料加工工艺差距较大,基础研究水平不高,这些都直接制约了新技术和新材料的开发和应用,加之资金及合作单位等原因造成生物医用材料科研成果难于产业化。在我国,药品和医疗器械产值的比例约为10:2.5,远远落后于国际上的比例(10:7);而我国在世界生物材料及制品市场中所占份额不足3%。这意味着我国生物材料产业今后将直接面临着世界市场的竞争、限制和压力。 近年来随着国内高新技术发展,医疗器械产业的面貌变化很大。在2002年材料类医疗器械产值约300亿人民币,目前每年以10-15%的速度递增,预计到2010年可达600亿人民币,2020年可达1500亿元人民币。随着我国经济的发展,特别是广大农村和西部地区的生活水平提高,对生物医用材料需求可能会大于这些预测产值。十几亿人口医疗保健需求的巨大压力与我国生物材料、医疗器械及制药工业的薄弱基础形成了尖锐矛盾。这对于我国的经济、社会发展来说,既是难得的机遇.又是一个巨大的挑战。 目前,我国已取得了一批具有自主知识产权的技术项目,并逐步形成了生物医用材料的研发机构和团队。涉及到生物医用材料的学会及协会组织有中国生物医学工程学会生物医用材料分会、中国人工器官学会、北京生物医学工程学会、上海市生物医学工程学会生物医用材料专业委员会、四川省生物医学工程学会、重庆市生物医学工程学会、中国生物复合材料学会和中国生物化学与分子生物学会等。目前,国家已经建立与生物医用材料相关的各类国家重点实验室及研究中心十余家(见表1)。中国科学院系统的金属所、硅酸盐所、化学所、大连化物所、长春应化所和成都有机所都有专门从事生物医用材料研发的团队和学术带头人;同时在北京、天津,上海、广州、武汉、成都、西安也已逐步形成了基于各地区主要大学和研究机构的生物医用材料研发团队和学术带头人。已取得具有自主知识产权的技术项目有:羟基磷灰石涂层技术、聚乳酸及可吸收骨固定和修复材料、胶原和羟基磷灰石复合骨修复材料、自固化磷酸钙材料、介入支架材料、纳米类骨磷灰石晶体与聚酰胺仿生复合生物活性材料、氧化钛和氮化钛涂层技术、免疫隔离微囊材料、壳聚糖防粘连材料、海藻酸钠血管栓塞材料。 表1 国内主要研究机构及重点研究方向 机构名称重点研究方向

天然组织工程皮肤支架材料的分类及其免疫原性研究现状 (1)

天然组织工程皮肤支架材料的分类及其免疫原性研究现状 郑必祥彭代智陈博左海斌周灵周新刘敬基金项目:国家高技术研究发展计划(863计划,2006AA02A121),国家重点基础研究发展计划(973计划,2005CB522605) 作者单位:400038 重庆,第三军医大学西南医院全军烧伤研究所,创伤、烧伤与复合伤国家重点实验室 通讯作者:彭代智,Email: dzpeng@https://www.360docs.net/doc/d5321122.html, 组织工程皮肤是组织工程研究最为成熟的一个领域,其核心内容是构建一种支持细胞生长的三维支架,与角质形成细胞和/或成纤维细胞进行体外复合培养,形成可用于创面覆盖与修复的皮肤等同物[1]。其中支架材料为种子细胞提供了黏附、迁移、增生和分化的空间环境,在组织工程皮肤的构建中起着重要作用。组织工程皮肤支架材料包括人工合成组织工程皮肤支架材料(简称人工合成支架材料)和天然组织工程皮肤支架材料(简称天然支架材料)两大类。人工合成支架材料主要包括聚乳酸、聚乙醇酸、聚原酸酯、聚己内酯、聚氰基丙烯酸烷基酯及其共聚物等。人工合成支架材料始终无法模拟天然真皮的三维空间结构,其成分为人工合成,亲水性不够理想,缺乏细胞识别信号,与细胞间缺乏生物性相互作用,对细胞黏附力较弱[2]。而天然支架材料来源于天然组织,来源丰富,制作较为简单,造价低廉,且在三维结构、组织亲和性、机械性能及生物降解性等方面显著优于人工合成支架材料,从目前研究来看,是组织工程皮肤支架材料的研究热点[3]。但天然支架材料因来源和所含成分不同,存在着不同程度的免疫原性,限制了其临床的广泛应用。目前这方面的研究较多,因此,有必要结合天然支架材料的分类来概括其免疫原性研究现状。 一、天然支架材料的分类 按加工处理天然组织的方法分类,天然支架材料大致可以分为脱细胞支架材料和基质提取成分支架材料两大类。脱细胞支架材料是通过各种物理和化学的方法去除天然组织中的细胞成分,同时保留了原有组织的三维支架结构和主要细胞外基质成分的支架材料。目前应用较多的有脱细胞真皮基质(acellular dermal matrix, ADM)、脱细胞小肠黏膜下层(small intestinal submucosa, SIS)、脱细胞羊膜基质等。基质提取成分支架材料主要指通过从天然组织中提取某些成分,再构建出具有三维空间结构的支架材料。目前提取的天然细胞外基质成分主要有胶原类、壳聚糖类、透明质酸类等,由于单一成分合成的支架均有非常明显的缺点,因此,这类支架材料多以一种

