ANSYS仿真电磁系统温度场步骤

合集下载

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。

然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。

为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。

本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。

随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。

在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。

对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。

本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。

二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。

焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。

因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。

焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。

熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。

焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。

为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。

ANSYS工程应用教程_热与电磁学篇

ANSYS工程应用教程_热与电磁学篇

ANSYS 工程应用教程_热与电磁学篇随着ANSYS 版本的不断更新,ANSYS 的应用领域也日益广泛。

作为融结构、热、流体、电磁、声学为一体的大型通用有限元分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电、等一般工业及科学研究领域。

热分析包括稳态热分析、瞬态热分析、热辐射、相变、热应力等,电磁场分析包括二维静态、谐性、瞬态磁场分析,三维静态、谐性、瞬态磁场分析,高频电磁场分析和电场分析等。

ANSYS 热分析简介:图形用户界面方式(GUI )或命令流方式进行计算。

ANSYS 如何进行热分析:实际上,其基本原理是先将所处理的对象划分成有限个单元(包含若干节点),然后根据能量守恒原理求解一定边界条件和初始条件下每一节点处的热平衡方程,由此计算出各节点温度,继而进一步求解出其他相关量。

耦合场分析:这类涉及两个和多个物理场相互作用的问题为耦合场分析。

主要方法有直接耦合和间接耦合。

直接耦合解法的耦合单元包含所有的自由度,仅仅通过一次求解就能得出耦合场分析结果。

这种方法实际上是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。

间接耦合法又称为序贯耦合法,通过把第一磁场分析的结果作为第二次场分析的载荷来实现良种场的耦合。

三种基本传热方式:传导:当物理内部存在温度差时,热量将从高温部分传递到低温部分;而且不同温度的物体相互接触时热量会从高温物体传递到低温物体。

傅立叶定律,又称导热基本定律hot cold A(T T )t dQ κ-=,Q 为时间t 内的传热量,κ为热传导率,T 为温度,A 为面积,d 为两平面之间的距离。

对流:温度不同的各部分流体之间发生相对运动所引起的热量传递方式。

流体被加热时:w f q h(t t )=-流体被冷却时:f w q h(t t )=-,w t 和f t 分别为壁面温度和流体温度,h 为对流热系数。

基于ANSYS的温度场仿真分析

基于ANSYS的温度场仿真分析
测试实验 , 来 判 定 绝 缘 材 料 的绝 缘 性 能 。 因 此 , 有 必 要 研 究 恒 温
式中 : [ C] 为 比热 矩 阵 , 考 虑 系 统 内能 的增 加 : [ K] 为 传 导 矩
阵, 包含导热系数 、 对流 系数及辐射率 和形 状 系数 ; { T} 为节点温
度向量 ; { T} 为温度对时间的导数 ; { Q( t ) } 为 节 点 热 流 率 向量 , 包 含 热 生成 。 温 度箱 中温 度 场 的热 分 析 属 于 瞬态 热 传 导过 程 。
绝 缘 材 料 在 高 温 条 件 下 长 期 运 行 会 造 成 热 老 化 ,使 绝 缘 性 能下降 , 在 高压 作 用 下 易 击 穿 。 为 进 一 步 研 究 绝 缘 材 料 热 老 化 特 性, 需 将 绝 缘 材 料 放 置 在 温 度 箱 内长 时 间加 热 , 再 进 行 绝 缘 特 性
元 类 型 、定 义 材 料 相
导热 系数 比热 容
( Wl m・ x、 J / k g ‘ K
0 . 1 2 1 0 3 0
生热 率
W/ m3
密度
k g / m
1 . 2 型 通 用 有 限元 分 析 软 件 , 能 够 进 行 机 械 应
1 0 4
基 于 AN S Y S的 温 度 场 仿 真 分 析
基于 A N S Y S的温度场仿真分析
T e mp e r a t u r e F i el d Si mu l a t i o n An a l y s i s B a s e d o n ANS YS
潘从 芳 娄 毅 蔺 红 张起 瑞 杨 一 胡 贺 明
( 新 疆 大学 电 气工程 学 院 , 新疆 鸟 鲁木 齐 8 3 0 0 4 7 )

