高考数学专题复习函数与导数(理科)练习题

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

高考数学函数专题习题及详细答案

高考数学函数专题习题及详细答案

函数专题练习【1】1.函数1()x y ex R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1)(B )1(0,)3(C )11[,)73(D )1[,1)73.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()||f x x = (C )()2xf x =(D )2()f x x =4.已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞B . 1(,1)3-C . 11(,)33-D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C . ,y x x R =∈D . x 1() ,2y x=∈7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A .4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数xy e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()xf x e x R =∈B .()2ln 2ln (0)f x x x =>)C .()22()xf x e x R =∈D .()2ln ln 2(0)f x x x =+>10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0(B )1 (C )2 (D )3 11、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥ba b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0B .1C .2D .3 (一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。

高考数学压轴专题(易错题)备战高考《函数与导数》技巧及练习题附答案解析

高考数学压轴专题(易错题)备战高考《函数与导数》技巧及练习题附答案解析

【高中数学】数学《函数与导数》试卷含答案一、选择题1.已知函数()322f x x ax bx a =+++在1x =处取极值10,则a =( )A .4或3-B .4或11-C .4D .3-【答案】C【解析】分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵322()f x x ax bx a =+++,∴2()32f x x ax b '=++. 由题意得2(1)320(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩. 当33a b =-⎧⎨=⎩时,22()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不符合题意.∴4a =.故选C .点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )A .[0,1]B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C【解析】【分析】首先根据复数的几何意义得到z 的轨迹方程2x y t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2a x a y b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限,则当0x =时,11t -< 且10t -≠ ,解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U .故选:C【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2x f x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4B .3C .2D .1【答案】B【解析】【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性.【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=-所以(4)(2)()f x f x f x +=-+=, ∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-,函数是偶函数,即()(4)f x f x =-,故②正确.对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos2x f x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确.故选:B .【点睛】 本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.4.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( )A .1-B .16C .1D .与b 有关【答案】B【解析】【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -.【详解】 ()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->, 又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B .【点睛】 如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.5.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b << 【答案】C【解析】 由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>, 即,a b c c b a >><<.本题选择C 选项.【考点】 指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.6.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+ B .146π- C .4π D .16【答案】B【解析】【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积.【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162r r r r a T C x x --+⎛⎫= ⎪⎝⎭,令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2. 曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B【点睛】 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.7.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B【解析】【分析】 利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围.【详解】由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0) 由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2), 即21144k k x x +-﹣1=24k k x +﹣224x ﹣1, 化简得4(x 1+x 2)=(k+4k )x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立,令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.8.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A B .C .2 D .【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b+-的最下值为故答案选D考点:基本不等式.9.已知定义在R 上的函数()f x 满足(2)(2)f x f x +=-,且当2x >时,()()2()x f x f x f x ''⋅+>,若(1)1f =.则不等式1()2f x x <-的解集是( ) A .(2,3)B .(,1)-∞C .()(1,2)2,3⋃D .()(,1)3,-∞⋃+∞ 【答案】C【解析】【分析】 令()|2|()F x x f x =-,当2x >时,则()(2)()F x x f x =-,利用导数可得当2x >时,()F x 单调递增,根据题意可得()F x 的图象关于2x =对称,不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠,从而()(1)F x F <,利用对称性可得|2||12|x -<-,解不等式即可.【详解】当2x >时,()()2()x f x f x f x ''⋅+>,∴(2)()()0x f x f x '-+>,令()|2|()F x x f x =-.当2x >时,则()(2)()F x x f x =-,()(2)()()0F x x f x f x ''=-+>,即当2x >时,()F x 单调递增.函数()f x 满足(2)(2)f x f x +=-,所以(2)(2)F x F x +=-,即()F x 的图象关于2x =对称, 不等式1()|2|f x x <-等价于|2|()1(2)x f x x -<≠, (1)|12|(1)(1)1F f f =-==,即()(1)F x F <,所以|2||12|x -<-,解得13x <<且2x ≠,解集为(1,2)(2,3)U .故选:C【点睛】本题考查了导数在解不等式中的应用、函数的对称性的应用以及绝对值不等式的解法,属于中档题.10.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n +的最小值为() A .16B .24C .50D .25【答案】D【解析】【分析】 由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值.【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1),∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号, 故则41m n+的最小值为25, 故选D .【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.11.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个【答案】B【解析】【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数.【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =,即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误.故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.12.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.3 1.130. 20.54f f log f <<B .()()()0.3 1.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A【解析】【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.3 1.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称.因为()()()0.3 1.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈, 则0.3 1.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,所以()()()0.3 1.130.20.54f f log f <<. 故选:A.【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.13.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( ) A .5B .4C .3D .6 【答案】A【解析】【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】函数()()()2384g x fx f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点 即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x fx f x =-+有5个零点,故选:A.【点睛】 本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.14.函数()32x y x x =-⋅的图象大致是( )A .B .C .D .【答案】C【解析】【分析】排除法:根据函数()32x y x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可.【详解】函数()32xy x x =-⋅为奇函数,故图象关于原点对称,故排除D ;函数有1-,0,1三个零点,故排除A ;当2x =时,函数值为正数,故排除B .故选:C .【点睛】本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.15.已知ln 3ln 4ln ,,34a b e c e ===(e 是自然对数的底数),则,,a b c 的大小关系是( )A .c a b <<B .a c b <<C .b a c <<D .c b a << 【答案】C【解析】【分析】 根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln x f x x =,求导()21ln x f x x-'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解. 【详解】 令()ln x f x x=, 所以()21ln x f x x -'=, 当0x e <<时, ()0f x '>,当x e >时,()0f x '<,所以()f x 在()0,e 上递增,在(),+e ∞上递减.因为34e <<,所以 ()()()34>>f e f f ,即b a c <<.故选:C【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.16.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥17.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,所以此时函数g (x )的值域为(2a ,+∞),由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C .【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,2)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A .(4][2,)-∞-+∞UB .[1,2]-C .[4,0)(0,2]-UD .[4,2]-【答案】D【解析】【分析】 不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩, 解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。

