机械能守恒定律专题10 能量守恒定律(4) 弹簧模型18.5.23

机械能守恒定律专题10    能量守恒定律(4)  弹簧模型18.5.23
机械能守恒定律专题10    能量守恒定律(4)  弹簧模型18.5.23

机械能守恒定律专题10 能量守恒定律应用(4)弹簧类问题

弹簧类动力学观点和功能观点解题综合问题:

弹簧初末态形变量相同,弹性势能相等,

或者两个过程弹簧的形变量变化量相等,弹性势能变化两相同

或者弹性势能与形变量的平方成正比

例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。)(B)

A.B.C.D.

试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定

理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:

(1):砝码A能够做匀加速运动的时间?

(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?

小题1:小题2:

(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)

当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×

可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)

(2)∵x 1=x 2∴这一过程中弹簧对物体A 的弹力做功为0…………(3分)

A 、

B 分离时(2分)由动能定理得:…(2分)

代入得: (2分)

例题3、如图甲,质量为m 的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g .

(1)图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P 点时,速度大小为v ,O 、P 两点间距离为s .求木块拉至P 点时弹簧的弹性势能;

(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.

(1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E P ,

根据功能关系有Fs=E P +1/2mv 2

…①

代入数据可解得:E P =Fs-1/2mv 2…

(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E p ,

设木块的速度为v′,由机械能守恒定律得:

Mgs=E P +1/2(m+M)v′2…③联立②③解得v′= √(mv 2+2(Mg-F)s)/(M+m)

例题4、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g

解析: 开始时,A 、B 静止,设弹簧压缩量为1x ,有11g kx m =

挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为2x ,

有22kx m g =

B 不再上升,表示此时A 和

C 的速度为零,C 已降到其最低点.由机械能守恒,与

初始状态相比,弹簧弹性势能的增加量为 312112=m ()()E g x x m g x x ?+-+

C 换成

D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得

311311211211()()()()22

22m m υm υm m g x x m g x x E ++=++-+-?

联立解得υ=

例题5、如图,

一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。质量为m 的A 物体置于地面,上端与劲度系数为k 的竖直轻弹簧相连。一条轻质绳跨过定滑轮,一端与斜面上质量为m 的B 物体相连,另一端与弹簧上端连接。调整细线和A 、B 物体的位置,使弹簧处于原长状态,且细绳自然伸直并与三角斜劈的两个面平行。现将B 物体由静止释放,已知B 物体恰好能使A 物体刚要离开地面但不继续上升。求:

(1)B 物体在斜面上下滑的最大距离x ;

(2)B 物体下滑到最低点时的加速度大小和方向;

(3)若将B 物体换成质量为2m 的C 物体,C 物体由上述初始位置静止释放,当A 物体刚好要离开地面时,C 物体的速度大小v 。

(1)(2);方向沿斜面向上;(3)

【解析】试题分析:(1)当A 物体刚要离开地面但不上升时,A 物体处于平衡状态,设B 物体沿斜面下滑x ,则弹簧伸长为x 。对A 物体有 .........①解得.......②

(2)当A 物体刚要离开地面时,A 与地面间作用力为0。... ③

对A 物体:由平衡条件得....... ④

设B 物体的加速度大小为a ,对B 物体,由牛顿第二定律得

.......... ⑤ 解得 ...... ⑥B 物体加速度的方向沿斜面向上.......⑦

(3)A物体刚要离开地面时,弹簧的弹性势能增加ΔE,对B物体下滑的过程,由能量守恒定律

有:.........⑧

对C物体下滑的过程,由能量守恒定律有..........⑨

解得...........⑩考点:牛顿第二定律;能量守恒定律.

例题6、如图所示,倾角为θ的固定斜面与足够长的水平面平滑对接,一劲度系数k=18N/m的轻质弹簧的上端固定于斜面顶端,另一端连一质量为m=1kg的光滑小球A,跟A紧靠的物块B(质量也是m)与斜面之间的动摩擦因数μ1=0.75,且最大静摩擦力等于滑动摩擦力,与水平面间的动摩擦因数μ2=0.1,图中施加在B上的力F=18N,方向沿斜面向上,A和B均处于静止状态,且斜面对B恰无摩擦力。当撤除力F后,A和B一起沿斜面下滑到某处时分离,分离后A一直在斜面上运动,B继续沿斜面下滑,已知:sinθ=0.6,cosθ=0.8,重力加速度g=10m/s2.

(1)A和B分离后A能否再回到出发点?请简述理由

(2)A和B分离时B的速度。

(3)求B最终停留的位置。

1)A不能回到出发点,因为小球与物块一起下滑过程,物体对小球的弹力做负功而使小球的机械能减

少. (2)2m/s (3)2m.

