高考第三章导数及其应用
高考数学一轮总复习第三章一元函数的导数及其应用 2导数在研究函数中的应用第1课时函数的单调性课件

解: .令,得或 .当时,, 单调递增;当时,, 单调递减.综上,函数的单调递增区间为和,单调递减区间为 .
【点拨】确定函数单调区间的步骤如下.第一步,确定函数 的定义域.第二步,求.第三步,解不等式 ,解集在定义域内的部分为单调递增区间;解不等式 ,解集在定义域内的部分为单调递减区间.注意函数间断点.
A. B., C. D.,
解:函数的定义域为,.由,得 .依题意,得 解得 .故选B.
√
10.已知,,, ,则 ( )
A. B. C. D.
解:因为当时,,所以在 上单调递减.因为,即,所以 .故选C.
√
11.已知函数.若在上单调递增,则实数 的取值范围是( )
A. B. C. D.
变式1(1) 函数 的单调递减区间为____________.
,
解:因为,所以且 .所以 .令,解得或 .所以的单调递减区间为, .故填, .
(2)已知函数,,求函数 的单调区间.
解: .令,得或 .当或 时,;当时, .所以在,上单调递增,在,上单调递减, 在, 上单调递增.
考点二 含参函数的单调性
2.利用导数判断函数 单调性的步骤 第1步,确定函数的________; 第2步,求出导数 的______; 第3步,用的零点将的定义域划分为若干个区间,列表给出 在各个区间上的正负,由此得出函数 在定义域内的单调性. 3.函数值变化快慢与导数的关系 一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得______,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得______,函数的图象就比较“平缓”.
6.已知函数,则 的大致图象为 ( )
高考数学一轮复习 第三章 导数及其应用3

高考数学一轮复习 第三章 3.7 利用导数研究函数零点 题型一 数形结合法研究函数零点例1 (2020·全国Ⅰ)已知函数f (x )=e x -a (x +2). (1)当a =1时,讨论f (x )的单调性; (2)若f (x )有两个零点,求a 的取值范围. 解 (1)当a =1时,f (x )=e x -(x +2),f ′(x )=e x -1,令f ′(x )<0,解得x <0,令f ′(x )>0,解得x >0,所以f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)令f (x )=0,得e x =a (x +2),即1a =x +2ex ,所以函数y =1a 的图象与函数φ(x )=x +2e x 的图象有两个交点,φ′(x )=-x -1e x ,当x ∈(-∞,-1)时,φ′(x )>0; 当x ∈(-1,+∞)时,φ′(x )<0, 所以φ(x )在(-∞,-1)上单调递增, 在(-1,+∞)上单调递减,所以φ(x )max =φ(-1)=e ,且x →-∞时, φ(x )→-∞;x →+∞时,φ(x )→0, 所以0<1a <e ,解得a >1e .所以a 的取值范围是⎝⎛⎭⎫1e ,+∞. 教师备选已知函数f (x )=x e x +e x .(1)求函数f (x )的单调区间和极值;(2)讨论函数g (x )=f (x )-a (a ∈R )的零点的个数. 解 (1)函数f (x )的定义域为R , 且f ′(x )=(x +2)e x ,令f ′(x )=0得x =-2,则f ′(x ),f (x )的变化情况如表所示:x (-∞,-2)-2 (-2,+∞)f ′(x ) - 0 + f (x )单调递减-1e2 单调递增∴f (x )的单调递减区间是(-∞,-2),单调递增区间是(-2,+∞). 当x =-2时,f (x )有极小值为f (-2)=-1e 2,无极大值.(2)令f (x )=0,得x =-1, 当x <-1时,f (x )<0;当x >-1时,f (x )>0,且f (x )的图象经过点⎝⎛⎭⎫-2,-1e 2,(-1,0),(0,1). 当x →-∞时,与一次函数相比,指数函数y =e -x 增长更快,从而f (x )=x +1e -x →0;当x →+∞时,f (x )→+∞,f ′(x )→+∞,根据以上信息,画出f (x )大致图象如图所示.函数g (x )=f (x )-a (a ∈R )的零点的个数为y =f (x )的图象与直线y =a 的交点个数. 当x =-2时,f (x )有极小值f (-2)=-1e2.∴关于函数g (x )=f (x )-a (a ∈R )的零点个数有如下结论:当a <-1e 2时,零点的个数为0;当a =-1e 2或a ≥0时,零点的个数为1;当-1e2<a <0时,零点的个数为2.思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)当m =e 时,f (x )=ln x +ex ,f (x )的定义域为(0,+∞), f ′(x )=1x -e x 2=x -e x 2.令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )<0; 当x ∈(e ,+∞)时,f ′(x )>0,∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=2. (2)由题意知g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, ∴x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点例2 (12分)(2021·全国甲卷)设函数f (x )=a 2x 2+ax -3ln x +1,其中a >0. (1)讨论f (x )的单调性; [切入点:判断f ′(x )的正负](2)若y =f (x )的图象与x 轴没有公共点,求a 的取值范围. [关键点:f (x )>0且f (x )有最小值]教师备选已知函数f (x )=x sin x +cos x ,g (x )=x 2+4. (1)讨论f (x )在[-π,π]上的单调性;(2)令h (x )=g (x )-4f (x ),试证明h (x )在R 上有且仅有三个零点. (1)解 f ′(x )=sin x +x cos x -sin x =x cos x . 