配电变压器能效标准的解释

配电变压器能效标准的解释

配电变压器节能设计选型

配电变压器节能设计选型 发表时间:2017-03-28T09:31:58.897Z 来源:《电力设备》2017年第2期作者:汪一波 [导读] 本文对于配电变压器节能设计选型进行了有效探讨。 (北京大学北京 100871) 摘要:变压器经济运行是采取各种措施减少各种损失来提高变压器的运行效率。变压器损耗可分为空载损失和负荷损失两部分,运行中的空载耗损是恒定的。若负载损耗发生变化,压力调节器的工作效率也随之变化。尽管配电变压器是一个高效的设备,但由于其数量庞大,以及空载耗电的固定性,变压器本体的节能潜力巨大。因此,本文对于配电变压器节能设计选型进行了有效探讨。 关键词:配电变压器;节能设计;选型 前言 在学校高速发展的今天,电力成为我们平时生产生活中最重要的能源之一。现在国家对公共机构节能要求越来越高,节能减碳工作势在必行。校内变压器数量现达到140余台,总装机容量10万KVA,应用节能变压器可以有效的降低用电量,而变压器的工作环境、负荷大小不一样,选择合理的变压器型号又成为重中之重。 1变压器的分类 除了干式变压器和油浸式变压器外,变压器还有很多分类方法,下面简单介绍几种: 1.1根据变压器相数,可将其分为三相变压器和单相变压器。三相变压器主要用于三相电力系统中,容量大且运输受限的情况下,也可使用三台单相式变压器组成变压器组来替代三相变压器。 1.2根据变压器绕组数,可将其分为双绕组变压器和三绕组变压器。每相铁芯上有原绕组和副绕组两个绕组的称之为双绕组变压器,它的应用相对广泛。当容量变压器在5600kVA以上时,一般采用三相绕组变压器,以实现三种电压输电线的连接。 1.3根据变压器结构,可将其分为芯式变压器和壳式变压器。铁芯式变压器的绕组处于铁芯的外围,壳式变压器的铁芯处于绕组外围。它们在结构有细微的区别,但是在原理是相似的。 2配电变压器节能设计 通过前文分析不难看出配电变压器节能的重要性和必要性,配电变压器节能是提升供配电系统社会效应、经济效益、环境效益的必经之路。下面通过几点来分析配电变压器的节能措施。 2.1用新工艺、新材料降低损耗 2.1.1改进工艺。通过改进工艺来降低运行损耗,最主要的是控制变压器的硅钢片精度。为此,可通过数控加工,利用自动化技术来精确控制硅钢片的形状、规格、厚度等。目前,加工精度达到0.18mm,就可大大降低变压器的空载损耗。 2.1.2重设结构。降低变压器损耗的重要手段之一是重设结构布局。目前,常见的结构布置方式有新型绕组和新型线圈。传统的绕组结构,在抗谐波、节能方面的效果不理想;若根据不同的配电电压来确定绕组结构,则可控制绕组的损耗,如漏磁走向的控制可采用自粘型换位导线。新型线圈结构是控制涡流损耗的理想手段,按涡流流向选择合理的纵向或横向的布置方式,可有效降低涡流损耗,进而达到理想的运行效果。 2.1.3新材料应用。制造变压器时,若选择的材料质量不好,其电阻率就会产生变化,引起损耗,同时变压器中铜铁材料的用量较大且用于关键部件,因此材料的质量将直接影响变压器的传输效率。新材料的突破使得优化变压器材料成为可能,将原有的铜铁材料替换为新型材料,能有效降低损耗,提高转换效率,制成高效节能变压器。磁体材料的优化,也是解决磁滞损耗的理想方法,如非晶合金,相比传统材料制成的磁体,在磁化和消磁性能方面明显胜出。利用非晶合金制作铁芯,能有效控制损耗,提高效益,但成本高,并未大面积推广。 2.1.4新型导线。使用无氧铜制作的导线,可有效降低变压器线圈内阻,从而降低铁损和铜损。如高温超导配电变压器,就是利用超导线材替换了铜芯线材,有效降低了损耗,同时还使变压器具备理想的抗短路性能。 2.2注意干式变压器的负载控制 目前我校对干式变压器的应用还比较多,但这种变压器过负荷时阻抗电压增幅较大,负载损耗十分严重。因此,建议对干式变压器的使用范围和使用数量进行控制,对已使用干式变压器的区域进行定期维护,提高变压器稳定性,避免过负载的发生,这样才能有利于电力节能的实现。 2.3优化配电变压器的选型 目前我国市面上的主流节能配电变压器主要有S7、S9、S11等等,这一系列变压器经过不断技术改良,其空载损耗有明显下降。电力工程中配电变压器的选型应注意优选,要综合考虑电网经济运行参数,根据变压器容量利用率来选择,以降低配电变压器运行中的无功损耗与有功损耗。虽然使用大容量变压器会增加一次性投资量,但却可以降低损耗,节约后续运行成本,所以建设中应根据优化需求来选择型号,电压偏移较大的区域应选择SZL7和SZ9系列,若对电能质量要求较高的区域应选择S11,若雷灾区,要选择防雷配电变压器。 2.4合理配置电网的补偿装置,合理安排补偿容量 2.4.1增加无功补偿的设备,以提高功率的因数 在线路中可以合理的运用电容器来实现提高电网中的无功补偿的能力,电容器充电、放电两大基本功能就可以帮助线路中提高无功功率补偿的能力,从而提高供电系统中的功率因数,降低供电变压器以及输送线路的损耗,提高供电效率。 2.4.2无功功率的合理分布 对于无功功率也要高度的重视,无功功率的存在降低了发电机和电网的供电效率,所以对于无功功率要合理的配置,减少无功功率的运输距离,除此之外还要注意其他方式的损耗进行计算和补偿。 2.4.3合理计划并联补偿电容器的运行 从大量的经验中表现出变压器的节能降耗主要是投入使用电容器。但是人们只是意识到了电容器的积极作用却忽视了其也会造成电网整体的损耗,所以在现实的节能降耗中要考虑整体的耗能来合理的设计电容器的投入。