解析(1)A不能回到出发点,因为小球与物块一起下滑过程,物体对小球的弹力做负功而使小球和弹簧的机械能减少

(2)未撤去力F时,对A和B整体,根据平衡条件得:2mgs inθ+F1=F

由胡克定律可得:F1=kx1解得弹簧的压缩量为:x1=m

分离的瞬间,AB之间无弹力作用,但速度和加速度相等,

根据牛顿第二定律,对B:mg sinθ-f=ma B其中f=μ1mg cosθ联立解得a B=0

对A:mg sinθ-F2=ma A,其中弹力F2=kx2

由a A=a B=0,解得分离时弹簧的伸长量为:x2=m

可见x1=x2,AB整体运动到分离弹簧的弹力做功为零,根据动能定理有:

2mg?sinθ(x1+x2)?f(x1+x2)=?2mv2带入数据解得:v=

(3)分离后由动能定理得:?μ2mgx =0?mv 2

代入数据解得:x =2m

例题7、如图14所示,半径为R 的光滑半圆形轨道CDE 在竖直平面内与光滑水平轨道AC 相切于C 点,水平轨道AC 上有一轻质弹簧,弹簧左端连接在固定的挡板上,弹簧自由端B 与轨道最低点C 的距离为4R ,现用一个小球压缩弹簧(不拴接),当弹簧的压缩量为l 时,释放小球,小球在运动过程中恰好通过半圆形轨道的最高点E ;之后再次从B 点用该小球压缩弹簧,释放后小球经过BCDE 轨道抛出后恰好落在B 点,已知弹簧压缩时弹性势能与压缩量的二次方成正比,弹簧始终处在弹性限度内,求第二次压缩时弹簧的压缩量.

图14

答案 2105

l 解析 设第一次压缩量为l 时,弹簧的弹性势能为E p .

释放小球后弹簧的弹性势能转化为小球的动能,设小球离开弹簧时速度为v 1

由机械能守恒定律得E p =12

m v 12 设小球在最高点E 时的速度为v 2,由临界条件可知mg =m v 22R

,v 2=gR 由机械能守恒定律可得12m v 12=mg ·2R +12m v 22 以上几式联立解得E p =52

mgR 设第二次压缩时弹簧的压缩量为x ,此时弹簧的弹性势能为E p ′

小球通过最高点E 时的速度为v 3,由机械能守恒定律可得:E p ′=mg ·2R +12

m v 32 小球从E 点开始做平抛运动,由平抛运动规律得4R =v 3t,2R =12

gt 2,解得v 3=2gR ,故E p ′=4mgR 由已知条件可得E p ′E p =x 2l 2,代入数据解得x =2105

l . 练习1:如图2所示,物体A 的质量为m ,置于水平地面上,A 的上端连一轻弹簧,原长为L ,劲度系数为k .现将弹簧上端B 缓慢地竖直向上提起,使B 点上移距离为L ,此时物体A 也已经离开地面,则下列说法中正确的是( C )

图2

A .提弹簧的力对系统做功为mgL

B .物体A 的重力势能增加mgL

C .系统增加的机械能小于mgL

D .以上说法都不正确

练习2:如图1甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m 的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.若以小球开始下落的位置为原点,沿竖直向下建立一坐标轴Ox,小球的速度v随x变化的图象如图乙所示.其中OA段为直线,AB段是与OA相切于A点的曲线,BC是平滑的曲线,则关于A、B、C三点对应的x坐

标及加速度大小,以下关系式正确的是(D)

A.x A=h,a A=g E PA>0 B.x B=h+,a B=0 E PB最大

C.x C=h+,a C=g D.x C>h+,a C>g E PC最大

练习3:如图7所示为某探究活动小组设计的节能运动系统,斜面轨道倾角为30°,质量为M的木箱与

轨道的动摩擦因数为.木箱在轨道顶端时,自动装货装置将质量为m的货物装入木箱,然后木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回

到轨道顶端,再重复上述过程.下列选项正确的是(BC)

A.m=M B. m=2M

C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度

D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能

自木箱下滑至弹簧压缩到最短的过程中,由能量守恒有:

(m+M)gh=(m+M)gμcos30°·+E弹①

在木箱反弹到轨道顶端的过程中,由能量守恒有:E弹=Mgμcos30°·+Mgh ②

联立①②得:m=2M,A错误,B正确.下滑过程中:

(M+m)gsinθ-(M+m)gμcosθ=(M+m)a1 ③

上滑过程中:Mgsinθ+Mgμcosθ=Ma2 ④

解之得:a2=g(sinθ+μcosθ)>a1=g(sinθ-μcosθ),

故C正确.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能转化为弹簧的弹性势能和内能,所以D错误.

练习4:如图,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8

m, bc=0.4 m,重力加速度g=10m/s2,则下列正确的是:( BCD )

A.滑块动能的最大值是6 J

B.弹簧弹性势能的最大

值是6 J

C.从c到b弹簧的弹力对滑块做的功是6 J

D.滑块和弹簧组成的系统整个过程机械能守恒练习5:(2014·广东·16)图13是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中(B)

图13

A.缓冲器的机械能守恒

B.摩擦力做功消耗机械能

C.垫板的动能全部转化为内能

D.弹簧的弹性势能全部转化为动能

解析由于车厢相互撞击使弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A错误,B正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.

练习6:如图所示,在不光滑的平面上,质量相等的两个物体A、B间用一轻弹簧相连接,现用一水平拉力F作用在B上,从静止开始经一段时间后,A、B一起做匀加速直线运动,当它们的总动能为E k时撤去水平力F,最后系统停止运动,从撤去拉力F到系统停止运动的过程中,系统(BD )A.克服阻力做的功等于系统的动能E k

B.克服阻力做的功大于系统的动能E k

C.克服阻力做的功可能小于系统的动能E k

D.克服阻力做的功一定等于系统机械能的减少量

练习7:如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,并且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中(B)

A、圆环的机械能守恒

B、弹簧弹性势能变化了

C、圆环下滑到最大距离时,所受合力为零

D、圆环重力势能与弹簧弹性势能之和保持不变练习8:(2013·江苏·9)如图15所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中(BC)