当x ∈⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-π2,0∪⎝⎛⎭⎫π2,π时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2上单调递增,在⎝⎛⎭⎫-π2,0,⎝⎛⎭⎫π2,π上单调递减. (2)证明 h (x )=x 2+4-4x sin x -4cos x , ∵h (-x )=x 2+4-4x sin x -4cos x =h (x ), ∴h (x )为偶函数. 又∵h (0)=0,∴x =0为函数h (x )的零点.下面讨论h (x )在(0,+∞)上的零点个数: h (x )=x 2+4-4x sin x -4cos x =x (x -4sin x )+4(1-cos x ). 当x ∈[4,+∞)时, x -4sin x >0,4(1-cos x )≥0, ∴h (x )>0, ∴h (x )无零点; 当x ∈(0,4)时,h ′(x )=2x -4x cos x =2x (1-2cos x ), 当x ∈⎝⎛⎭⎫0,π3时,h ′(x )<0; 当x ∈⎝⎛⎭⎫π3,4时,h ′(x )>0,∴h (x )在⎝⎛⎭⎫0,π3上单调递减,在⎝⎛⎭⎫π3,4上单调递增, ∴h (x )min =h ⎝⎛⎭⎫π3=π29+4-4π3sin π3-4cos π3=π29+2-23π3<0,又h (0)=0,且h (4)=20-16sin 4-4cos 4>0, ∴h (x )在⎝⎛⎭⎫0,π3上无零点,在⎝⎛⎭⎫π3,4上有唯一零点. 综上,h (x )在(0,+∞)上有唯一零点, 又h (0)=0且h (x )为偶函数, 故h (x )在R 上有且仅有三个零点.思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练2 已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3. 当x ∈(-∞,3-23)∪(3+23,+∞)时, f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞), 单调递减区间为(3-23,3+23). (2)证明 因为x 2+x +1>0在R 上恒成立, 所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2x 2+2x +3x 2+x +12≥0在R 上恒成立,当且仅当x =0时,g ′(x )=0, 所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0, f (3a +1)=13>0,故f (x )有一个零点.综上所述,f (x )只有一个零点.题型三 构造函数法研究函数的零点例3 (2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f (x )的单调区间;(2)若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围. 解 (1)当a =2时,f (x )=x 22x (x >0),f ′(x )=x 2-x ln 22x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0, 则x >2ln 2,此时函数f (x )单调递减, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,2ln 2,单调递减区间为⎝⎛⎭⎫2ln 2,+∞. (2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解.设g (x )=ln xx (x >0),则g ′(x )=1-ln xx 2(x >0),令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝⎛⎭⎫0,1e , 又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e ,即a 的取值范围为(1,e)∪(e ,+∞). 教师备选(2022·南阳质检)已知f (x )=13x 3+32x 2+2x ,f ′(x )是f (x )的导函数.(1)求f (x )的极值;(2)令g (x )=f ′(x )+k e x -1,若y =g (x )的函数图象与x 轴有三个不同的交点,求实数k 的取值范围.解 (1)因为f ′(x )=x 2+3x +2=(x +1)(x +2), 令f ′(x )=0,得x 1=-1,x 2=-2, 当x 变化时,f ′(x ),f (x )的变化如表所示:x (-∞,-2)-2 (-2,-1)-1 (-1,+∞)f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗由表可知,函数f (x )的极大值为f (-2)=-23,极小值为f (-1)=-56.(2)由(1)知g (x )=x 2+3x +2+k e x -1=x 2+3x +1+k e x , 由题知需x 2+3x +1+k e x =0有三个不同的解,即k =-x 2+3x +1e x有三个不同的解.