国内外变压器的现状及发展

国内外变压器的现状及发展 沈阳变压器研究所贺以燕 从1885年匈牙利三位工程师发明了变压器以来,一个多世纪里,变压器有了长足的发展,电压已达到百万伏级,使输电距离超过1000km。 变压器的发展现状 1. 电力变压器一个世纪以来,电力变压器原理未曾改变,随着年代的推进,先进生产设备日臻完善,因而各项技术参数愈来愈先进。 (1)国外在世界范围内形成了几大集团:乌克兰扎布洛斯变压器厂,年生产能力100GV A;俄罗斯陶里亚第变压器厂,年生产能力40GV A,ABB公司29个电力变压器厂年生产能力80~100GV A,英法GEC-Alshtom年生产能力40GV A,日本各厂总和(三菱、东芝、日立、富士)年生产能力65GV A,德国TU集团年生产能力40GV A。全世界1986年共生产522GV A(缺南美与非洲)。 这些公司生产的已在系统运行的代表性产品:1150kV、1200MV A,735~765kV、800MV A,400~500kV、3φ750MV A或1φ550MV A,220kV、3φ1300MV A电力变压器;直流输电±500kV、400MV A换流变压器。 电力变压器主要为油浸式,产品结构有两类:心式和壳式。心式生产量占95%,壳式只占5%。 心式与壳式互无压倒性的优点,只是心式工艺简单一些,因而为大多数厂家采用,而壳式结构与工艺都要复杂一些,只有传统性工厂采用,而壳式结构与工艺都要复杂一些,只有传统性工厂采用。壳式特别适用于高电压、大容量,其绝缘、机械及散热都有优点且适宜于山区水电站的运输,因而仍有其生命力。 (2)国内解放前我国只能生产配电变压器,最高电压、最大容量为33kV、2000kV A。随着国家几个五年计划,建设了沈阳变压器厂为主的专业生产厂,到“八五”末,建立了一批大中小型骨干工厂,形成了我国自己的变压器行业。我国沈阳变压器厂、西安变压器厂、保定变压器厂均已成批生产500kV级电力变压器,在500kV系统内运行,最长的已超过17年,经过十几年的不断改进,其运行指标与进口变压器完全相当,总产量达150GVA。 (3)组件 ①套管。国外原全苏电瓷厂(现在乌克兰境内)已生产供应1150kV电容式套管,日本NGK已生产供应1100kV电容式套管。 我国南京电瓷厂、西安电瓷厂可成批量供应500kV电容式套管,南京电瓷厂20世纪70年代(以下年代均指20世纪)末已试制成功750kV套管。

变压器标准大全

变压器标准大全 一、变压器相关国家标准 GB1094.1-1996 电力变压器总则 GB1094.2-1996 电力变压器温升 GB1094.3-2003 电力变压器绝缘水平和绝缘试验 GB1094.5-2003 电力变压器承受短路的能力 GB10230-1988 有载分接开关 GB311.1-1997 高压输变电设备的绝缘配合 GB311.2-2002 绝缘配合第2部分:高压输变电设备的绝缘配合使用导则 二、变压器相关国家推荐标准 GB/T2900.15-1997 电工术语变压器、互感器、调压器和电抗器GB/T6451-1999 三相油浸式电力变压器技术参数和要求 GB/T17211-1998 干式电力变压器负载导则 GB/T17468-1998 电力变压器选用导则 GB/T10228-1997 干式电力变压器技术参数和要求 500kV GB/T16274-1996 油浸式电力变压器技术参数和要求 500kV GB/T15164-1994 油浸式电力变压器负载导则 GB/T13499-1992 电力变压器应用导则 GB/T10229-1988 电抗器 GB/T10237-1988 电力变压器绝缘水平和绝缘试验外绝缘的空气间隙

GB/T507-2002 绝缘油击穿电压测定法 GB/T16927 .1-1997 高电压试验技术一般试验要求 GB/T16927.2-1997 高电压试验技术测量系统 三、变压器相关机械行业推荐标准 JB/T10088-2004 6kV~500kV级电力变压器声级 JB/T10089-2001 接触自动调压器 JB/T10090-2001 感应自动调压器 JB/T10091-2001 接触调压器 JB/T10092-2000 磁性调压器 JB/T10093-2000 感应调压器 JB/T10112-1999 变压器油泵 JB/T2426-1992 发电厂和变电所自用三相变压器技术参数和要求 JB/T3837-1996 变压器类产品型号编制方法 JB/T3924-1999 中频感应加热装置用变压器 JB/T501-1991 电力变压器试验导则 JB/T5345-1991 变压器用蝶阀 JB/T5347-1999 变压器用片式散热器 JB/T5355-1991 变压器类产品机械制图补充规定 JB/T6302-1992 变压器用压力式温度计 JB/T6303-1992 电石炉变压器技术参数和要求 JB/T6484-1992 变压器用储油柜