图15

A .物块在A 点时,弹簧的弹性势能等于W -12

μmga B .物块在B 点时,弹簧的弹性势能小于W -32

μmga C .经O 点时,物块的动能小于W -μmga

D .物块动能最大时,弹簧的弹性势能小于物块在B 点时弹簧的弹性势能

由于物块与水平桌面间存在着摩擦,则该装置不能看成是弹簧振子,则A 、B 不关于O 点对称。由于运动中一部分机械能要转化成克服摩擦力做功变成内能,从而找到B 点离O 点将比A 点离O 近这一位置关系。进而能很好地对弹性势能、动能的转化进行分析。

设A 离弹簧原长位置O 的距离为,则弹簧的形变量为,当物体从A 向左运动直至B 的过程中,

物体要克服摩擦力做功,则物体及弹簧系统的机械能一定减小,到B 时只具有弹性势能,则,由此可知B 离O 的距离比A 离O 的距离近。则

;故从O 到A 的过程中运用动能定理有

,解得A 处的弹性势能,

故A 项错误;同理,经过B 点时,弹簧的弹性势能

,故B 项正确;经过O 点的动能,则C 项正确;物块动能最大时是物体第一次回到平衡位置,受力分析不难得出该位置在O 点的右边,物体受到的弹力和物体受到的摩擦力大小相等,由于摩擦因数未知,则弹簧的弹性势能大小无法确定,故物块动能最大时弹簧的弹性势能与物块在B 点时弹簧的弹性势能大小无法确定,故D 项错误。故本题答案为BC 。

【考点定位】本题考查动能定理、功能关系及弹力做功与弹性势能关系的理解。难度:较难。

练习9:(2014·福建·18)如图14所示,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.质量不同、形状相同的两物块分别置于两弹簧上端.现用外力作用在物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块( C )

图14

A .最大速度相同

B .最大加速度相同

C .上升的最大高度不同

D .重力势能的变化量不同

解析 当弹簧的弹力和物块重力沿斜面向下的分力大小相等时,物块的速度最大,由于两物块的质量不同,故两物块速度分别达到最大时,与质量大的物块接触的弹簧的形变量较小,根据能量守恒定律可知,质量

大的物块的最大速度较小,选项A 错误.刚撤去外力时,两物块的加速度最大,根据牛顿第二定律得kx

-mg sin θ=ma (θ为斜面倾角),a =kx m

-g sin θ,由于两物块的质量不同,故两物块的最大加速度不同,选项B 错误.整个过程中,弹簧的弹性势能全部转化为物块的重力势能,由于两物块质量不同,故上升的最大高度不同,选项C 正确.两物块重力势能的变化量等于弹簧弹性势能的减少量,故重力势能的变化量相同,选项D 错误.

练习10:如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长,圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC=h ,圆环在C 处获得一竖直向上的速度v ,恰好能回到A ,弹簧始终在弹性限度内,重力加速度为g ,则圆环(BD )

A .下滑过程中,加速度一直减小

B .下滑过程中,克服摩擦力做的功为mv 2

C .在C 处,弹簧的弹性势能为mv 2

﹣mgh D .上滑经过B 的速度大于下滑经过B 的速度 解:A 、圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,

所以圆环先做加速运动,再做减速运动,经过B 处的速度最大,所以经过B 处的加速度为零,所以加速度先减小,后增大,故A 错误;B 、研究圆环从A 处由静止开始下滑到C 过程,运用动能定理列出等式 mgh+W f +W 弹=0﹣0=0 在C 处获得一竖直向上的速度v ,恰好能回到A ,运用动能定理列出等式﹣mgh+(﹣W 弹)+W f =0﹣mv 2 解得:W f =﹣mv 2,故B 正确;C 、W 弹=mv 2﹣mgh ,所以在C 处,弹簧的弹性势能为mgh ﹣mv 2

,故C 错误; D 、研究圆环从A 处由静止开始下滑到B 过程,运用动能定理列出等式mgh′+W′f +W′弹=m ﹣0 研究圆环从B 处上滑到A 的过程,运用动能定理列出等式﹣mgh′+W′f +(﹣W′弹)=0﹣m

mgh′﹣W′f +W′弹=m 由于W′f <0,所以m

>m ,所以上滑经过B 的速度大于下滑经过B 的速度,故D 正确;故选:BD

练习11:如图2所示,质量相等的物体A、B通过一轻质弹簧相连,开始时B放在地面上,A、B均处于静止状态.现通过细绳将A向上缓慢拉起,第一阶段拉力做功为W1时,弹簧变为原长;第二阶段拉力再做功W2时,B刚要离开地面.弹簧一直在弹性限度内,则()

图2

A.两个阶段拉力做的功相等

B.拉力做的总功等于A的重力势能的增加量

C.第一阶段,拉力做的功大于A的重力势能的增加量

D.第二阶段,拉力做的功等于A的重力势能的增加量

答案 B

练习12:如图3所示,轻质弹簧上端固定,下端系一物体.物体在A处时,弹簧处于原长状态.现用手托住物体使它从A处缓慢下降,到达B处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W.不考虑空气阻力.关于此过程,下列说法正确的有()

图3

A.物体重力势能减少量一定大于W

B.弹簧弹性势能增加量一定小于W

C.物体与弹簧组成的系统机械能增加量为W

D.若将物体从A处由静止释放,则物体到达B处时的动能为W

答案AD

解析根据能量守恒定律可知,在此过程中减少的重力势能mgh=ΔE p+W,所以物体重力势能减少量一定大于W,不能确定弹簧弹性势能增加量与W的大小关系,故A正确,B错误;支持力对物体做负功,所以物体与弹簧组成的系统机械能减少W,所以C错误;若将物体从A处由静止释放,从A到B的过程,根据动能定理:E k=mgh-W弹=mgh-ΔE p=W,所以D正确.