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

目前人工韧带与组织工程韧带的研究现状

目前人工韧带与组织工程韧带的研究现 状 (作者:___________单位: ___________邮编: ___________) 【摘要】交叉韧带损伤后,由于其愈合能力较差,因此长期以来,对重建交叉韧带使用材料的研究从未停止过。本文主要对细胞因子在组织工程学韧带中的应用、基因转染技术在组织工程韧带研究中的应用、组织工程韧带附丽的基础研究,骨和组织工程韧带之间的愈合关系作了较详细介绍。另外,对人工合成韧带、胶原支架韧带也作了概述。 【关键词】人工韧带;组织工程韧带 交叉韧带损伤后愈合能力极差,目前临床重建交叉韧带使用的材料包括自体移植物、异体移植物和人工合成材料。自体和异体移植物重建交叉韧带依然是目前的主流选择,常见的自体髌腱或半腱肌移植具有较高的强度,在附丽位点能够获得骨骨或腱骨愈合。但对自体供区会继发膝前疼痛、髌腱炎、髌下脂肪垫挛缩、相应部位髌骨骨折、绳肌缺失等并发症。异体髌腱、跟腱、阔筋膜材料存在来源少、免疫排斥反应、生物长入延迟甚至传播疾病的危险[1~2]。因此,长期以

来,人工韧带的研究从未停止。而近年来,组织工程技术重建交叉韧带的实验也成了新的研究热点。 1 人工合成韧带人工韧带的研究与临床应用 经历了漫长的曲折过程。人工韧带具有无供区并发症、使用方便、早期康复、无疾病传播危险等许多明显优势。理想的材料,应该具备持续高强度、耐磨损、无组织反应等基本特性,并具有正常韧带的功能,同时允许有生理排列、再生新韧带倾向的组织逐渐长入。然而,完全符合上述条件的人工韧带尚未面世。自上世纪60年代,人工韧带已经进入临床应用。70年代后的20年,有多种类型的人工韧带被植入体内。其中有许多著名的产品,包括Gore Tex,Leeds Keio,Kennedy等。在材料选择上,完全合成的碳纤维韧带,因在关节和淋巴内释放磨损颗粒,引起显著的炎性反应。此后,以碳支架结合胶原或聚酯、聚四氟乙烯纤维束合成的聚合物,临床成功率均不高[3]。涤纶和聚丙烯等带孔的纤维织物,理论上允许周围组织迁移长入,再生具有功能的韧带,同样因不可吸收而引发显著的慢性炎症反应,引起移植物失败和断裂。在纤维织物上种植成纤维细胞后虽然可再植入体内,但减少炎症反应的作用有限。对这些合成的永久支架组织学研究显示类似瘢痕和肉芽肿。不是正常韧带的有序胶原纤维。 对早期应用人工韧带的随访研究并未显示优良结果,主要问题是早期的组织反应和晚期的磨损、松弛与断裂。因此,在经历了20年的发展后,人工韧带的应用趋于沉寂。然而,近年来LARS(ligament advanced reinforcement system)聚酯韧带的近期优良结果受到了关