配电变压器能效提升计划

配电变压器能效提升计划 (2015-2017年) 为贯彻《中华人民共和国节约能源法》,落实《重大节能技术与装备产业化工程实施方案》(发改环资〔2014〕2423号),加快高效配电变压器开发和推广应用,全面提升配电变压器能效水平,促进配电变压器产业结构升级,工业和信息化部、质检总局和发展改革委决定组织实施全国配电变压器能效提升计划。 一、实施配电变压器能效提升计划的必要性 配电变压器是指运行电压等级为6-35千伏、容量在6300千伏安及以下,直接向终端用户供电的电力变压器,广泛应用于工业、农业、城市社区等终端用能领域。截止2013年底,我国在网运行的配电变压器总台数约1530万台,总容量约48亿千伏安。其中,电网公司运行管理的配电变压器台数约860万台,其他企业运行管理的约670万台。 据统计,我国输配电损耗占全国发电量的6.6%左右,其中配电变压器损耗占到40-50%。以2013年全国发电量5.32万亿千瓦时计算,全国配电变压器电能损耗约1700亿千瓦时,相当于三峡电站2013年全年发电量(约1000亿千瓦时)的1.7倍,电能损耗十分严重。 作为节能减排的重要措施,国际上很多国家都出台了配电变压器能效提升政策。美国早在1998年就发起“能效之星变压器计划”,欧盟在2005年实行了“配电变压器推广合作伙伴计划”,日本于2006年开始实施“变压器能效领跑者计划”。 近年来,我国也出台了多项政策,推动高效配电变压器应用和产业发展。2012年,国务院发布了《节能减排“十二五”规划》,明确要求“十二五”期间降低电力变压器损耗,其中空载损耗降低10-13%,负载损耗降低17-19%。2013年,质检总局和国家标准委共同发布了国家标准《三相配电变压器能效限定值及能效等级》(GB 20052-2013),对配电变压器能效指标提出了更高要求。在这些政策推动下,我国配电变压器产业得到一定发展,高效配电变压器(GB 20052-2013中规定的2级能效及以上的配电变压器)产量有所增加,但整体能效水平仍然偏低。截止目前,全国在网运行配电变压器中高效配电变压器比例不足8.5%,新增量中高效配电变压器占比仅为12%,产业发展相对滞后,节能潜力巨大。 通过制定实施配电变压器能效提升计划,加快高效配电变压器的推广应用,全面提升我国配电变压器运行能效水平,对降低配电变压器电能损耗,推动配电变压器产业发展,促进工业节能降耗具有重要意义。 二、总体思路、基本原则和主要目标 (一)总体思路 以企业为主体,以提升能效为目标,围绕配电变压器开发、生产、使用和回收等环节,加快推广、促进淘汰,逐步提升高效配电变压器在网运行比例;加强政策引导,强化标准规范,完善认证体系,严控市场准入,加大监督检查力度,建立激励与约束相结合的实施机制,全面提高配电变压器能效水平,推动配电变压器产业转型升级,促进节能降耗。 (二)基本原则

10KV配电变压器技术规范(最终)

10KV配电变压器技术规范 除本规范特殊规定外, 所提供的设备均按规定的标准和规程的最新版本进行设计、制造、试验和安装。如果这些标准内容有矛盾时, 应按最高标准的条款执行或按双方商定的标准执行。提交供审查的标准应为中文或英文版本。主要引用标准如下: GB 1094.1 《电力变压器》第1部分总则 GB 1094.2 《电力变压器》第2部分温升 GB 1094.3 《电力变压器》第3部分:绝缘水平、绝缘试验和外绝缘空气间隙 GB/T 1094.4 《电力变压器》第4部分:电力变压器和电抗器的雷电冲击和操作冲击试验导则 GB 1094.5 《电力变压器》第5部分:承受短路的能力 GB/T 1094.7 《电力变压器》第7部分:油浸式电力变压器负载导则 GB/T 1094.10 《电力变压器》第10部分:声级测定 GB 2536 《变压器油》 GB 5273 《变压器、高压电器和套管的接线端子》 JB/T 10319 《变压器用波纹油箱》 GB/T16927.1-1999 《高电压试验技术》 GB/50260 《电力设施抗震设计规范》 DL/T620-1997 《交流电气装置的过电压保护和绝缘配合》 1. 使用条件 本标准所规定的设备,应能在下列环境条件使用: 1.1气象条件 环境温度:0至+40℃ 最高日气温:43℃ 年最低气温:-30℃ 相对湿度:最高月平均89% 年均雷暴日:45天/年 污秽等级:Ⅳ级 大气腐蚀:C5-1高腐蚀

1.2海拔高度:≤1000m 1.3地震数据 抗震设防烈度8度 设计基本地震加速度值0.15g 2.技术要求 基本参数 油浸式变压器要求选用S11型系列带油枕产品,其产品技术参数除应满足国家和行业相关标准外,还应满足下表1.表2要求。 表1.标准参数表

电力变压器继电保护技术的应用与发展

电力变压器继电保护技术的应用与发展 【摘要】本文首先论述了电力变压器的继电保护措施,继而分析了继电保护装置在电力变压器故障中的应用,接着就继电保护装置在实际应用中应考虑的问题和应对措施进行了简要阐述,最后对继电保护的未来发展趋势谈了一点看法,仅供参考。 【关键词】电力变压器;继电保护技术;应用;发展 继电保护是一个自动化的装置设备,它的目的是当其保护的系统中电路或元器件出现故障或不正常运行时,这个系统的额保护装置能及时根据设定的程序在系统相应的部位实现跳闸或短路等既定操作,使故障电路或元器件从系统中脱离或者发出信号通知管理人员处理,以达到最大限度地降低电路或元器件的损坏,使被保护系统稳定运行。在电力系统中,电力变压器作为其大量使用的关键设备,其运行的可靠性是整个电力系统安全运行的重要保证。一旦其发生故障,却又无相应的保护装置对其进行保护,就会使整个电力系统无法正常运行。为此,应用继电保护装置对其进行保护显得尤为重要。 1.电力变压器的继电保护措施 1.1瓦斯保护 瓦斯保护是大中型变压器不可缺少的安全保护,其分为轻瓦斯保护动作于信号、重瓦斯保护动作于断路器跳闸。(1)轻瓦斯保护动作:当变压器局部产生击穿或短路故障时,其变压器内会产生气体,这时继电保护装置会根据气体的速度、特征以及成分等,来推测其故障的原因、部位和严重程度。当因为是滤油、加油或气动强油循环装置而产生气体,或是因温度下降或漏油使油面下降,再或是因为变压器轻微故障而产生气体等原因时,保护装置会发出瓦斯信号。(2)重瓦斯保护动作:当变压器内油面剧烈下降或保护装置二次回路故障,或是检修后油中空气分离太快等,均会导致瓦斯动作于跳闸。 1.2差动保护 差动保护是电力系统中,被保护设备发生短路故障,流进被保护设备的电流和流出的电流不相等,从而产生差电流,当产生的差电流大于差动保护装置的整定值时而动作的一种保护装置。 1.3后备保护 当回路发生故障时,回路上的保护将在瞬间发出信号断开回路的开断元件(如断路器),这个立即动作的保护就是主保护。当主保护因为各种原因没有动作,在延时很短时间后(延时时间根据各回路的要求),另一个保护将启动并动作,将故障回路跳开。这个保护就是后备保护。