基于ANSYS的温度场计算

基于ANSYS的温度场计算

基于ANSYS的温度场计算随着科技的进步,现代工程设计往往需要考虑一系列的复杂因素,其中一个重要的因素就是温度场分布。

温度场计算是工程设计中的一项重要任务,它能够帮助工程师确定材料的热传导性能、预测材料的热应力以及确定结构的热舒适性。

ANSYS是一款常用的工程仿真软件,它提供了强大的温度场计算功能。

在ANSYS中,温度场计算通常通过有限元方法实现。

有限元方法是一种将实际物体划分成许多小单元,通过对每个小单元进行数值计算来近似解决连续问题的数值方法。

在进行温度场计算之前,首先需要为模型建立几何模型。

ANSYS提供了几何建模工具,可以通过绘制几何形状或导入现有模型来快速创建几何模型。

一旦几何模型建立完成,接下来需要为模型设定边界条件。

边界条件包括热源、散热边界和绝热边界等。

对于边界条件的设定需要根据具体的问题需求进行合理的选择。

在边界条件设定完成后,就可以进行网格划分了。

网格划分是指将连续分布的模型划分成有限个小单元的过程。

ANSYS提供了多种网格划分算法和工具,可以根据模型的复杂程度和计算精度需求选择合适的网格划分方法。

一般来说,网格划分的精细程度会直接影响计算结果的准确性和计算效率。

完成网格划分后,就可以进行温度场计算了。

在ANSYS中,温度场计算可以使用传导模块或者多物理场模块。

传导模块适用于只考虑热传导的问题,而多物理场模块则可以考虑多种物理过程的相互作用。

通过设置合适的物理参数和材料属性,ANSYS可以对模型进行温度场的模拟和计算。

在计算过程中,ANSYS会根据初始条件和边界条件,求解模型的温度分布,并输出相应的结果。

温度场计算结果的解释和分析是温度场计算的最后一步。

ANSYS提供了丰富的后处理功能,可以对计算结果进行可视化展示和分析。

通过后处理功能,工程师可以直观地了解模型的温度分布情况,进一步评估设计的合理性,并根据需要进行优化。

综上所述,基于ANSYS的温度场计算是一项非常重要的工程设计任务。

ANSYS电磁场分析指南

ANSYS电磁场分析指南

ANSYS电磁场分析指南(共17章)ANSYS电磁场分析指南第一章磁场分析概述:ANSYS电磁场分析指南第二章2-D静态磁场分析:ANSYS电磁场分析指南第三章2-D谐波(AC)磁场分析:ANSYS电磁场分析指南第四章2-D瞬态磁场分析:ANSYS电磁场分析指南第五章3-D静态磁场分析(标量法):ANSYS电磁场分析指南第六章3-D静态磁场分析(棱边元方法):ANSYS电磁场分析指南第七章3-D谐波磁场分析(棱边单元法):ANSYS电磁场分析指南第八章3-D瞬态磁场分析(棱边单元法):ANSYS电磁场分析指南第九章3-D静态、谐波和瞬态分析(节点法):ANSYS电磁场分析指南第十章高频电磁场分析:ANSYS电磁场分析指南第十一章磁宏:ANSYS电磁场分析指南第十二章远场单元:ANSYS电磁场分析指南第十三章电场分析:ANSYS电磁场分析指南第十四章静电场分析(h方法):ANSYS电磁场分析指南第十五章静电场分析(P方法):ANSYS电磁场分析指南第十六章电路分析:ANSYS电磁场分析指南第十七章其它分析选项和求解方法:第一章磁场分析概述1.1磁场分析对象利用ANSYS/Emag或ANSYS/Multiphysics模块中的电磁场分析功能,ANSYS可分析计算下列的设备中的电磁场,如:·电力发电机·磁带及磁盘驱动器·变压器·波导·螺线管传动器·谐振腔·电动机·连接器·磁成像系统·天线辐射·图像显示设备传感器·滤波器·回旋加速器在一般电磁场分析中关心的典型的物理量为:·磁通密度·能量损耗·磁场强度·磁漏·磁力及磁矩·S-参数·阻抗·品质因子Q·电感·回波损耗·涡流·本征频率存在电流、永磁体和外加场都会激励起需要分析的磁场。