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

生物医用材料研究进展

医用羟基磷灰石的研究进展 摘要: 羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。 羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。 关键词:羟基磷灰石;特性;医用功能 前言: 生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。 生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。 纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位. 羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。 正文: 羟基磷灰石概念: 羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:

组织工程的研究现状

?组织工程? 组织工程的研究现状 张 晨3 张 东3 高景恒3 十九世纪和二十世纪中叶,生物学的两大发现是细胞和DNA的双螺旋结构,标志着细胞生物学和分子生物学的形成,它们是现代医学发展的两个重要里程碑。 近二十年来,在国际上兴起了一门由生物医学和工程学技术相结合的边缘学科,即生物医学工程学(B i om edical Engineering),它的基础研究涉及自然科学的各个领域,并随着自然科学各个学科的进步而取得令人瞩目的进展。目前,已着手进行人工合成和复制生命物质,并且日趋工程化,这正是现代医学区别于以往生物科学的显著特点,因此可望成为现代医学发展的第三个里程碑。 在人工复制的还原组织、器官的研究方面,一门新的学科正在产生,即组织工程(T issue Engineer2 ing)。它是应用生物学和工程学的原理,研究开发能够修复、维持或改善损伤组织功能的生物替代物的一门科学[1~3],方法是将体外培养的高浓度的功能相关的活细胞种植于天然的或人工合成的细胞外基质(extracelluar m atrix,EC M),然后将它们移植到动物体内,达到形成新的有功能的组织的目的[4~11]。 1 组织工程提出的历史背景 现代外科的发展已使人类替换病损组织的梦想成为现实。替换物包括异种、同种异体以及自体组织和人工合成物质,但这些替代物由于种种问题而不能满足临床需要;异种组织引起的相当快速的排斥反应;同种异体移植尽管在形态方面与自体移植相似,在术后早期可被宿主短时间接受,但排斥反应不可避免,且组织器官的来源有限;自体组织移植会造成供区损伤以及所能供给组织的局限性;人工合成物质植入后所引起的异物反应,继发感染及裸露等, 3 辽宁省人民医院整形外科(辽宁沈阳,110015)这些都迫使科学家们寻求新的、更为理想的组织替代物。 早在本世纪50年代,市场上可应用的营养素(nutrients)和酶可将组织离解为有功能的细胞成份,从而开始体外细胞培养的研究。细胞工程(Cellu2 lar Engineering)的诞生使大规模细胞培养成为可能。进入80年代以后,随着组织类型培养技术(h is2 to typ ic culture techniques)的普及,对体外细胞间的相互作用进行了研究,并预示了重建有功能的组织的到来[8]。 2 组织工程的研究现状 组织工程一经提出,引起了世界范围的关注。在美国,从1988年起,就由国家科学基金会(T he N a2 ti onal Science Foundati on),以研究基金和资助方式建立一系列实验室[5]。日本也发展相应的研究[2,4,12,13]。1989年在全美力学工程学会(T he Am erican Society of M echanical Engineers)的冬季年会上,日、美两国还就组织工程举行了专题讨论会。到目前为止,关于组织工程方面的研究主要包括下面三方面内容:①细胞外基质替代物的开发;②种子细胞性质的研究;③组织工程化组织(tissue engi2 neered tissue)对各种病损组织替代的研究。 2.1 细胞外基质替代物的研究 组织是由形态相似,功能相关的细胞和细胞间质即EC M所组成,EC M是细胞附着的基本框架和代谢场所,因此,它的形态和功能直接影响其所构成的组织的形态和功能,其替代物的研究也就成为组织工程的研究焦点之一。 2.1.1 人工合成的EC M替代物的研究 常用于组织工程的两种EC M替代物是聚乳酸(po lylatic acid,PLA)和聚羟基乙酸(po lyglyco lic acid, PGA),后者又称聚脂肪酸或聚乙二醇酸[5,7,9,14~17]。由于这两种聚合物(po lym er)在体内能够逐步分解