电力变压器试验项目和标准说明

电力变压器试验项目及标准说明 1 绝缘油试验或SF6气体试验; 2 测量绕组连同套管的直流电阻; 3 检查所有分接头的电压比; 4 检查变压器的三相接线组别和单相变压器引出线的极性; 5 测量与铁心绝缘的各紧固件(连接片可拆开者)及铁心(有外引接地线的)绝缘电阻; 6 非纯瓷套管的试验; 7 有载调压切换装置的检查和试验; 8 测量绕组连同套管的绝缘电阻、吸收比或极化指数; 9 测量绕组连同套管的介质损耗角正切值 tanδ ; 10 测量绕组连同套管的直流泄漏电流; 11 变压器绕组变形试验; 12 绕组连同套管的交流耐压试验; 13 绕组连同套管的长时感应电压试验带局部放电试验; 14 额定电压下的冲击合闸试验; 15 检查相位; 16 测量噪音。 注:除条文内规定的原因外,各类变压器试验项目应按下列规定进行: 1 容量为1600kVA 及以下油浸式电力变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行; 2 干式变压器的试验,可按本条的第2、3、4、5、7、8、12、14、15款的规定进行; 3 变流、整流变压器的试验,可按本条的第1、2、3、4、5、7、8、12、14、15款的规定进行; 4 电炉变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行;

5 穿芯式电流互感器、电容型套管应分别按本标准第9章互感器、第16章的试验项目进行试验。 6 分体运输、现场组装的变压器应由订货方见证所有出厂试验项目,现场试验按本标准执行。 7.0.2油浸式变压器中绝缘油及SF6气体绝缘变压器中SF6气体的试验,应符合下列规定: 1 绝缘油的试验类别应符合本标准中表20.0. 2 的规定;试验项目及标准应符合本标准中表20.0.1 的规定。 2 油中溶解气体的色谱分析,应符合下述规定:电压等级在66kV 及以上的变压器,应在注油静置后、耐压和局部放电试验24h后、冲击合闸及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析。试验应按《变压器油中溶解气体分析和判断导则》GB/T 7252进行。各次测得的氢、乙炔、总烃含量,应无明显差别。新装变压器油中H2 与烃类气体含量(μL/L)任一项不宜超过下列数值: 总烃:20, H2:10, C2H2:0, 3 油中微量水分的测量,应符合下述规定:变压器油中的微量水分含量,对电压等级为 110kV 的,不应大于 20mg/L;220kV 的,不应大于 15mg/L ;330~500kV 的,不应大于 10mg/L 。 4 油中含气量的测量,应符合下述规定:电压等级为330 ~500kV 的变压器,按照规定时间静置后取样测量油中的含气量,其值不应大于1%(体积分数)。 5 对SF6气体绝缘的变压器应进行SF6气体含水量检验及检漏:SF6气体含水量(20℃的体积分数)一般不大于250μL/L。变压器应无明显泄漏点。 7.0.3测量绕组连同套管的直流电阻,应符合下列规定: 1 测量应在各分接头的所有位置上进行; 2 1600kVA 及以下电压等级三相变压器,各相测得值的相互差值应小于平均值的 4%,线间测得值的相互差值应小于平均值的2%;1600kVA 以上三相变压器,各相测得值的相互差值应小于平均值的 2%;线间测得值的相互差值应小于平均值的1%; 3 变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于 2%;不同温度下电阻值按照式7.0.3换算: R2=R1(T+t2)/( T+t1) (7.0.3) 式中 R1、R2——分别为温度在t1、t2时的电阻值; T——计算用常数,铜导线取235,铝导线取225。 4 由于变压器结构等原因,差值超过本条第2款时,可只按本条第3款进行比较。但应说明原因。

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

配电变压器能效标准及技术经济评价导则(20121122)

Q/CSG 中国南方电网公司企业标准 配电变压器能效标准及技术经济评价导则 (报批稿) 中国南方电网有限责任公司发布

目录 前言............................................................................... II 1 范围 (3) 2 规范性引用文件 (3) 3 术语与定义 (3) 4 总则 (4) 5 基本要求 (4) 6 配电变压器能效参数 (4) 7 技术经济评价方法 (12) 附录A 用词说明 (15) )取值 (16) 附录B年最大负载损耗小时数( 附录C 现值系数取值 (17) 附录D配电变压器空载电流 (18) I

前言 为贯彻落实国家节能政策,使电网向更加智能、高效、可靠、绿色方向转变,进一步加大电网降损力度,建设资源节约型、环境友好型电网,完善配电变压器能效评价,特制定本标准。 本导则以国家、行业有关法律法规、标准为基础,适用于中国南方电网有限责任公司配电变压器设备选型。 本次修订与Q/CSG 11624—2008相比,主要在以下方面有所变化: ——对规范性引用文件进行了更新; ——将总拥有费用更名综合能效费用; ——对配电变压器能效限定值和领跑能效值进行了更新; ——修改了综合能效费计算公式; ——简化了单位空载损耗等效初始费用、单位负载损耗等效初始费用的计算; ----删除了回收年限的计算; 本导则由中国南方电网有限责任公司标准化委员会批准。 本导则由中国南方电网有限责任公司生产技术部归口。 本导则起草单位: 本导则主要起草人: 本导则主要审查人: 本导则实施后代替Q/CSG 11624—2008。 本导则首次发布时间:2008年4月11日,本次为第一次修订。 本导则在执行过程中的意见或建议反馈至中国南方电网有限责任公司生产技术部(广州市天河区珠江新城华穗路6号,510623)。 II

10KV配电变压器技术规范(最终)