练习13:如图7所示,一物体质量m=2kg,在倾角为θ=37°的斜面上的A点以初速度v0=3m/s下滑,A 点距弹簧上端B的距离AB=4 m.当物体到达B后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin37°

=0.6,cos37°=0.8,求:(计算结果小数点后保留两位有效数字)

图7

(1)物体与斜面间的动摩擦因数μ;

(2)弹簧的最大弹性势能E pm .

解析 (1)物体从开始位置A 点运动到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,

机械能的减少量为ΔE =ΔE k +ΔE p =12m v 20

+mgl AD sin37°① 物体克服摩擦力产生的热量为Q =F f x ②

其中x 为物体运动的路程,即x =5.4m ③

F f =μmg cos37°④

由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ≈0.52.

(2)由A 到C 的过程中,动能减少ΔE k =12m v 20

⑥ 重力势能减少ΔE p ′=mgl AC sin37°⑦

摩擦生热Q ′=F f l AC =μmg cos37°l AC ⑧

由能量守恒定律得弹簧的最大弹性势能为ΔE pm =ΔE k +ΔE p ′-Q ′⑨

联立⑥⑦⑧⑨解得ΔE pm ≈24.46J. 答案 (1)0.52 (2)24.46J

练习14:如图所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方s 0的P 点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O?点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:

(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功;

(2)O 点和O?点间的距离s 1;

(3)若将另一个与A 完全相同的物块B (可视为质点)与弹簧右端拴接,将A 放在B 右边,向左压A 、B ,使弹簧右端压缩到O?点位置,然后从静止释放,A 、B 共同滑行一段距离后分离.分离后物块A 向右滑行的最大距离s 2是多少?

AB

共同从O′到O有,(2分)

分离后对A有,(2分)

联立以上各式可得。(3分)

练习15:如图是一组滑轮装置,绳子都处于竖直状态,不计绳子和滑轮质量及一切阻力,悬挂的两物体质量分别为 m1=m,m2=4m,m1下端通过劲度系数为k的轻质弹簧与地面相连(重力加速度为g,轻质弹簧始终处于弹性限度之内)求:

(1)系统处于静止时弹簧的形变量;

(2)用手托住m2且让m1静止在弹簧上,绳子绷直但无拉力,放手之后两物体的运动发生在同一竖直平面内,求m2运动的最大速度.

(1)(2)

试题分析:(1)弹簧处于拉伸状态对(2分)

对 (2分)伸长量 :

(2分)

(2)释放

的初始时刻,对 有 (1分) 当速度最大时,两者加速度都等于零。由机械能守恒: (4分)

由速度关系: (2分)解得: (1分)

练习16:如图10所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=

32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给

A 、

B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到

C 点.已知重力加速度为g ,不计空气阻力,整个过程中轻绳始终处于伸直状态,求:

图10

(1)物体A 向下运动刚到C 点时的速度;

(2)弹簧的最大压缩量;

(3)弹簧的最大弹性势能.

答案 (1)v 20-gL (2)v 202g -L 2 (3)3m v 204-3mgL 4

解析 (1)A 与斜面间的滑动摩擦力F f =2μmg cos θ

物体A 从初始位置向下运动到C 点的过程中,根据功能关系有

2mgL sin θ+12×3m v 02=12

×3m v 2+mgL +F f L 解得v =v 20-gL (2)从物体A 接触弹簧到将弹簧压缩到最短后又恰好能弹到C 点的整个过程中,对A 、B 组成的系统应用动

能定理-F f ·2x =0-12×3m v 2 解得x =v 202g -L 2

(3)弹簧从压缩到最短到恰好能弹到C 点的过程中,对A 、B 组成的系统根据功能关系有

E p +mgx =2mgx sin θ+

F f x 所以E p =F f x =3m v 204-3mgL 4

练习17:如图12所示,在竖直方向上A 、B 两物体通过劲度系数为k =16N/m 的轻质弹簧相连,A 放在水平地面上,B 、C 两物体通过细线绕过轻质定滑轮相连,C 放在倾角α=30°的固定光滑斜面上.用手拿住C ,使细线刚好拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行.已知A 、B 的质量

均为m =0.2 kg ,重力加速度取g =10 m/s 2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C 后它沿斜面下滑,A 刚离开地面时,B 获得最大速度,求:

图12

(1)从释放C 到物体A 刚离开地面时,物体C 沿斜面下滑的距离;

(2)物体C 的质量;

(3)释放C 到A 刚离开地面的过程中细线的拉力对物体C 做的功.

答案 (1)0.25m (2)0.8kg (3)-0.6J

解析 (1)设开始时弹簧的压缩量为x B ,得

kx B =mg ①

设物体A 刚离开地面时,弹簧的伸长量为x A ,得

kx A =mg

② 当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B ③

由①②③解得h =2mg k =0.25m

④ (2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有

F T -mg -kx A =0

⑤ 对C 有Mg sin α-F T =0

由②⑤⑥解得M =4m =0.8kg

(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,

由能量守恒有Mgh sin α-mgh =12

(m +M )v m 2 解得v m =1m/s

对C 由动能定理可得Mgh sin α+W T =12

M v m 2 解得W T =-0.6J.