高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 11 word版含答案

高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 11 word版含答案

考点测试11 函数的图象一、基础小题1.已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( )答案 B解析 函数y =|f (x )|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,故y =|f (x )|在(-∞,1)上为减函数,在(1,+∞)上为增函数,排除A 、C 、D.2.为了得到函数y =lgx +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 答案 C 解析 y =lgx +310=lg (x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.3.函数f (x )=x +|x |x的图象是( )答案 C解析 化简f (x )=⎩⎪⎨⎪⎧x +1x >0,x -1x <0,作出图象可知选C.4.已知a >0,b >0且ab =1,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是( )答案 B解析 ∵ab =1,且a >0,b >0,∴a =1b,又g (x )=-log b x =-log 1ax =log a x ,所以f (x )与g (x )的底数相同,单调性相同,且两图象关于直线y =x 对称,故选B.5.已知函数f (x )=1lnx +1-x,则y =f (x )的图象大致为( )答案 B解析 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近0时,y 趋向于-∞,排除C ,选B.6.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )答案 A解析 由函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上是奇函数,得k =2,又f (x )是减函数,得0<a <1,则g (x )=log a (x +k )=log a (x +2),定义域是(-2,+∞),且单调递减,故图象是A.7.已知函数y =f (x )(-2≤x ≤2)的图象如图所示,则函数y =f (|x |)(-2≤x ≤2)的图象是( )答案 B解析 解法一:由题意可得f (x )=⎩⎪⎨⎪⎧-12x -1,-2≤x <0,-x -12+1,0≤x ≤2,所以y =f (|x |)=⎩⎪⎨⎪⎧-x +12+1,-2≤x <0,-x -12+1,0≤x ≤2,可知选B.解法二:由函数f (x )的图象可知,函数在y 轴右侧的图象在x 轴上方,函数在y 轴左侧的图象在x 轴下方,而y =f (|x |)在x >0时的图象保持不变,因此排除C 、D ,由于y =f (|x |)是偶函数,函数y =f (|x |)在y 轴右侧的图象与在y 轴左侧的图象关于y 轴对称,故选B.8.若对任意的x ∈R ,y =1-a |x |均有意义,则函数y =log a ⎪⎪⎪⎪⎪⎪1x 的大致图象是( )答案 B解析 由题意得1-a |x |≥0,即a |x |≤1=a 0恒成立,由于|x |≥0,故0<a <1.y =log a ⎪⎪⎪⎪⎪⎪1x=-log a |x |是偶函数,且在(0,+∞)上是单调递增函数,故选B.9.函数f (x )=⎩⎪⎨⎪⎧ax +b x ≤0,log c ⎝ ⎛⎭⎪⎫x +19x >0的图象如图所示,则a +b +c =( )A .43B .73C .4D .133答案 D解析 由题图知,可将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133,选D.10.如图,虚线是四个象限的角平分线,实线是函数y =f (x )的部分图象,则f (x )可能是( )A .x sin xB .x cos xC .x 2cos x D .x 2sin x答案 A解析 由题图知f (x )是偶函数,排除B 、D.当x ≥0时,-x ≤f (x )≤x .故选A. 11.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.答案 y =(x -1)2+3解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位,得y =2+2=(x -1)2+2,再向上平移1个单位,所得图象对应的函数解析式为y =(x -1)2+2+1=(x -1)2+3.12.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案(2,8]f(x)有意义,由函数f(x)的图象知满足f(x)>0解析当f(x)>0时,函数g(x)=log2的x∈(2,8].二、高考小题13.函数y=2x2-e|x|在的图象大致为( )答案 D解析当x∈(0,2]时,y=f(x)=2x2-e x,f′(x)=4x-e x.f′(x)在(0,2)上只有一个零点x0,且当0<x<x0时,f′(x)<0;当x0<x≤2时,f′(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D .{x |-1<x ≤2} 答案 C解析 作出函数y =log 2(x +1)的图象,如图所示:其中函数f (x )与y =log 2(x +1)的图象的交点为D (1,1),结合图象可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C.15.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0答案 C解析 函数f (x )的定义域为{x |x ≠-c },由题中图象可知-c =x P >0,即c <0,排除B ;令f (x )=0,可得x =-b a ,则x N =-b a ,又x N >0,则b a<0,所以a ,b 异号,排除A ,D.故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -22,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .⎝ ⎛⎭⎪⎫74,+∞B .