10K V配电变压器技术规范 (最终) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

10KV配电变压器技术规范 除本规范特殊规定外, 所提供的设备均按规定的标准和规程的最新版本进行设计、制造、试验和安装。如果这些标准内容有矛盾时, 应按最高标准的条款执行或按双方商定的标准执行。提交供审查的标准应为中文或英文版本。主要引用标准如下: GB 1094.1 《电力变压器》第1部分总则 GB 1094.2 《电力变压器》第2部分温升 GB 1094.3 《电力变压器》第3部分:绝缘水平、绝缘试验和外绝缘空气间隙 GB/T 1094.4 《电力变压器》第4部分:电力变压器和电抗器的雷电冲击和操作冲击试验导则 GB 1094.5 《电力变压器》第5部分:承受短路的能力 GB/T 1094.7 《电力变压器》第7部分:油浸式电力变压器负载导则 GB/T 1094.10 《电力变压器》第10部分:声级测定 GB 2536 《变压器油》 GB 5273 《变压器、高压电器和套管的接线端子》 JB/T 10319 《变压器用波纹油箱》 GB/T16927.1-1999 《高电压试验技术》 GB/50260 《电力设施抗震设计规范》 DL/T620-1997 《交流电气装置的过电压保护和绝缘配合》 1. 使用条件 本标准所规定的设备,应能在下列环境条件使用: 1.1气象条件 环境温度: 0至+40℃ 最高日气温: 43℃ 年最低气温: -30℃ 相对湿度:最高月平均89% 年均雷暴日: 45天/年

污秽等级:Ⅳ级 大气腐蚀: C5-1高腐蚀 1.2海拔高度:≤1000m 1.3地震数据 抗震设防烈度 8度 设计基本地震加速度值 0.15g 2.技术要求 基本参数 油浸式变压器要求选用S11型系列带油枕产品,其产品技术参数除应满足国家和行业相关标准外,还应满足下表1.表2要求。

节能型变压器在电力系统中的运用与分析

节能型变压器在电力系统中的运用与分析 【摘要】变压器是电力系统中重要的电气设备。它不仅是电能传输设备,同时也是耗能设备。因此对变压器的性能及品质参数必须做充分的了解,以利于科学、合理的选用变压器。 【关键词】节能;变压器;性能与结构;能耗 1.节能型变压器的概念 “节能型变压器”是性能参数空载、负载损耗均比GB/T6451平均下降10%以上的三相油浸式电力变压器(10kV及35kV电压等级);产品性能参数空载、负载损耗比Gwr10228(组I)平均降低10%以上的干式变压器。 2.节能型变压器的类型和优点 我国变压器的发展经历了几个阶段,国家在节能方面的重视从未发生过改变。上世纪80年代中期,我国政府强制性地采用S7系列低损耗配电变压器在全国范围内淘汰正在电网运行的JB1300-73和JB500-64标准的高能耗变压器。从1998年开始,我国政府又不惜代价地在全国推行两网改造,用S9系列配电变压器取代S7系列。与S9一样,作为第七代节能产品的还有非晶合金变压器、卷铁心变压器、全密封变压器等。 但这先后两次全国大规模的更新换代,新产品仅比老产品降低空载损耗约8~15。目前市场上已出现了比S9系列更节能的产品,如S10、S11系列等。节能在变压器领域仍在继续。 卷铁心配电变压器(sll型)。 这种变压器早在60年代已被一些发达国家所采用,近年来在我国逐渐推广,在国家电网第二期农网改造中尤为突出。卷铁心变压器的优点:降低变压器空载损耗约10-25%,依变压器容量而变;降低空载电流,一般为叠片铁心的5O%;变压器噪音显著降低,小型变压器可做到37-42dB,减少对城镇噪音污染。 a.单相配电变压器(D1O型) 此类变压器多为柱上式,便于安装并靠近负荷中心,通常为少维护的密封式。与同容量三相变压器相比,空载损耗和负载损耗都小,有效材料用量也少,价格低20—30%。 b.非晶合金配电变压器 非晶合金配电变压器的空载损耗昆硅钢片的下降70—80%,至今未全面推广

变压器的应用现状与趋势讲解

随着新增发电装机的不断增长,我国对各类变压器的需求也持续增长。近年来,国内变压器行业通过引进国外先进技术,使变压器产品品种、水平及高电压变压器容量都有了大幅提高。国内企业生产的变压器品种包括超高压变压器、换流变压器、全密封式变压器、环氧树脂干式变压器、卷铁心变压器、组合式变压器等。此外,随着新材料、新工艺的不断应用,国内各变压器制造企业还不断研制和开发出各种结构形式的变压器,以适应市场发展。 1变压器行业规模和市场结构分析 目前,我国注册的变压器生产企业1000多家,有能力生产500kV 变压器的企业不超过10家,其中包括特变电工的沈阳变压器厂、衡阳变压器厂、西安变压器厂、保定天威保变电气股份有限公司、常州 压器有限公司等;能生产220kV变压器的企业不超过30家,生产110kV级的企业则有100家左右,其中年产超过百台的企业有特变电工衡变、沈变,保变、青岛青波、华鹏等厂家;生产干式配电变压器的企业约有100家,生产能力在100万kV?A以上的企业有顺德、金乡、许继、华鹏等厂家;生产箱式变压器的企业有600~700家。

我国变压器行业规模庞大,但中小企业居多。根据截止2008年11月的统计,我国变压器行业内共有企业1589个,工业总产值超过1亿的只有130多家,员工人数超过2000人的只有16家。根据统计,销售收入最高的保定天威达到了107.9亿元,占全行业的5.86%,前10名企业的累计份额为20.6%。近年来,通过技术改造、兼并重组和扩张等方式,我国变压器类产品的生产能力大幅度提升。例如,特变 生产厂,保定天威拥有保定、秦皇岛、合肥等生产厂。三个集团变压器类产品的生产能力均接近或超过80000MV?A。与此同时,以华鹏、达驰、青岛、钱江等企业为代表的生产企业也在逐步地扩大自己的生产规模,提高自己的生产能力,年生产能力均在千万千瓦时以上。 中国投资,近年来在我国建立的变压器合资生产企业,如ABB、西门子、阿海珐、东芝、晓星等,在中国变压器市场上尤其是在高电压等级产品上占有一定的份额。 目前,在中国境内生产变压器的企业主要分为四大阵营:ABB、阿海珐、西门子、东芝等几大跨国集团公司以绝对优势形成了第一阵营,占据20%~30%的市场份额,且市场份额仍在不断扩大;保变、西变、特变等国内大型企业通过提升产品的技术水平和等级,占有