验证机械能守恒定律实验(吐血整理经典题)

实验:验证机械能守恒定律 1.下列关于“验证机械能守恒定律”实验的实验误差的说法中,正确的是 ( ) A .重物质量的称量不准会造成较大误差 B .重物质量选用得大些,有利于减小误差 C .重物质量选用得较小些,有利于减小误差 D .纸带下落和打点不同步不会影响实验 2.用如图所示装置验证机械能守恒定律,由于电火花计时器两限位孔不在同一竖直线上,使纸带通过时受到较大的阻力,这样实验造成的结果是( ) A .重力势能的减少量明显大于动能的增加量 B .重力势能的减少量明显小于动能的增加量 C .重力势能的减少量等于动能的增加量 D .以上几种情况都有可能 3.有4条用打点计时器(所用交流电频率为50 Hz)打出的纸带A 、B 、C 、D ,其中一条是做“验证机械能守恒定律”实验时打出的。为找出该纸带,某同学在每条纸带上取了点迹清晰的、连续的4个点,用刻度尺测出相邻两个点间距离依次为s 1、s 2、s 3。请你根据下列s 1、s 2、s 3的测量结果确定该纸带为(已知当地的重力加速度为9.791 m/s 2) ( ) A .61.0 mm 65.8 mm 70.7 mm B .41.2 mm 45.1 mm 53. 0mm C .49.6 mm 53.5 mm 57.3 mm D .60.5 mm 61.0 mm 60.6 mm

4.如图是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n 点来验证机械能守恒定律.下面举一些计算n 点速度的方法,其中正确的是( ) A .n 点是第n 个点,则v n =gnT B .n 点是第n 个点,则v n =g (n -1)T C .v n =s n +s n +1 2T D .v n =h n +1-h n -1 2T 5.某研究性学习小组在做“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 Hz ,查得当地的重力加速度g =9.80 m/s 2。测得所用重物的质量为1.00 kg 。 (1)下面叙述中正确的是________。 A .应该用天平称出重物的质量 B .可选用点迹清晰,第一、二两点间的距离接近2 mm 的纸带来处理数据 C .操作时应先松开纸带再通电 D .打点计时器应接在电压为4~6 V 的交流电源上 (2)实验中甲、乙、丙三学生分别用同一装置得到三条点迹清晰的纸带,量出各纸带上第一、二两点间的距离分别为0.18 cm 、0.19 cm 、0.25 cm ,则可肯定________同学在操作上有错误,错误是________。若按实验要求正确地选出纸带进行测量,量得连续三点A 、B 、C 到第一个点O 间的距离分别为15.55 cm 、19.20 cm 和23.23 cm 。则当打点计时器打点B 时重物的瞬时速度v =________ m/s ;重物由O 到B 过程中,重力势能减少了________J ,动能增加了________J(保留3位有效数字), 6.在“验证机械能守恒定律”的实验中,图(甲)是打点计时器打出的一条纸带,选取

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

机械能守恒定律公式汇总

机械能守恒定律单元公式汇总 做功: W=FS ·COS θ θ为力与位移的夹角 重力做功: G W =mg Δh Δh 为物体初末位置的高度差 重力势能:p E =mgh h 为物体的重心相对于零势面的高度 重力做功和重力势能变化的关系: G W =-Δp E 即重力做功与重力势能的变化量相反 弹性势能: p E =21k 2L L 为弹簧的形变量 弹力做功与弹性势能的关系: F W =-Δp E 即弹力做功与弹性势能的变化量相反 动能定理: 合W =Δk E =21m 22V -2 1m 21V 即合外力做功等于动能的变化量 合外力做功两种求解方式:1)先求合外力合F ,再求合F ·S ·COS θ 2)先求各个分力做功再求和,+++321W W W ....... 机械能守恒定律:条件:只有重力弹力做功 公式:末初E E =即初总机械能等于末机械能 变形公式:Δk E =-ΔP E 即动能的变化量与势能的变化量相反 如果是A 与B 的系统机械能守恒: 1)2211P K P K E E E E +=+即初的总机械能等于末的总机械能 2)Δk E =-ΔP E 即 Δ1k E +Δ2k E =-(Δ1P E +Δ2P E )即总的动能的变化量与总的势能的变化量相反 3)ΔA E =-ΔB E 即 Δ1k E +Δ1P E =-(Δ2k E +Δ2P E )即A 的总机械能变化量与B 的总机械能的变化量相反 能量守恒定律:末初E E =即初总能量等于末的总能量 机械能变化的情况:1)W=Δ机E 即除重力、系统内弹力外其他力做功的多少为机 械能变化量(即其他力给原有系统能量或消耗原有系统能量) 2)摩擦力做功对机械能影响: Q X F =相对f 即摩擦力乘以相对位移等于产生的热量(内能)即机械能的损失

动量守恒定律弹簧模型

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s 的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N和

挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之 和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2

机械能守恒定律计算题(基础)

机械能守恒定律计算题(基础练习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F开始提升原来静止的质量为m=10kg的物体,以大小为a=2m/s2的加速度匀加速上升,求头3s内力F做的功.(取g=10m/s2) 图5-1-8 2.汽车质量5t,额定功率为60kW,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间?