设h (x )=-x 2+3x +1e x,则h ′(x )=x 2+x -2e x =x +2x -1e x ,当x ∈(-∞,-2)时,h ′(x )>0,h (x )单调递增, 当x ∈(-2,1)时,h ′(x )<0,h (x )单调递减, 当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,又当x →-∞时,h (x )→-∞, 当x →+∞时,h (x )→0且h (x )<0, 且h (-2)=e 2,h (1)=-5e .作出函数h (x )的简图如图,数形结合可知,-5e<k <0.思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,m >0.(1)求函数f (x )的单调区间;(2)当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 (1)函数f (x )的定义域为(0,+∞), f ′(x )=x +mx -mx .当0<x <m 时,f ′(x )<0,函数f (x )单调递减; 当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ). (2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,题中问题等价于求函数F (x )的零点个数.F ′(x )=-x -1x -m x ,当m =1时,F ′(x )≤0,函数F (x )为减函数,因为F (1)=32>0,F (4)=-ln 4<0, 所以F (x )有唯一零点;当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,因为F (1)=m +12>0, F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即函数f (x )与g (x )的图象总有一个交点.课时精练1.(2022·贵阳模拟)已知函数f (x )=13x 3-12ax 2(a ≠0). (1)讨论f (x )的单调性;(2)当a =1时,g (x )=f (x )-2x +b ,讨论g (x )的零点个数.解 (1)f (x )的定义域为R ,f ′(x )=x 2-ax =x (x -a ),若a >0,当x ∈(-∞,0)∪(a ,+∞)时,f ′(x )>0,当x ∈(0,a )时,f ′(x )<0,若a <0,当x ∈(-∞,a )∪(0,+∞)时,f ′(x )>0,当x ∈(a,0)时,f ′(x )<0,综上,当a >0时,f (x )在(-∞,0),(a ,+∞)上单调递增,在(0,a )上单调递减, 当a <0时,f (x )在(-∞,a ),(0,+∞)上单调递增,在(a,0)上单调递减.(2)g (x )=13x 3-12x 2-2x +b , 令g (x )=0,所以b =-13x 3+12x 2+2x , 令h (x )=-13x 3+12x 2+2x , 则h ′(x )=-x 2+x +2=-(x -2)(x +1),所以h ′(2)=0,h ′(-1)=0,且当x <-1时,h ′(x )<0;当-1<x <2时,h ′(x )>0;当x >2时,h ′(x )<0,所以h (x )极小值=h (-1)=13+12-2=-76, h (x )极大值=h (2)=-13×8+12×4+4=103, 如图,当b <-76或b >103时,函数g (x )有1个零点; 当b =-76或b =103时,函数g (x )有2个零点; 当-76<b <103时,函数g (x )有3个零点.2.已知函数f (x )=e x (ax +1),曲线y =f (x )在x =1处的切线方程为y =bx -e.(1)求a ,b 的值;(2)若函数g (x )=f (x )-3e x -m 有两个零点,求实数m 的取值范围.解 (1)f (x )=e x (ax +1),则f ′(x )=e x (ax +1)+e x ·a =e x (ax +1+a ),由题意知⎩⎪⎨⎪⎧ f ′1=e 2a +1=b ,f 1=e a +1=b -e ,解得⎩⎪⎨⎪⎧a =1,b =3e , ∴a =1,b =3e.(2)g (x )=f (x )-3e x -m =e x (x -2)-m ,函数g (x )=e x (x -2)-m 有两个零点,相当于函数u (x )=e x ·(x -2)的图象与直线y =m 有两个交点,u ′(x )=e x ·(x -2)+e x =e x (x -1),当x ∈(-∞,1)时,u ′(x )<0,∴u (x )在(-∞,1)上单调递减;当x ∈(1,+∞)时,u ′(x )>0,∴u (x )在(1,+∞)上单调递增,∴当x =1时,u (x )取得极小值u (1)=-e.又当x →+∞时,u (x )→+∞,当x <2时,u (x )<0,∴-e<m <0,∴实数m 的取值范围为(-e,0).3.已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若函数f (x )在x =0处取得极值,求实数a 的值,并求此时f (x )在[-2,1]上的最大值;(2)若函数f (x )不存在零点,求实数a 的取值范围.解 (1)由f (x )=e x +ax -a ,得f ′(x )=e x +a .∵函数f (x )在x =0处取得极值,∴f ′(0)=e 0+a =0,∴a =-1,∴f (x )=e x -x +1,f ′(x )=e x -1.∴当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.