油浸式配电变压器大修技术规范

油浸式配电变压器大修技术规范

油浸式配电变压器大修技术规范书 编制: 审核: 批准: 年月日

目录 一技术条件 (2) 1适用范围 (2) 2采用标准 (2) 3主要技术参数 (3) 4主要修理范围 (3) 5 结构要求 (3) 6 变压器修理后的技术参数要求6 7变压器修理后的试验要求 7 8 工艺要求 (8) 9 材料8

二项目管理及责任 (8) 1项目管理 (8) 2修理方责任范围 (10) 三质量保证 (10) 1质量程序文件 (10) 2质量体系 (10) 3控制检查程序 (10) 4 文件控制 (10) 5采购 (10) 6 内部质量审核 (11) 7 质量证书 (11) 8 质量保证期 (11)

一技术条件 1 适用范围 本规范适用于10kV油浸式配电变压器的重大修理; 2 采用标准 10kV油浸式配电变压器的修理应基于以下标准 GB 1094.1 电力变压器第1部分总则 GB 1094.2 电力变压器第2部分温升 GB 1094.3 电力变压器第3部分:绝缘水平、绝缘试验和外绝缘空气间隙 GB/T 1094.4 电力变压器第4部分:电力变压器和电抗器的雷电冲击和操作冲击试验导则 GB 1094.5 电力变压器第5部分:承受短路的能力 GB/T 1094.7 电力变压器第7部分:油浸式电力变压器负载导则 GB/T 1094.10 电力变压器第10部分:声级测定 GB 2536 变压器油 GB 5273 变压器、高压电器和套管的接线端子 JB/T 10319 变压器用波纹油箱 JB/T 8637 无励磁分接开关 GB/T 4109 交流电压高于1000V的绝缘套管 GB/T 5582 高压电力设备外绝缘污秽等级 GB 50150 电气装置安装工程电气设备交接试验标准 GB 311 高压输变电设备的绝缘配合与高电压试验技术 GB/T 13499 电力变压器应用导则 DL/T 586 电力设备用户监造导则 GB/T 6451 三相油浸式电力变压器技术参数和要求 GB 20052 三相配电变压器能效限定值及节能评价值

变压器节能技术规范

《三相配电变压器节能技术规范》 编制说明 (申请备案稿) 中国质量认证中心 2012年10月

第一部分、《三相配电变压器节能认证规范》编制说明 本技术规范为配合国家政策需要而编制,节能评价值采用于2012年10月15日通过审批并同意报备的新版《三相配电变压器能效限定值及能效等级》标准。待新版《三相配电变压器能效限定值及能效等级》标准颁布实施后,即可进行直接替换。其他引用《三相配电变压器能效限定值及能效等级》编制说明。 第二部分、引用《三相配电变压器能效限定值及能效等级》编制说明(报批稿) 一、标准工作简况 1.任务来源 电力变压器(包括输电变压器和配电变压器)是国民经济各行业中广泛使用的电气设备。由于使用量大、运行时间长,变压器在选择和使用上存在着很大的节能潜力,尤其10kV配电变压器应用量大面广,节能潜力更为显著。降低变压器损耗,提高供配电效率,是目前世界各国普遍关注的问题,也是我国政府抓工业节能工作的重点之一。 自我国改革开放以来,由于我国国民经济一直保持着高速增长,人民生活水平不断提高,电力需求与供给量呈不断上升的趋势,最高负荷持续攀升,一度时期出现多省电网拉闸限电的现象,同时我国输配电损失量也在不断增加。另一方面由于我国针对电力变压器开展了节能措施,使得我国输配电损耗占总耗电量的比重呈下降的趋势(如图1所示)。因此,通过制定供电设备能效标准,提高我国输配电运行效率,降低配电变压器损耗已是我国节能工作的重要任务。

图1 我国输配电损失量及与总消耗量的比重 2004年,在《中华人民共和国节约能源法》(以下简称《节能法》)明确提出了节能产品认证制度、高耗能产品淘汰制度和能效标识管理制度。为配合《节能法》的实施,提高配电变压器的能源利用效率、降低其损耗,引导企业的节能技术进步,提高配电变压器产品在国际市场竞争力,在国家发改委的统一安排下,提出了制订我国配电变压器的能效标准,并于2006年我国发布实施了GB 20052-2006《三相配电变压器能效限定值的节能评价值》,该标准的实施大大推动了我国配电变压器产品结构的调整,2004年我国S11的油浸变压器的比例为6%,S9的比例为93%,到2009年S11的比例增加到61.3%,S9的比例下降到14%,同时S13和S15也获得较大的发展。 由于配电变压器能效标准已将实施4年多的时间,其中规定的目标能效值在2010年7月1日已经开始实施,需制定新的能效限定值和节能评价值。另外我国对一些工业产品实施了能效标识管理制度,对提高这些工业产品的能源利用效率,加强能效指标监督提供了有效的政策保障,为将配电变压器纳入能效标识管理范围,所以在这些修订配电变压器能效标准时也需将能效等级加入标准之中。随即我国能效标准的归口单位:全国能源基础与管理标准化技术委员会向原国家质量技术监督局申报修订国家标准《配电变压器能效限定值与节能评价值》项目,经批准,该项目被列入了国家标准化管理委员会《2010年制修订计划国家标准项目计划》(项目编号:20101406-Q-469)。 2.工作过程 1)信息调研 2010年标准起草组委托调查公司对我国配电变压器生产企业进行了抽样调查,调查内容主要有配电变压器市场规模和发展趋势、配电变压器中各类型(干

电力变压器结构图解

电力变压器结构图解

————————————————————————————————作者:————————————————————————————————日期:

电力变压器结构图解 这是一个三相电力变压器的模型。从外观看主要由变压器的箱体、高压绝缘套管、低压绝缘套管、油枕、散热管组成。 移去变压器箱体可看到变压器的铁芯与绕组,铁芯由硅钢片叠成,硅钢片导磁性 能好、磁滞损耗小。在铁芯上有A、B、C三相绕组,每相绕组又分为高压绕组 与低压绕组,一般在内层绕低压绕组,外层绕高压绕组。图2左边是高压绕组引 出线,右边是低压绕组引出线。

把铁芯与绕组放入箱体,绕组引出线通过绝缘套管内的导电杆连到箱体外,导电杆外面是瓷绝缘套管,通过它固定在箱体上,保证导电杆与箱体绝缘。为减小因灰尘与雨水引起的漏电,瓷绝缘套管外型为多级伞形。右边是低压绝缘套管,左边是高压绝缘套管,由于高压端电压很高,高压绝缘套管比较长。 变压器箱体(即油箱)里灌满变压器油,铁芯与绕组浸在油里。变压器油比空气绝缘强度大,可加强各绕组间、绕组与铁芯间的绝缘,同时流动的变压器油也帮助绕组与铁芯散热。在油箱上部有油枕,有油管与油箱连通,变压器油一直灌到油枕内,可充分保证油箱内灌满变压器油,防止空气中的潮气侵入。 油箱外排列着许多散热管,运行中的铁芯与绕组产生的热能使油温升高,温度高的油密度较小上升进入散热管,油在散热管内温度降低密度增加,在管内下降重新进入油箱,铁芯与绕组的热量通过油的自然循环散发出去。

一些大型变压器为保证散热,装有专门的变压器油冷却器。冷却器通过上下油管与油箱连接,油通过冷却器内密集的铜管簇,由风扇的冷风使其迅速降温。油泵将冷却的油再打入油箱内,下图是一台容量为400000KVA的特大型电力变压器模型,其低压端电压为20KV,高压端电压为220KV。 采用油冷却的变压器结构较复杂,由于油是可燃物,也就存在安全性问题。目前,在城市内、大型建筑内使用的变压器已逐渐采用干式电力变压器,变压器没有油箱,铁芯与绕组安装在普通箱体内。干式变压器绕组用环氧树脂浇注等方法保证密封与绝缘,容量较大的绕组内还有散热通道,大容量变压器并配有风机强制通风散热。由于材料与工艺的限制,目前多数干式电力变压器的电压不超过35KV,容量不大于20000KVA,大型高压的电力变压器仍采用油冷方式. 下面是干式变压器结构图

完整版电力变压器

电力变压器 、电力变压器的结构组成 电力变压器的主要结构是由铁芯、绕组、油箱、附件等这几部分组成。其中铁芯和绕组装在一起构成的整体叫器身。在当今市场中,运用高端技术造就的复杂结构的变压器具有容量大、电压高、重量受到严格限制等优点,这是设计师在数年成功制造电力变压器积累了丰富经验的基础上,对那些不合理的落后的结构进行了改进同时采用新型技术的结晶,使得现在的变压器在结构上更加趋于合理,经济,耐用。 1.电力变压器各部分的结构组成: (1)铁芯 铁芯是电力变压器的磁路部分,也是器身的骨架,由铁芯柱(柱上套装绕组)、铁轭(连接铁芯以形成闭合磁路)组成。为了减小涡流和磁滞损耗,提高磁路的导磁性,铁芯采用0.35mm-0.5mm厚的硅钢片涂绝缘漆后交错叠成。小型变压器铁芯截面为矩形或方形,大型变压器铁芯截面为阶梯形,这是为了充分利用空间。 为缩短绝缘距离,降低局部放电量,在铁芯外面置一层由金属膜复合纸条黏 制而成的金属围屏。金属膜本身厚度很薄,宽度也仅有50mn而已,因此,一方面不会在自身中形成较大的涡流,另一方面对铁芯的尖角产生了较好的屏蔽作用。与此同时,在铁芯的旁轭内侧也置有金属膜围屏,用以保护高压线圈。 夹件则多采用大板式腹板和鱼刺状支板结构,这在很大程度上降低了金属构件垂直线圈顶部的漏磁面积。再配上纸板结构,将大大降低杂散损耗。线圈引线的引出结构也在不断被简化,不仅省去了夹件加强板,还方便中低压引线的排布, 从而可将强油导向循环的导油管和下夹件连为一体。这也促进了杂散损耗值的降低,对大型电力变压器来讲意义更为重大。因为杂散损耗在变压器总损耗中所占比例会随着容量的增大而增大。因此,有效提高了线圈的电流密度,减轻电力变压器的重量。 上铁轭下部用楔形绝缘撑紧,进一步加强器身短路的机械强度;下铁轭垫块分块制造分块安装,在器身装配完成以后,仍能方便地固定在铁轭上均匀分布的夹紧钢带螺栓。 铁芯油道共4层,为提高散热效率,使用6mn厚纸板直接黏在铁芯片上,并在铁芯每隔100mn放置一层0.5mm的纸板,防止铁芯片的相对滑动。 (2)绕组 绕组是电力变压器的电路部分,采用绝缘铜线或铝线绕制而成,一般有两个或两个以上的绕组,其中接电源的绕组叫初级线圈(或原绕组),其余的绕组叫次级线圈(或副绕组),原、副绕组同心套在铁芯柱上。为便于绝缘,一般低压绕组在里,高压绕组在外,但大容量的低压大电流变压器,考虑到引出线工艺困难,往往把低压绕组套在高压绕组的外面。线圈以及匝绝缘高压线圈使用高密度的电缆纸包导线:中压线圈和低压线圈分别采用绝缘强度较好的高密度电缆纸包换位导线、丹尼森纸包换位导线。线圈配置了内外导向隔板,目的是提升油的冷却效率。高压线圈的两端以及中压线圈的首端都安装了 30mn厚、馒头状均压环, 这极大地改善了端部的电场分布。并且所有的线圈端部出头和第