ANSYS电磁场仿真实验报告

ANSYS电磁场仿真实验报告

电磁场仿真实验报告求平行输电线周围的电位和电场分布一、报告要求:该生学号尾号为1,建立3条垂直排布的导线。

电位由下到上分别为1V,2V,3V,如下图所示:二、模型说明:静电场计算,求解区域为模型的5倍,截断边界条件。

最下方导线对地高度为10米,导线半径为0.01米,导线之间间距为5米。

(即:H1=10m,H2=15m,H3=20m,U1=1V,U2=2V,U3=3V,R0=0.01m,求解区域为一半圆,题目要求求解区域为模型的5倍,模型尺寸认为是40m,故取半圆半径L=200m。

)如下图所示:三、实验步骤:1、确定文件名,选择研究范围。

点击Utility Menu>File>Change Title,输入你的文件名。

例如“姓名_学号”(ZLM_2012301530051)点击Main Menu>Preferences,选择Electric。

点击Main Menu>Preprocessor>,进入前处理模块(command: /TITLE,ZLM_2012301530051/COM,Preferences for GUI filtering have been set to display:/COM, Electric/PREP7 )2、定义参数点击Utility Menu>Parameters>Scalar Parameters,在下面“Selection”空白区域填入参数:H1=10H2=15H3=20R0=0.01U1=1U2=2U3=3每一个参数输入完毕,点击“Accept ”按钮,输入的参数就导入上方“Items”指示的框中,等参数导入完毕后,点击“close”按钮关闭对话框。

(command: *SET,H1,10*SET,H2,15*SET,H3,20*SET,R0,0.01*SET,U1,1*SET,U2,2*SET,U3,3)3、定义单元类型点击Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现单元类型对话框“Element Types”,点击Add,弹出单元类型选择库对话框“Library of ElementTpes”选择Electrostatic 和2D Quad 121(二维四边形单元plane121)。

ansys瞬态传热初始温度场

ansys瞬态传热初始温度场

ansys瞬态传热初始温度场下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!ANSYS瞬态传热初始温度场介绍ANSYS是一种常用的工程仿真软件,广泛应用于多个领域,包括机械、电子、航空航天等。

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

Ansys电机电磁(Maxwell)、热(Fluent)耦合分析流程演示文稿

• 启动Maxwell
• 导入Maxwell文件后会形成一个Maxwell分析系统 • 启动Maxwell
• 双击Maxwell分析系统中的solution
ANSYell)、热(Fluent)耦合分析流程
• 更新Maxwell项目
•右键点击solution •选择Update
Stator
Shaft
ANSYS 中国
Magnets
Rotor
w2
电机电磁(Maxwell)、热(Fluent)耦合分析流程
• Fluent项目
•The Maxwell project contains a 3D mesh model of a ITRI motor •The setup of this motor has already been partially done •注意:考虑到设置效率,建议对Fluent的设置在Workbench外完成,特别是当网格是 四面体,并希望在FLUENT中转化为多面体网格时。在Workbench下Fluent的所有操作 都会被记录,并在重新打开时重新运行所有操作,非常费时。所以建议在Workbench 外将Fluent设置好,这样在Workbench内打开时较为节省时间。
• 由于此处采用现有的Maxwell项目,所以只需要在Workbench中导入即可。用户也 可以新建一个项目,并进行重新设置。
• 导入Maxwell文件 • 菜单栏 File > Import • 更改文件类型为Maxwell Project File (*.mxwl) • 通过导航确定输入文件的位置 • 选择文件“modified.mxwl” • Open打开
• 该教程已经提供了一个完整的CFD案例,并且已经设置好,此处只需要导入,并 设置损耗的映射即可。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用ANSYS对接触器电磁系统热场仿真步骤
1、熟悉掌握ANSYS软件的基本操作。