易知f (x )在[-2,0)上单调递减,在(0,1]上单调递增,且f (-2)=1e 2+3,f (1)=e ,f (-2)>f (1), ∴f (x )在[-2,1]上的最大值是1e 2+3. (2)f ′(x )=e x +a .①当a >0时,f ′(x )>0,f (x )在R 上单调递增,且当x >1时,f (x )=e x +a (x -1)>0,当x <0时,取x =-1a, 则f ⎝⎛⎭⎫-1a <1+a ⎝⎛⎭⎫-1a -1=-a <0, ∴函数f (x )存在零点,不满足题意.②当a <0时,令f ′(x )=e x +a =0,则x =ln(-a ).当x ∈(-∞,ln(-a ))时,f ′(x )<0,f (x )单调递减;当x ∈(ln(-a ),+∞)时,f ′(x )>0,f (x )单调递增.∴当x =ln(-a )时,f (x )取得极小值,也是最小值.当x →-∞时,f (x )→+∞,当x →+∞时,f (x )→+∞,函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).4.(2022·潍坊模拟)已知函数f (x )=x 2-a sin x -2(a ∈R ). (1)若曲线y =f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线经过坐标原点,求实数a ; (2)当a >0时,判断函数f (x )在x ∈(0,π)上的零点个数,并说明理由.解 (1)f ′(x )=2x sin x -x 2-a cos x sin 2x, f ′⎝⎛⎭⎫π2=π,所以f (x )在点⎝⎛⎭⎫π2,f ⎝⎛⎭⎫π2处的切线方程为y =πx ,所以f ⎝⎛⎭⎫π2=π22, 即π24-a -2=π22,a =-π24-2. (2)因为x ∈(0,π),所以sin x >0,所以x 2-a sin x -2=0可转化为x 2-a -2sin x =0, 设g (x )=x 2-a -2sin x ,则g ′(x )=2x -2cos x ,当x ∈⎣⎡⎭⎫π2,π时,g ′(x )>0,所以g (x )在区间⎣⎡⎭⎫π2,π上单调递增.当x ∈⎝⎛⎭⎫0,π2时, 设h (x )=g ′(x )=2x -2cos x ,此时h ′(x )=2+2sin x >0,所以g ′(x )在x ∈⎝⎛⎭⎫0,π2上单调递增, 又 g ′(0)=-2<0,g ′⎝⎛⎭⎫π2=π>0,所以存在x 0∈⎝⎛⎭⎫0,π2使得g ′(x )=0且x ∈(0,x 0)时g (x )单调递减, x ∈⎣⎡⎭⎫x 0,π2时g (x )单调递增. 综上,对于连续函数g (x ),当x ∈(0,x 0)时,g (x )单调递减, 当x ∈(x 0,π)时,g (x )单调递增.又因为g (0)=-a <0,所以当g (π)=π2-a >0,即a <π2时,函数g (x )在区间(x 0,π)上有唯一零点,当g (π)=π2-a ≤0,即a ≥π2时,函数g (x )在区间(0,π)上无零点, 综上可知,当0<a <π2时,函数f (x )在(0,π)上有1个零点; 当a ≥π2时,函数f (x )在(0,π)上没有零点.。
高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

三、知识讲解
1.利用导数研究函数的单调性 描述: 一般地,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内,如果 f ′ (x) > 0 ,那么函数 y = f (x) 在这个区间内单调递增;如果 f ′ (x) < 0 ,那么函数 y = f (x) 在这个区间内单调递减. 注:在 (a, b) 内可导的函数 f (x) 在 (a, b) 上递增(或递减)的充要条件是 f ′ (x) ⩾ 0 (或 f ′ (x) ⩽ 0 ),x ∈ (a, b) 恒成立,且 f ′ (x) 在 (a, b) 的任意子区间内都不恒等于 0 . 例题: 求下列函数的单调区间: (1)f (x) = x 3 − 3x 2 − 9x + 5 ;(2)f (x) = x 函数的极值定义 已知函数 y = f (x) ,设 x 0 是定义域 (a, b) 内任一点,如果对 x0 附近的所有点 x,都有 f (x) < f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极大值,记作
y 极大 = f (x0 ).
并把 x 0 称为函数 f (x) 的一个极大值点. 如果在 x 0 附近都有 f (x) > f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极小值,记作
1 3 x − x2 + 2x + 1 . 3 解:(1)函数的定义域为 R.
(3)f (x) =
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1),
令 f ′ (x) > 0 ,解得
x < −1或x > 3,
令 f ′ (x) < 0 ,解得
−1 < x < 3.
第三章 一元函数的导数及其应用-【勤径学升】2025年高考数学一轮总复习易错小练(人教A版)

第三章一元函数的导数及其应用-【勤径学升】2025年高考数学一轮总复习易错小练(人教
A
版)
1.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十
八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登
山,但是从A处到B处会感觉比较轻松,而从B处到C处会感觉比较吃力.想想看,为
什么?你能用数学语言来量化BC段曲线的陡峭程度吗?