生物材料在组织工程学中发挥的作用

生物材料在组织工程学中发挥的作用 MD+DI 访问了DSM 生物医学公司(荷兰马斯特里赫特)研发及技术总监Marc Hendriks,请他谈谈对于生物材料的看法。这篇专题访谈共分四部分,在第一部分中,DSM 生物医学公司(荷兰马斯特里赫特)的Hendriks 探讨了生物材料在应对医疗领域未来需求方面的巨大潜力,并且思考了生物材料在今后几年中对组织工程学的重要性。Hendriks 还解释了何为“三代生物材料。” 作者: Brian Buntz 2011年12月27日 行业新闻, 生物材料 [View] MD+DI:您能否简要描述一下生物材料当前以及未来可能对组织工程学发挥的作用? Hendriks:组织工程和再生医学领域(TERM) 是最前沿的现代医学领域。外科手术将人体组织移换位置,但由于对新位置的排斥反应,已经产生了生物变化。采用可植入异物材料的技术与不良事件有关,如移位、植入物/组织界面感染、骨折以及随时间推移产生的迁移。个体之间的移植有严格限制,必须能获得足够的捐献组织和器官,但也会产生免疫问题,随着时间的推移可能产生慢性排斥反应和严重破坏。 TERM 包括新的功能性活体组织的制造——无论体外或体内(包括原位)——使用通常与母体或支架相关的生物活性提示(例如,细胞、生长因子、多核苷酸),引导组织发展。直至80年代中期,TERM 才被定义为一个领域。TERM 从几个相互关联、完善的学科,包括细胞和干细

胞生物学、生物化学、分子生物学中吸收了大量新知识,这些学科分别并共同增进了对于复杂活体系统的理解。同样,在材料科学、化学工程和生物工程取得的突破,使活体系统中可合理应用工程原理。TERM可以说属于生命科学材料科学领域。 自从定义了TERM原理,其广泛的医疗和社会经济价值被认可,TERM也已取得了巨大进展。然而,迄今为止,只有相对较少的TERM产品已获得监管部门批准,甚至更少有产品已取得任何意义上的市场渗透。在数以百万计的患者获得可能从中受益的TERM疗法之前,必须克服技术和经济上的发展障碍。 如上所述,实质上,没有专为组织工程和再生医学设计的材料。当致力于设计和开发适合再生医学的生物材料时,再生医学才有发展前景。 TERM可使用多种生物材料形式,可根据使用指示选用,重点关注手术过程或组织发展中的难题。我通常将TERM产品类别根据四个主要材料进行划分: 1、细胞传递生物材料。细胞治疗,即通过对选定、增殖和药理治疗或体外改变的细胞进行管理,预防或治疗人类疾病。细胞管理中的破裂不佳和移植细胞整合,是最大难题。通常认为通过使用聚合物水凝胶,以微创的方式或手术轻便的方法允许注射或微创插入细胞和聚合物组合,可改善疗效。为使有效,水凝胶必须符合一系列设计标准,以发挥正常功能,并促进新组织的形成。这些标准包括物理参数(例如,退化和机械性能)以及生物性能参数(例如,生物相容性和细胞粘附)。不完全符合这些设计标准,可能会导致不良组织的形成。因此,这种生物材料发展的关键是充分了解手术前及手术中的程序和操作。 2、受控交付生长因子生物材料。与细胞治疗相反,使用生长因子(蛋白质或激素)侧重于利用内源性组织的再生潜力。这些物质旨在,在管理层面,调节多种细胞过程:补充、生长、增殖和分化。 第一次需采用弹丸注射——经动物测试有一定疗效——但普遍未经人体临床研究证实。直接交付生长因子可加速组织愈合和增长,但往往是与生长因子的最初爆发和在体内的半衰期短有关。生长因子的失控扩散也可能引起不良的副作用。这就需要利用基于创新材料的技术来更好地控制空间和时间上的交付。 3、组织工程支架材料。TERM 最“简单”的产品类别包括通常加工成能够支持三维组织形成的多孔结构的支架材料。TERM 支架通常有下述用途:

相关文档
最新文档