2、建模(Modeling)。

通过ANSYS前处理器中的Modeling对电磁系统进行建模,可适当进行一些简化。

需要建一大的空气体将整个电磁系统包住。

3、选择单元(Element Type)。

ANSYS软件中SOLID97单元可以进行电磁场与温度场的顺序耦合,所以选择这个单元进行磁场的分析。

选择好单元后,进行自由度设置,这方面可以详细阅读ANSYS的help文件中关于SOLID97单元的介绍。

电磁系统中线圈是载压型线圈,它的SOLID97单元的自由度就应该选择AX、AY、AZ、CURR;其他部件为了进行涡流场计算,选择AX、AY、AZ、VOLT。

4、材料属性设置(Material Props)。

电磁系统中包含硅钢片、分磁环、线圈、骨架以及空气体,需对每个部分设置相应的材料属性。

本次分析涉及到的材料属性有相对磁导率、电阻率、热传导系数和对流散热系数,查阅相关材料手册获得这些参数。

对于受温度影响的参数需将其与温度变化的关系设置好。

5、对模型各部分赋相应的材料、坐标系、实参数(Meshing)。

对于线圈单元,需进行实参数定义,包括线圈横截面、匝数、体积、电流方向矢量、对称系数和填充系数(线圈体积可以通过建好的模型直接获得)。

线圈的单元坐标系必须为圆柱局部坐标系。

其他部分可以使用全局坐标系,不需要实参数。

6、划分网格(Meshing)。

具体如何划分需通过自己不断尝试。

网格划分越密,计算越精确,但计算速度很慢,对电脑内存要求很大,所以需不断调试。

7、耦合线圈单元CURR自由度(Coupling/Ceqn)。

选中线圈所有节点进行耦合。

8、加载磁场分析的边界条件和载荷(Loads)。

线圈电压加载在线圈单元上,电压大小为峰值,相角为0。

由于SOLID97单元是矢量法分析,因此在整个模型最外层表面施加磁力线平行的边界条件即可。

9、磁场分析选项设置,写入物理环境。

定义为谐波分析,设置分析频率。

设置好后写入磁场分析物理环境文件中。

10、清除磁场分析的边界条件和载荷。

进行单元转换,将原来单元转换为热场分析单元SOLID70。

11、加载热场分析的载荷和边界条件。

通过坐标的面选择方式,选中与空气有接触的面,加载相应的水平热对流散热系数或垂直热对流散热系数。

在空气体最外层表面施加温度边界条件,定义为室温。

12、热场分析选项设置,写入物理环境。

定义为瞬态分析,设置好载荷步、输出步长等。

写入热场分析的物理环境文件中。

前面这些操作可以先通过GUI操作进行,软件会自动生成相应的APDL命令流,可以查看Session Editor获得。

将这些命令流存入文本文件中,之后只要通过输入命令流就可以完成一系列操作。

然后开始DO循环求解,一般进行四步循环,这部分需通过APDL语言编辑好程序。

每一次的DO循环中包括下面几个步骤。

13、读入磁场物理环境。

第一次循环时初始化整个模型温度为环境温度,以后循环中读入热场分析的结果文件。

通过*if、*else进行编程。

进行第一次磁场解算。

14、分析结束后,进入后处理。

读取电流的实部值和虚部值,计算相角。

重新进行一次第13步骤,然后选中线圈单元,重新加载电压,大小仍为峰值,角度为前面计算得到的角度。

进行第二次的磁场解算。

15、读入热场分析的物理环境。

第二次及之后几次循环需进行热重启动,用*if 判断。

定义热分析结束时间,读入磁场分析的结果文件。

进行热场解算。

进行完上述的循环后,可以通过后处理查看电磁系统各部分的温度分布情况,计算电磁系统各个部分的平均温度。

相关文档
最新文档