⎝⎛⎭⎪⎫-∞,74 C .⎝ ⎛⎭⎪⎫0,74 D .⎝ ⎛⎭⎪⎫74,2答案 D解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y=x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =x -22,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.17.已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴∑mi =1(x i +y i )=0×m 2+2×m2=m .故选B.18.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当点P 与C 、D 重合时,易求得PA +PB =1+5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2 2.显然1+5>22,故当x =π2时,f (x )没有取到最大值,则C 、D 选项错误.当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=tan x +4+tan 2x ,不是一次函数,排除A ,故选B.三、模拟小题19.已知函数f (x )=4-x 2,函数g (x )(x ∈R 且x ≠0)是奇函数,当x >0时,g (x )=log 2x ,则函数f (x )·g (x )的大致图象为( )答案 D解析 因为函数f (x )=4-x 2为偶函数,g (x )是奇函数,所以函数f (x )·g (x )为奇函数,其图象关于原点对称,排除A 、B.又当x >0时,g (x )=log 2x ,当x >1时,g (x )>0,当0<x <1时,g (x )<0;f (x )=4-x 2,当x >2时,f (x )<0,当0<x <2时,f (x )>0,所以C 错误,故选D.20.已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y=g (x )在同一坐标系内的大致图象是( )答案 B 解析 ∵f (x )=ax -2>0恒成立,又f (4)g (-4)<0,所以g (-4)=log a |-4|=log a 4<0=log a 1,∴0<a <1.故函数y =f (x )在R 上单调递减,且过点(2,1),函数y =g (x )在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B 正确.21.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln |x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.22.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y =f (4-x )的图象过定点(3,1).23.设函数y =f (x )的图象与函数y =2x +a的图象关于直线y =-x +1对称,且f (-3)+f (-7)=1,则实数a 的值是________.答案 2解析 设函数y =f (x )的图象上任意一点的坐标为(x ,y ),其关于直线y =-x +1对称的点的坐标为(m ,n ),则点(m ,n )在函数y =2x +a的图象上,由⎩⎪⎨⎪⎧y +n 2=-x +m2+1,y -nx -m =1,得m =1-y ,n =1-x ,代入y =2x +a得1-x =21-y +a,即y =-log 2(1-x )+a +1,即函数y=f (x )=-log 2(1-x )+a +1,又f (-3)+f (-7)=1,所以-log 24+a +1-log 28+a +1=1,解得a =2.24.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 y =⎩⎪⎨⎪⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,函数y =kx -2恒过定点M (0,-2),k MA =0,k MB =4.当k =1时,直线y =kx -2在x >1时与直线y =x +1平行,此时有一个公共点,∴k ∈(0,1)∪(1,4),两函数图象恰有两个交点.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解 (1)函数f (x )的图象如图所示. (2)由图象可知,函数f (x )的单调递增区间为,.(3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.2.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎪⎨⎪⎧x x -4,x ≥4,-x x -4,x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为.(4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.3.已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解 f (x )=⎩⎪⎨⎪⎧x -22-1,x ∈-∞,1]∪[3,+∞,-x -22+1,x ∈1,3.作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时,a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根. 4.设函数f (x )=x +1x(x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标. 解 (1)设P (u ,v )是y =x +1x上任意一点,∴v =u +1u①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎪⎨⎪⎧u +x =4,v +y =2⇒⎩⎪⎨⎪⎧u =4-x ,v =2-y .代入①得2-y =4-x +14-x ,y =x -2+1x -4,∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0,b =0或b =4. ∴当b =0时,得交点(3,0);当b =4时,得交点(5,4).。