电力变压器故障检测技术的现状与发展趋势 白文海

电力变压器故障检测技术的现状与发展趋势白文海 发表时间:2019-05-31T09:38:19.970Z 来源:《电力设备》2019年第1期作者:白文海[导读] 摘要:在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是国民经济各行各业和千家万户能量来源的必经之路,是电网中最重要和最关键的设备。 (江苏大唐国际吕四港发电有限责任公司江苏省 226246)摘要:在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是国民经济各行各业和千家万户能量来源的必经之路,是电网中最重要和最关键的设备。电力设备的安全运行是避免电网重大事故的第一道防御系统,而电力变压器是这道防御系统中最关键的设备。变压器的严重事故不但会导致自身的损坏,还会中断电力供应,给社会造成巨大的经济损失。因此,本文对电力变压器故障检测技术 的现状与发展趋势进行分析。 关键词:电力变压器;故障检测技术;现状;发展趋势作为电力系统中的关键组成部分,变压器的稳定运作对发挥电气设备的作用以及价值有着关键的影响,只有为电力变压器的正常运作营造良好的环境,才能够提高整个电力系统的稳定性。对于电力公司来说,在实践运作的过程之中需要积极地引进先进的变压器设备,严格按照各项工作落实的实质要求,采取水平较高的变压器故障检测技术,通过建立良性运作的管理机制来发挥电力变压器应有的作用,只有这样才能够从整体上促进电力系统的稳定性,实现安全供电以及正常供电。 1变压器常见故障产生原因 1.1变压器渗油 密封材料的工艺质量较差,密封结构的设计和制造工艺比较粗糙,变压器在出厂前没有试装;剪裁、下料的工艺质量差和焊工水平低导致焊接质量差,假焊现象、背面焊接不好导致焊结构不合理;采购人员不了解相关的技术参数随意采购不合标准的部件;由于专业班组管理不到位、技术不过关导致变压器安装和大修后渗油率超过2%;装配过程中密封胶垫压得过紧、法兰和箱盖紧偏、密封面不平等都会使装配程序不符合专业标准。 1.2短路故障 变压器的短路故障一般是发生在变压器的出口电路。若发生短路故障,变压器绕组可能通过额定电流数十倍的短路电流,短路电流会在绕组上产生大量的热及电动力,从而使绕组变形甚至绝缘损坏,还会使其内部的压紧装置、引线、套管和油箱发生变形、位移等损伤,更甚者还会产生火灾。 1.3绝缘故障 变压器绝缘是变压器在正常工作、运行的基本条件。电力变压器绝缘有主绝缘和绕组纵绝缘,主绝缘一般是指辐向主绝缘和绕组端部主绝缘以及引线至接地体和其相对应部分的绝缘等,绕组纵向绝缘是指满足变压器运行中沿线段间及匝间电位梯度而采取的绝缘措施。电力变压器通常采用矿物油作为绝缘和散热的媒质,采用绝缘纸及纸板来绝缘。在长时间运行中,这些化合物由于受电场,水分、温度、机械力的作用,会逐渐劣化,引起故障,并最终导致变压器寿命的终结。 2变压器故障检测技术 2.1在线监测技术 在线监测技术主要使用的是振动分析法和局部放电检测法等两种。一是,振动分析法。该分析方法指的是变压器运行时,要监测变压器的振动信号的强弱,并且分析总结出现这样监测结果的原因,进而可以对变压器的运行状态进行实时的检测,有利于及时发现故障问题,在小故障酿成大故障前,便得到解决。二是,局部放电检测法。该检测方法指的是变压器在运行过程中的机械内部出现故障,进而引发了局部的放电现象,这样会影响放电的水平和放电的速度。所以有必要针对变压器的局部放电情况,加强日常地有效地判断,检测变压器安全隐患是否存在,并对这些问题进行有针对性地解决,来确保机械的安全稳定运行。 2.2气相色谱仪技术 许多的电力企业在稳定运作的过程之中,为了有效地避免各类故障所带来的影响以及损失开始积极的采取气相色谱仪技术,通过这种技术来分析检测混合气体之中的不同组成部分。不可否认,该技术的应用能够有效的促进工作效率的提升,同时还能够真正的实现安全可靠和操作简便。另外结合相关的实践调查可以看出,气相色谱仪技术获得了广泛的应用。在进行气体检测技术应用的过程之中,许多工作人员可以通过高分子膜来实现油气的有效分离,另外高分子聚合物还能够直接透过变压器油中溶解的气体来平衡整个变压器设备,保证变压器设备的稳定运作。当然,如果情况较为特殊并且需要用到变压器,对不同的气体进行检测就可以采取纳米晶型半导体传感器,通过这种形式来促进气体的扩散,更好地实现整个设备的稳定运作。 2.3感器列阵技术 对于感器列阵技术而言,在变压器故障检测技术中该技术也起到了十分重要的作用。为此,电力检测维修工作人员需要熟练地掌握该项技术,并将该项技术科学合理地运用到检测故障的工作,可以有效提高变压器的安全运行指数,使得运行的状态不受到外界干扰。并且由于这项传感器具有以下的优点∶选择性高、敏感度高等优点,使用传感器进行在线检测,进而提高检测故障气体的浓度的速度,有利于含量的检测,可见不但可以提高检测的速度,而且还可以提升变压器故障检测技术水平,降低变压器的检测故障的出现的几率。 2.4红外光谱技术 检修人员可以利用红外光谱来进行有效的检测,该技术的运用以及精确度相对比较高,同时检测速度快,后期的维修环节较为简单,因此能够有效的保障整个电力变压器故障的及时检测,充分地发挥不同技术的作用。从目前来看,在应用红外光谱技术的过程之中,电力检修人员可以结合不同的检测仪器将定量分析与定性分析相结合,了解电力变压器产生故障的真实原因,对不同的气体属性进行有效的监测,了解检测之后气体能量的具体变化,从目前来看,红外光谱技术的应用也十分普遍。 2.5其他监测措施的运用 低压脉冲测试也可作为一项实用、有效的变压器实时状态的探测方案,经实践验证已应用在检测变压器能否通过短路试验的有效措施。另外,电路绕组间运行的漏感测试、绝缘电阻验测及油的相对性湿度检测等也可作为变压器状态的监测实用方案。 3变压器状态检修技术的发展趋势

相关文档
最新文档