图5-3-1 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. F mg 图5-2-5

h 1 h 2 图5-4-4 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀 门关闭时两桶液面的高度分别为h 1和h 2,现将 连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

高中物理动能定理机械能守恒定律公式

高中物理动能定理机械能守恒定律公式高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同(反)方向:W=Fl,功的单位:焦尔(J) 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg(h2-h1) 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。 =EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½m vt2-½mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做 功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小. 3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况 下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对

机械能守恒定律计算题及答案(家教版)经典

图5-3-1 图5-4-4 机械能守恒定律计算题(期末复习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s 2 的加速度匀加速上升,求头3s 内力F 做的功.(取g =10m /s 2 ) 2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s 2 的加速度作匀加速直线运动,这一过程能维持多长时间? 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 内拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s 2 ) 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶内装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h 1和h 2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 7.如图5-4-2使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ? 图5-2-5 图5-3-2 图5-1-8

知识讲解机械能守恒定律基础

机械能守恒定律 编稿:周军审稿:吴楠楠 【学习目标】 1.明确机械能守恒定律的含义和适用条件. 2.能准确判断具体的运动过程中机械能是否守恒. 3.熟练应用机械能守恒定律解题. 4.知道验证机械能守恒定律实验的原理方法和过程. 5.掌握验证机械能守恒定律实验对实验结果的讨论及误差分析. 【要点梳理】 要点一、机械能 要点诠释: (1)物体的动能和势能之和称为物体的机械能.机械能包括动能、重力势能、弹性势能。 (2)重力势能是属于物体和地球组成的重力系统的,弹性势能是属于弹簧的弹力系统的,所以,机械能守恒定律的适用对象是系统. (3)机械能是标量,但有正、负(因重力势能有正、负). (4)机械能具有相对性,因为势能具有相对性(须确定零势能参考平面),同时,与动能相关的速度也具有相对性(应该相对于同一惯性参考系,一般是以地面为参考系),所以机械能也具有相对性. 只有在确定了参考系和零势能参考平面的情况下,机械能才有确定的物理意义. (5)重力势能是物体和地球共有的,重力势能的值与零势能面的选择有关,物体在零势能面之上的势能是正值,在其下的势能是负值.但是重力势能差值与零势能面的选择无关. (6)重力做功的特点: ①重力做功与路径无关,只与物体的始、未位置高度筹有关. ②重力做功的大小:W=mgh.. ③重力做功与重力势能的关系:PG WE??△. 要点二、机械能守恒定律 要点诠释: (1)内容:在只有重力或弹力做功的物体系统内动能和势能可以相互转化,但机械能的总量保持不变,这个结论叫做机械能守恒定律. (2)守恒定律的多种表达方式. 当系统满足机械能守恒的条件以后,常见的守恒表达式有以下几种: ①1122kPkP EEEE???,即初状态的动能与势能之和等于末状态的动能与势能之和. ②Pk EE??△△或Pk EE??△△,即动能(或势能)的增加量等于势能(或动能)的减少量. ③△E A=-△E B,即A物体机械能的增加量等于B物体机械能的减少量. 后两种表达式因无需选取重力势能零参考平面,往往能给列式、计算带来方便. (3)机械能守恒条件的理解. ①从能量转化的角度看,只有系统内动能和势能相互转化,无其他形式能量之间(如内能)的转化 ②从系统做功的角度看,只有重力和系统内的弹力做功,具体表现在:

机械能守恒定律3种表达式_机械能量守恒定律公式汇总

机械能守恒定律3种表达式_机械能量守恒定律公式汇总 机械能守恒定律的概念在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。这个规律叫做机械能守恒定律。 机械能守恒定律(lawofconservationofmechanicalenergy)是动力学中的基本定律,即任何物体系统。如无外力做功,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。这只能在一些特殊的惯性参考系如地球参考系中才成立。如图所示,若不考虑一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动。 机械能守恒定律守恒条件机械能守恒条件是:只有系统内的弹力或重力所做的功。【即忽略摩擦力造成的能量损失,所以机械能守恒也是一种理想化的物理模型】,而且是系统内机械能守恒。一般做题的时候好多是机械能不守恒的,但是可以用能量守恒,比如说把丢失的能量给补回来。 从功能关系式中的WF外=△E机可知:更广义的机械能守恒条件应是系统外的力所做的功为零。 当系统不受外力或所受外力做功之和为零,这个系统的总动量保持不变,叫动量守恒定律。当只有动能和势能(包括重力势能和弹性势能)相互转换时,机械能才守恒。 机械能守恒定律的三种表达式1.从能量守恒的角度选取某一平面为零势能面,系统末状态的机械能和初状态的机械能相等。 2.从能量转化的角度系统的动能和势能发生相互转化时,若系统势能的减少量等于系统

7基础练习题(机械能守恒定律)