高考数学大二轮复习专题2函数与导数第2讲综合大题部分真题押题精练(理)

高考数学大二轮复习专题2函数与导数第2讲综合大题部分真题押题精练(理)

第2讲 综合大题部分1. (2017·高考全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x-x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解析:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).①若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. ②若a >0,则由f ′(x )=0得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0. 所以f (x )在(-∞,-ln a )上单调递减, 在(-ln a ,+∞)上单调递增.(2)①若a ≤0,由(1)知,f (x )至多有一个零点.②若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+ln a .a .当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;b .当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;c .当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a-1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a-1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).2.(2017·高考全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值. 解析:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n 得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2, 所以m 的最小值为3.3.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解析:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0.设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)·e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减. 而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增.故h (2)=1-4ae 2是h (x )在(0,+∞)的最小值.①若h (2)>0,即a <e24,h (x )在(0,+∞)没有零点.②若h (2)=0,即a =e24,h (x )在(0,+∞)只有一个零点.③若h (2)<0,即a >e24,因为h (0)=1,所以h (x )在(0,2)有一个零点;由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a 32a 4=1-1a>0,故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,当f (x )在(0,+∞)只有一个零点时,a =e24.1. 已知函数f (x )=ln(x +1)+ax 2,a >0. (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(-1,0)上有唯一零点x 0,证明:e -2<x 0+1<e -1. 解析:(1)f ′(x )=1x +1+2ax =2ax 2+2ax +1x +1,x >-1,令g (x )=2ax 2+2ax +1, 则Δ=4a 2-8a =4a (a -2), 若Δ<0,即0<a <2,则g (x )>0,故当x ∈(-1,+∞)时,f ′(x )>0,f (x )单调递增. 若Δ=0,即a =2,则g (x )≥0, 仅当x =-12时,等号成立,故当x ∈(-1,+∞)时,f ′(x )≥0,f (x )单调递增. 若Δ>0,即a >2,则g (x )有两个零点,x 1=-a -a a -22a ,x 2=-a +a a -22a,由g (-1)=g (0)=1>0,g (-12)<0得,-1<x 1<-12<x 2<0,故当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,f (x )单调递减,当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,f (x )单调递增. 综上所述,当0<a ≤2时,f (x )在(-1,+∞)上单调递增, 当a >2时,f (x )在(-1,-a -a a -22a )和(-a +a a -22a ,+∞)上单调递增,在(-a -a a -22a,-a +a a -22a)上单调递减.(2)由(1)及f (0)=0可知:仅当极大值等于零,即f (x 1)=0时,符合要求. 此时,x 1就是函数f (x )在区间(-1,0)上的唯一零点x 0. 所以2ax 20+2ax 0+1=0, 从而有a =-12x 0x 0+1,又f (x 0)=ln(x 0+1)+ax 20=0, 所以ln(x 0+1)-x 02x 0+1=0,令x 0+1=t 0,则ln t 0-t 0-12t 0=0, 即ln t 0+12t 0-12=0,且0<t 0<12,设h (t )=ln t +12t -12,则h ′(t )=2t -12t 2,当0<t <12时,h ′(t )<0,h (t )单调递减,又h (e -2)=e 2-52>0,h (e -1)=e -32<0,所以e -2<t 0<e -1,即e -2<x 0+1<e -1.2.已知函数f (x )=12ln x -mx ,g (x )=x -ax (a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.解析:(1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x-m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增, 当m >0时,由f ′(x )=0得x =12m;由⎩⎪⎨⎪⎧f ′x >0,x >0得0<x <12m ;由⎩⎪⎨⎪⎧f ′x <0,x >0得x >12m.综上所述,当m ≤0时,f (x )的单调递增区间为(0,+∞); 当m >0时,f (x )的单调递增区间为(0,12m ),单调递减区间为(12m ,+∞).(2)若m =12e 2,则f (x )=12ln x -12e 2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,g ′(x )=1+ax2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上是增函数,g (x )min =g (2)=2-a2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].3.已知函数f (x )=ln xx +a (a ∈R ),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较:2 0182 019与2 0192 018的大小并说明理由;(2)若函数g (x )=f (x )-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.解析:(1)依题意得f ′(x )=x +ax-ln x x +a 2,所以f ′(1)=1+a 1+a2=11+a, 又曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直,所以f ′(1)=1, 即11+a=1,解得a =0. 故f (x )=ln x x ,f ′(x )=1-ln xx2.令f ′(x )>0,则1-ln x >0,解得0<x <e ; 令f ′(x )<0,则1-ln x <0,解得x >e , 所以f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).∴f (2 018)>f (2 019),即ln 2 0182 018>ln 2 0192 019,即ln 2 0182 019>ln 2 0192 018,∴2 0182 019>2 0192 018.(2)不妨设x 1>x 2>0,因为g (x 1)=g (x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0, 可得ln x 1+ln x 2=k (x 1+x 2), ln x 1-ln x 2=k (x 1-x 2). 要证x 1x 2>e 2,即证ln x 1x 2>2, 只需证ln x 1+ln x 2>2, 也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2x 1-x 2x 1+x 2.令x 1x 2=t (t >1),则只需证ln t >2t -1t +1(t >1).令h (t )=ln t -2t -1t +1(t >1),则h ′(t )=1t-4t +12=t -12t t +12>0,故函数h (t )在(1,+∞)上是单调递增的, 所以h (t )>h (1)=0,即ln t >2t -1t +1.所以x 1x 2>e 2. 4.已知函数f (x )=exx.(1)求曲线y =f (x )在点P (2,e22)处的切线方程;(2)证明:f (x )>2(x -ln x ).解析:(1)因为f (x )=exx,所以f ′(x )=e x ·x -e xx2=exx -1x 2,f ′(2)=e24, 又切点为(2,e22),所以切线方程为y -e 22=e24(x -2),即e 2x -4y =0.(2)设函数g (x )=f (x )-2(x -ln x )=exx-2x +2ln x ,x ∈(0,+∞),则g ′(x )=exx -1x 2-2+2x =e x-2x x -1x2,x ∈(0,+∞). 设h (x )=e x-2x ,x ∈(0,+∞),则h ′(x )=e x-2,令h ′(x )=0,则x =ln 2. 当x ∈(0,ln 2)时,h ′(x )<0; 当x ∈(ln 2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln 2)=2-2ln 2>0, 故h (x )=e x-2x >0. 令g ′(x )=e x-2xx -1x2=0,则x =1.当x ∈(0,1)时,g ′(x )<0; 当x ∈(1,+∞)时,g ′(x )>0. 所以g (x )min =g (1)=e -2>0, 故g (x )=f (x )-2(x -ln x )>0, 从而有f (x )>2(x -ln x ).。

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

2020高考数学(理数)题海集训35函数的单调性与导数(30题含答案)

答案解析
1. 答案为: A. 解析:函数的定义域是
1 x-1 (0 ,+∞ ) ,且 f ′(x) =1- x= x ,
令 f ′(x) < 0,解得 0<x< 1,所以函数 f(x) 的单调递减区间是
(0 , 1) .
2. 答案为: B; 解析: B 中, y ′ =(xe x) ′ =ex+ xex=ex(x + 1)>0 在 (0 ,+∞ ) 上恒成立,∴ y=xex 在 (0 ,+∞ )
10. 答案为: D. 解析:不妨设导函数 y=f ′(x) 的零点依次为 x 1, x 2, x 3,其中 x1< 0<x 2< x 3, 由导函数图象可知, y=f(x) 在 (- ∞, x 1) 上为减函数,在 (x 1, x 2) 上为增函数, 在 (x 2, x 3) 上为减函数,在 (x 3,+∞ ) 上为增函数,从而排除 A, C. y=f(x) 在 x=x 1,x=x3 处取到极小值,在 x=x 2 处取到极大值,又 x2> 0,排除 B,故选 D.
上为增函数 .
对于 A、 C、 D 都存在 x>0,使 y′<0 的情况 .
3. 答案为: B;
解析:由题意知,函数的定义域为
1 (0 ,+∞ ) ,由 y′=x- ≤0,得 0<x≤1,
x
所以函数的单调递减区间为 (0,1] .
4. 答案为: B; 解析:∵ f(x)=x 3-ax ,∴ f ′(x) =3x2-a. 又 f(x) 在 (-1,1) 上单调递减, ∴ 3x2- a≤0在 (-1,1) 上恒成立,∴ a≥3,故选 B.
函数 f(x) 的单调递增区间是 ( )
A. (-1 , 1) , (3 ,+∞ )
B . (- ∞, -1) , (1 , 3)