基础练习题(机械能守恒定律) 1.课外活动时,王磊同学在40 s的时间内做了25个引体向上,王磊同学的体重大约为50 kg,每次引体向上大约升高0.5 m,试估算王磊同学克服重力做功的功率大约为(g取10 N/kg)() A.100 W B.150 W C.200 W D.250 W 解析:每次引体向上克服重力做的功约为W1=mgh=50×10×0.5 J=250 J 40 s内的总功W=nW1=25×250 J=6 250 J 40 s内的功率P=W≈156 W。 答案:B 2.如图所示,质量为m的物体P放在光滑的倾角为θ的斜面体上,同时用力F向右推斜面体,使P与斜面体保持相对静止。在前进水平位移为l的过程中,斜面体对P做功为() A.Fl B.mg sin θ·l C.mg cos θ·l D.mg tan θ·l 解析:斜面对P的作用力垂直于斜面,其竖直分量为mg,所以水平分量为mg tan θ,做功为水平分量的力乘以水平位移。 答案:D 3.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆叫作动车,把几节自带动力的车辆(动车)加几节不带动力的车辆(也叫拖车)编成一组,就是动车组,如图所示。假设动车组运行过程中受到的阻力与其所受重力成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等。若1节动车加3节拖车编成的动车组的最大速度为160 km/h;现在我国往返北京和上海的动车组的最大速度为480 km/h,则此动车组可能是() A.由3节动车加3节拖车编成的 B.由3节动车加9节拖车编成的 C.由6节动车加2节拖车编成的 D.由3节动车加4节拖车编成的 解析:设每节车的质量为m,所受阻力为kmg,每节动车的功率为P,已知1节动车加3节拖车编成的动车组的最大速度为v1=160 km/h,设最大速度为v2=480 km/h的动车组是由x节动车加y节拖车编成的,则有xP=(x+y)kmgv2,联立解得x=3y,对照各个选项,只有选项C正确。 答案:C 4. 如图所示,某段滑雪雪道倾角为30°,总质量为m(包括雪具在内)的滑雪运动员从距底端高为h 处的雪道上由静止开始匀加速下滑,加速度为g。在他从上向下滑到底端的过程中,下列说法

机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习) 1 ?如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力 F 开始提升原来 静止的质量为vm= 10kg 的物体,以大小为a = 2m )/s2的加速度匀加速上升, 求 头3s 力F 做的功.(取g = 10m /s2) 2. 汽车质量5t ,额定功率为60kW 当汽车在水平路面上行驶时,受到的阻力是车重的 0.1 倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?( 2)若汽车从静止开始, 保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间? 3. 质量是2kg 的物体,受到 24N 竖直向上的拉力,由静止开始运动,经 过5s ;求: ① 5s 拉力的平均功率 ② 5s 末拉力的瞬时功率(g 取10m/s2) mg 图 5-2-5 L F * 1 t

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 段距离后停止,测得停止处对开始运动处的水平距离为S,如图5-3-1, 不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦 因数相同?求动摩擦因数卩. 图5-3- 1 5.如图5-3-2所示,AB为1/4圆弧轨道,半径为R=0.8m, BC是水平轨道,长S=3m BC处的摩擦系数为卩=1/15,今有质 量m=1kg的物体,自A点从静止起下滑到C点刚好停止.求物体 在轨道AB段所受的阻力对物体做的功? 图5-3-2

4. 一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行 6.如图5-4-4所示,两个底面积都是S的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上, 两桶装有密度为P的同种液体,阀门关闭时两桶液面的高度分别为 h1和h2,现将连接两桶的阀门打开,在两桶液面变为 相同高度的过程中重力做了多少功? 图5-4-4

高中物理电学公式 高中物理动能定理机械能守恒定律公式

高中物理电学公式高中物理动能定理机械能守恒定律公式 动能定理和机械能守恒定律公式是高中物理的重点内容和难点知识,同时在高考中占有很大的比重。下面小编给高中同学带来物理动能定理以及机械能守恒定律公式,希望对你有帮助。高中物理动能定理机械能守恒定律公式 1、功的计算: 力和位移同方向:W=Fl,功的单位:焦尔 2、功率: 3、重力的功: 重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh 重力势能:为重力和高度的乘积. Ep=mgh 位置高低与重力势能的变化: W=mglcosθ=mgh=mg 4、动能定理: 物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。注意:a、如果物体受多个力的作用,则W为合力做功。 b、适用于变力做功、曲线运动等,广泛应用于实际问题。=EK2-EK1 5、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。 EP1+EK1=EK2+EP2 6、能量守恒定律: 能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。高中物理动能定理知识点 做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=?mvt2-?mv02 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。 2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK学好高中物理的方法 三个基本基本概念要清楚,基本规律要熟悉,基本方法要熟练。在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。 独立做题要独立地,保质保量地做一些题。独立解题,可能有时慢一些,有时要走弯路,但这是走向成功必由之路。 物理过程要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 上课上课要认真听讲,不走神。 笔记本上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。 学习资料学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。 时间时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。

机械能守恒定律计算题与答案

机械能守恒定律计算题(期末复习) 1.如图5-1-8所示,滑轮和绳的质量及摩擦不计,用力F 开始提升原来静止的质量为m =10kg 的物体,以大小为a =2m /s2的加速度匀加速上升,求头3s 力F 做的功.(取g =10m /s2) 2.汽车质量5t ,额定功率为60kW ,当汽车在水平路面上行驶时,受到的阻力是车重的0.1倍,: 求:(1)汽车在此路面上行驶所能达到的最大速度是多少?(2)若汽车从静止开始,保持以0.5m/s2的加速度作匀加速直线运动,这一过程能维持多长时间? 3.质量是2kg 的物体,受到24N 竖直向上的拉力,由静止开始运动,经过5s ;求: ①5s 拉力的平均功率 ②5s 末拉力的瞬时功率(g 取10m/s2) 图 5-2-5 图5-1-8

图5-3-1 图5-4-4 4.一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ. 5.如图5-3-2所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功. 6. 如图5-4-4所示,两个底面积都是S 的圆桶, 用一根带阀门的很细的管子相连接,放在水平地面上,两桶装有密度为ρ的同种液体,阀门关闭时两桶液面的高度分别为h1和h2,现将连接两桶的阀门打开,在两桶液面变为相同高度的过程中重力做了多少功? 图5-3-2