精选高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第4讲导数与函数的切线及函数零点问题练习理

精选高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第4讲导数与函数的切线及函数零点问题练习理

专题一 函数与导数、不等式 第4讲 导数与函数的切线及函数零点问题练习 理一、填空题1.曲线y =x e x+1在点(0,1)处的切线方程是________. 解析 y ′=e x+x e x=(x +1)e x,y ′|x =0=1,∴所求切线方程为:x -y +1=0.答案 x -y +1=02.(2016·洛阳模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为________.解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a×2=-1,所以a =2.答案 23.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1.答案 2x +y +1=04.已知f (x )=x 3+f ′⎝ ⎛⎭⎪⎫23x 2-x ,则f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线斜率是________.解析 f ′(x )=3x 2+2f ′⎝ ⎛⎭⎪⎫23x -1,令x =23,可得f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2f ′⎝ ⎛⎭⎪⎫23×23-1,解得f ′⎝ ⎛⎭⎪⎫23=-1,所以f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线斜率是-1.答案 -15.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3. 答案 36.(2016·常州监测)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)7.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为________. 解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x>0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0. 答案 08.(2015·安徽卷)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号). ①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2; ④a =0,b =2;⑤a =1,b =2.解析 令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要使f (x )=0仅有一个实根,则需f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,所有正确条件为①③④⑤. 答案 ①③④⑤ 二、解答题9.(2016·扬州质检)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围.解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0,此时函数单调递增; 当1<x <e 时,g ′(x )<0,此时函数单调递减. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.10.(2015·江苏高考命题原创卷)已知函数f (x )=x 2-a ln x -1,函数F (x )=x -1x +1. (1)如果函数f (x )的图象上的每一点处的切线斜率都是正数,求实数a 的取值范围; (2)当a =2时,你认为函数y =f (x )x -1的图象与y =F (x )的图象有多少个公共点?请证明你的结论.解 (1)∵f (x )=x 2-a ln x -1的定义域为(0,+∞),函数f (x )的图象上的每一点处的切线斜率都是正数,∴f ′(x )=2x -a x>0在(0,+∞)上恒成立. ∴a <2x 2在(0,+∞)上恒成立,∵y =2x 2>0在(0,+∞)上恒成立,∴a ≤0. ∴所求的a 的取值范围为(-∞,0]. (2)当a =2时,函数y =f (x )x -1的图象与y =F (x )的图象没有公共点.证明如下: 当a =2时,y =f (x )x -1=x 2-2ln x -1x -1,它的定义域为{x |x >0且x ≠1},F (x )的定义域为[0,+∞). 当x >0且x ≠1时,由f (x )x -1=F (x )得x 2-2ln x -x +2x -2=0.设h (x )=x 2-2ln x -x +2x -2,则h ′(x )=2x -2x-1+1x=(x -1)(2x x +2x +x +2)x.∴当0<x <1时,h ′(x )<0,此时,h (x )单调递减; 当x >1时,h ′(x )>0,此时,h (x )单调递增.∴当x >0且x ≠1时,h (x )>h (1)=0,即h (x )=0无实数根. ∴当a =2,x >0且x ≠1时,f (x )x -1=F (x )无实数根. ∴当a =2时,函数y =f (x )x -1的图象与y =F (x )的图象没有公共点. 11.(2016·全国Ⅰ卷)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. (1)解 f ′(x )=(x -1)e x+2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点.②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2.由(1)知x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)·e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x),所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0,从而g(x2)=f(2-x2)<0,故x1+x2<2.。

高考数学压轴专题(易错题)备战高考《函数与导数》技巧及练习题

高考数学压轴专题(易错题)备战高考《函数与导数》技巧及练习题

【最新】数学高考《函数与导数》复习资料一、选择题1.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.2.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+>R ”. 其中错误说法的个数为( )A .0B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.函数22()41x x x f x ⋅=-的图像大致为( )A .B .C .D .【答案】A 【解析】∵函数()22?41x x x f x =-的定义域为(,0)(0,)-∞+∞U∴222()2()()4114x x x xx x f x f x --⋅-⋅-===--- ∴函数()f x 为奇函数,故排除B ,C. ∵2(1)03f =>,故排除D. 故选A.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.4.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .5.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.6.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.7.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2x y t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax a y b t=⎧⎨==-⎩ ,即2xy t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.8.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭.令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >.故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.9.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.10.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.11.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.12.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020xf x =,则()2020f =( ) A .2020 B .12020C .11010D .0【答案】D 【解析】 【分析】根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D . 【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.13.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-,()04f =,则不等式()3x f x e >+的解集是( )A .(),1-∞B .(),0-∞C .()0,+∞D .()1,+∞【答案】B 【解析】不等式()3xf x e >+得()()3311x x x f x f x e e e ->+∴>,()()()()()330xxf x f x f xg x g x e e --+=∴='<'设,所以()g x 在R 上是减函数,因为()()()4301001g g x g x -==∴>∴<. 故选B .点睛:本题的难点在于解题的思路. 已知条件和探究的问题看起来好像没有分析联系,这里主要利用了分析法,通过分析构造函数,利用导数的知识解答.14.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.15.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】16.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()3233921224V x x x x x x x =+⋅⋅-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)12x -,所以正六棱柱容器的容积为()()()()32921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.17.设函数()xf x x e =⋅,则( )A .()f x 有极大值1eB .()f x 有极小值1e-C .()f x 有极大值eD .()f x 有极小值e -【答案】B 【解析】 【分析】利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论. 【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-.当1x <-时,()0f x '<;当1x >-时,()0f x '>. 所以,函数()xf x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B. 【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.18.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】 【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解. 【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D. 【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可.【详解】 0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤故选:D 【点睛】本题考查对数函数的单调性,属于中档题.20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学专题复习 《函数与导数》 练习题 1.已知函数xbaxf)(的图像过点)41,4(A和)1,5(B. (1)求函数)(xf的解析式; (2)记)(log2nfan,n是正整数,nS是数列na的前项和,求满足0nnSa 的n值.

2.已知函数)(xfy是定义在R上的周期函数,5是)(xf的一个周期,函数)(xfy 在1,1上是奇函数,又知)(xfy在区间1,0上是一次函数,在区间4,1上是二次函数,且2x在时函数)(xfy取得最小值-5 (1)证明:0)4()1(ff; (2)试求函数)(xfy在4,1上的解析式; (3)试求函数)(xfy在9,4上的解析式.

3.我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元,乙家按月计费,一个月中30小时以内(含30小时),每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台,其活动时间不少于15小时,也不超过40小时. (1)设在甲家租一张球台开展活动x小时的收费为)(xf元)4015(x,在乙家租一张球台开展活动x小时的收费为)4015)((xxg,试求)(xf和)(xg. (2)问:小张选择哪家比较合算?为什么? 4.已知axxxaxf),2,2((,21)(32为正常数. (1)可以证明:定理“若Rba,,则abba2(当且仅当ba时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明); (2)若0)(xf在)2,0(上恒成立,且函数)(xf的最大值大于1,求实数a的取值范围,并由此猜测)(xfy的单调性(无需证明); (3)对满足(2)的条件的一个常数a,设1xx时,)(xf取得最大值.试构造一个定义在},24,2|{NkkxxxD且上的函数)(xg,使当)2,2(x时,)()(xfxg,当Dx时,)(xg取得最大值的自变量的值构成以1x首项的等差数

列.

5.设函数babxaxxf,(1)(2为实数),时)(当时)当0)(0)(()(xxfxxfxF (1)若0)1(f且对任意实数x均有0)(xf成立,求)(xF表达式; (2)在(1)的条件下,当2,2x时,kxxfxg)()(是单调函数,求实数k的取值范围; (3)设0m,0,n且)(,0,0xfanm为偶函数,求证:0)()(nFmF.

6.已知定义域为1,0的函数同时满足以下三条:①对任意的x1,0,总有0)(xf;②1)1(f;③若,1,0,02121xxxx则有)()()(2121xfxfxxf成立.解答下列各题: (1)求)0(f的值;

(2)函数12)(xxg在区间1,0上是否同时适合①②③?并予以证明; (3)假定存在0x1,0,使得)(0xf1,0且00xxff,求证00)(xxf. 7.对于函数)(xf,若存在,0Rx,使)0)(xxf成立,则称0x为)(0xf的“滞点”?已知函数22)(2xxxf. (1)试问)(xf有无“滞点”?若有,求之,否则说明理由; (2)已知数列na的各项均为负数,且满足1)1(4nnafS,求数列na的通项公式.