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

机械能守恒定律 典型例题的解题技巧

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法: (1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类: (1)阻力不计的抛体类。(2)固定的光滑斜面类。 (3)固定的光滑圆弧类。(4)悬点固定的摆动类。 (1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 例:在高为h 的空中以初速度v 0抛也一物体,不计空气阻力,求物体落地时 的速度大小? 分析:物体在运动过程中只受重力,也只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体抛出时和着地时的机械能相等 2202 121t mv mv mgh =+ 得:gh v v t 220+= (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 例,以初速度v 0 冲上倾角为光滑斜面,求物体在斜面上运动的距离是多少? 分析:物体在运动过程中受到重力和支持力的作用,但只有重力做功,因此物体的机械能守恒,选水平地面为零势面,则物体开始上滑时和到达最高时的机械能相等

θsin 2120?==mgs mgh mv 得:θ sin 220g v s = (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力 始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 例:固定的光滑圆弧竖直放置,半径为R ,一体积不计的金属球在圆弧的最低 点至少具有多大的速度才能作一个完整的圆周运动? 分析:物体在运动过程中受到重力和圆弧的压力,但只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体在最低和最高点时的机械能相等 2202 1221t mv R mg mv += 要想使物体做一个完整的圆周运动,物体到达最高点时必须具有的最小速度 为: Rg v t = 所以 gR v 50= (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 例:如图,小球的质量为m ,悬线的长为L ,把小球拉开使悬线和竖直方向的 夹角为,然后从静止释放,求小球运动到最低点小球对悬线的拉力 分析:物体在运动过程中受到重力和悬线拉力的作用,悬线的拉力对物体不做功,所以只有重力做功,因此物体的机械能守恒,选物体运动的最低点为重力势能的零势面,则物体开始运动时和到达最低点时的机械能相等

机械能守恒定律练习题及答案

高一物理周练(机械能守恒定律)班级_________ 姓名_________ 学号_________ 得分_________ 一、选择题(每题6分,共36分) 1、下列说法正确的是:() A、物体机械能守恒时,一定只受重力和弹力的作用。 B、物体处于平衡状态时机械能一定守恒。 C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他 力作用时,物体的机械能也可能守恒。 D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( ) A.所具有的重力势能相等 B.所具有的动能相等 C.所具有的机械能相等 D.所具有的机械能不等 3、一个原长为L的轻质弹簧竖直悬挂着。今将一质量为m的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是() A、减少的重力势能大于增加的弹性势能 B、减少的重力势能等于增加的弹性势能 C、减少的重力势能小于增加的弹性势能 D、系统的机械能增加 4、如图所示,桌面高度为h,质量为m的小球,从离桌面高H处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为() A、mgh B、mgH C、mg(H+h) D、mg(H-h) 5、某人用手将1kg物体由静止向上提起1m, 这时物体的速度为2m/s, 则下列说法正确的是() A.手对物体做功12J B.合外力做功2J C.合外力做功12J D.物体克服重力做功10J 6、质量为m的子弹,以水平速度v射入静止在光滑水平面上质量为M的木块, 并留在其中,下列说法正确的是() A.子弹克服阻力做的功与木块获得的动能相等 B.阻力对子弹做的功与子弹动能的减少相等 C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功 二、填空题(每题8分,共24分) 7、从离地面H高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为____________。 8、如图所示,在光滑水平桌面上有一质量为M的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为

动量守恒定律中的典型模型.doc

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 2202 12121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=, C B A mv o B A

机械能守恒定律练习题及其答案

机械能守恒定律专题练习 姓名:分数: 专项练习题 第一类问题:双物体系统的机械能守恒问题 例1. (2007·江苏南京)如图所示,A物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B物体在上升过程中离地的最大高度为多大?(取) (例1)(例2) 例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少? 第二类问题:单一物体的机械能守恒问题

例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径为R,小球的质量为m,不计各处摩擦,求: (1)小球运动到B点时的动能; (2)小球下滑到距水平轨道的高度为R时速度的大小和方向; (3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。 例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作四分之一光滑圆弧轨道,小球从与O点等高的圆弧最高点滚下后水平抛出,试求: (1)小球落地点到O点的水平距离; (2)要使这一距离最大,R应满足何条件?最大距离为多少? 第三类问题:机械能守恒与圆周运动的综合问题 例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l,最大偏角

为,小球运动到最低位置时的速度是多大? (例5)(例6) 例6. (2005·沙市)如图所示,用一根长为L的细绳,一端固定在天花板上的O 点,另一端系一小球A,在O点的正下方钉一钉子B,当质量为m的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B,小球开始以B为圆心做圆周运动,恰能过B点正上方C,求OB的距离。 例7. (2005年广东)如图所示,半径的光滑半圆环轨道处于竖直平面内, 半圆环与粗糙的水平地面相切于圆环的端点A,一质量m=0.10kg的小球,以初速度 在水平地面上向左做加速度的匀减速直线运动,运动后,冲上竖直半圆环,最后小球落在C点,求A、C间的距离() (例7)(例8) 例8. (2006年全国II)如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径,轨道在C处与水平地面相切,在C处放一小物块,给它一水平向左的初 速度,结果它沿CBA运动,通过A点,最后落在水平地面上的D点,求C、D

相关文档
最新文档