8.设函数dcxbxxaxf233)(的图像关于原点对称,)(xf的图像在点),1(mP 处的切线的斜率为-6,且当2x时)(xf有极值. (1)求dcba,,,的值;

(2)若1,1,21xx,求证:344)()(21xfxf.

9.已知函数xxxxf1ln)(. (1)判定函数)(xf的单调性; (2)设1a,证明:aaa11ln.

10.设函数)(xf定义域为R,对于任意实数,,yx总有)()()(yfxfyxf,且当0x时,1)(0xf

(1)求)0(f的值; (2)证明:当0x时,1)(xf; (3)证明:)(xf在R上单调递减,并举两个满足上述条件的函数)(xf; (4)若,,1)1(|,)1()1()(|2RxyxaxfyNfafyfyM且NM

试求a的取值范围. 参考答案 1.解:(1)由题意得:45141abab 解得:54a,4b; (2)5()4nfn,2log()210nafnn ∵{}na为等差数列 ∴1()(9)2nnnSaann 由0nnSa得 0)9)(5(nnn ∴95n ∵Zn ∴9,8,7,6,5n.

2.解:(1)依题意有:)51()1()1()1(ffff ∴0)1()1()2()1(ffff. (2)设kxxf)( )11(x 和5)2()(2xaxf )41(x 由(1)知:054ak ① 又5)1(akf ② 由 ①②解得:2a,3k. (3) 5)2(2)(2xxf )41(x

xxf3)( )11(x ∵)5()(xfxf ∴当94x时,451x, 得: )96(5)7(2)64(153)(2xxxxxf 3.解:(1)xxf5)( )4015(x )4030()30(290)3015(90)(xxxxg (2)当3015x时,由)()(xgxf,得905x,∴1815x, 当4030x时,cxxgxf303)()(恒成立, ∴当1815x时,)()(xgxf, 当4018x时,)()(xgxf, 故当小张活动时间]18,15[x时选择甲家俱乐部合算;当]40,18(x时,选择乙家俱乐部合算.

4.解:(1)若Rcba,,,则33abccba(当且仅当cba时取等号) (2)0)21(21)(2232xaxxaxxf在(0,2)上恒成立,即 )2,0(,2122xxa,∴22a即2a

又∵

32322222222222)32()]}21()21([31{)21)(21()(axaxaxxaxaxxf

∴22231xax 即ax36时,261962))((3maxaaxf ∵ax36)2,0(,∴)6,0(a, 综上可知:)6,2(a, ∵)(xf为奇函数,∴ax36时,)(xf有最小值. 故猜测]36,2(ax和)2,36[a时,)(xf递减;)36,36(aax时,)(xf递增. (3)依题意,)(xg只须以4为周期即可,设)(),24,24(Nkkkx, )2,2(24k,此时)4()4()(kxfkxgxg 即22)4(21)4()(kxkxaxg,)24,24(kkx Nk

5.解:(1)∵0)1(f,∴1ab,由0)(xf恒成立,知0)1(2a, ∴1a,从而12)(2xxxf,

∴)0()1()0()1()(22xxxxxF (2)1)2()(2xkxxg,∴222k或222k ∴2k或6k (3)∵)(xf为偶函数,∴1)(2axxf,故必有:)(xf在),0(上递

增.)0(a ∵0nm ∴)()(nfmf,即)()(nFmF,∴0)()(nFmF

6.解:(1)令021xx,由①得0)0(f,由③得)0()0()0(fff,∴0)0(f ∴0)0(f. (2)①②易证,若01x,02x,121xx, 0)12)(12()()()(122121xxxgxgxxg,故)(xg适合①②③.

(3)由③知:任给]1,0[,nm,nm时,]1,0[mn, )()()()()(mfmfmnfmmnfnf,

若)(00xfx,则000)]([)(xxffxf矛盾; 若)(00xfx,则000)]([)(xxffxf矛盾; 故)(00xfx.

7.解:(1)由xxf)( 得2,0xx,∴有两个滞点0和2. (2)0)11(21)1(42nnnaaS,∴22nnnaaS ①

21112nnnaaS ② ②-①有:221112nnnnnaaaaa, ∴0)1)((11nnnnaaaa, ∵0na,∴11nnaa,即}{na是等差数列,且1d, 当1n时,有21112aaS,∴11a,∴nan.

8.解:(1)依题意)(xf为奇函数,∴0,0db,∴caxxf2)(' ∵6)1('f,0)2('f,

∴046caca, ∴0,8,2dbca. (2)xxxf832)(3,由082)('2xxf,)11(x,

相关文档
最新文档