2.设曲线的一条切线过点,则此切线与坐标轴围成的三角形面积为()
A.B.C.D.
3.求下列函数的导数:
(1);
(2);
(3);
(4).
4.函数的递增区间是()
A.B.和
C.D.
5.若函数在区间上单调递减,则实数的取值范围是()
A.B.
C.D.
6.若是函数的极值点,则的值为
A.-2B.3C.-2或3D.-3或2
高考数学总复习(一轮)(人教A)教学课件第三章 一元函数的导数及其应用2 利用导数研究函数的零点

谢谢观看
结合函数的单调性可知,f(x)有唯一零点.
若a>0,因为函数在(0,
)上单调递减,在(
,+∞)上单调递增,
所以要使得函数有唯一零点,
只需f(x)min=f(
)=1-(a-1)ln
a+a-2=(a-1)(1-ln a)=0,
解得a=1或a=e.
综上,a的取值范围为(-∞,0]∪{1,e}.
所以函数f(x)在[-π,-
]上无零点;
当 x∈(- , ]时,f′(x)=ex+cos x>0,
所以函数f(x)在(-
Байду номын сангаас
,
]上单调递增,
而f(0)=0,所以函数f(x)在 (- , ] 上有1个零点.
综上所述,函数f(x)在[-π,
]上有1个零点.
(2)∀x≥0,f(x)+mx≥0恒成立,求实数m的取值范围.
综上所述,g(x)在(0,+∞)上只有1个零点.
利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、
最值或极值的符号确定函数零点的个数,此类问题在求解过程中可
以通过数形结合的方法确定函数存在零点的条件.
[针对训练] (2024·安徽模拟)已知函数f(x)=ex+sin x-1.
(1)判定函数f(x)在[-π,
增,所以g(x)≥g(0)=0,符合题意.若m<-2,则g′(0)<0,在x>0时,存在一
个区间(0,x′)使得g′(x)<0,与题意不符,故m<-2不合题意.综上可知,
第三章一元函数的导数及其应用第一节导数的概念及运算(讲)

第三章一元函数的导数及其应用第一节导数的概念及运算一.课标要求,准确定位1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想.2.体会极限思想.3.通过函数图象直观理解导数的几何意义.4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=,y=的导数.5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax+b))的导数.6.会使用导数公式表.二.考情汇总,名师解读1.导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型大多为选择题、填空题.若为解答题的第(1)问,难度较低,若为解答题第(2)问,则难度较高,多为公切线问题;2.近两年的新高考试卷中都没有单独考查导数的几何意义和导数的运算,但有与导数的单调性、最值等一起考查的.【二级结论】1.导数的两条性质(1)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期函数.(2)可导函数y=f (x)的导数为f ′(x),若f ′(x)为增函数,则f (x)的图象是下凹的;反之,若f ′(x)为减函数,则f (x)的图象是上凸的.2.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条.(2)过点处的切线,该点不一定是切点,切线至少有一条.3.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,|f′(x)|的大小反映了f(x)图象变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.4.几类重要的切线方程(1)y=x-1是曲线y=ln x的切线,y=x是曲线y=ln(x+1)的切线,…,y=x+n(2)y=x+1与y=ex是曲线y=ex的切线,如图2.(4)y=x-1是曲线y=x2-x,y=x ln x及y=1-的切线,如图4.+A.(4)(2) (2)2f ff f '<'-<C.(4) (2)(4)2f f f f-<<''7.已知()02f x '=,则()()000lim2x f x x f x x∆→-∆-=∆ .考向一 求具体函数的导数考向一曲线的切线的斜率和方程考向四 已知曲线的切线条数求参数范围(2022·新高考Ⅰ卷)23.若曲线()e x y x a =+有两条过坐标原点的切线,则是.(2021·新高考Ⅰ卷)【微点解读】【微点解读】x参考答案:【分析】将x 用2x -代入已知等式可构造方程组得到()()22g x g x ''-=-+,由此可得()g x '关于()2,0对称;结合()g x '为偶函数可推导得到()g x '是周期为8的周期函数,则可得D 正确;令2x =,代入()()5f x g x '+=中即可求得A 错误;令()()h x g x '=,由()()8h x h x ''+=可推导得到B 错误;设()()()4F x g x g x =++,由()()4g x g x ''+=-可知()()F x C C =∈R ,结合()20F -=可知()0F x =,由此可得()()4g x g x +=-,知C 错误.【详解】由()()()()5225f x g x f x g x ⎧+=⎪⎨--+=''⎪⎩得:()()()()225225f x g x f x g x ⎧-+-=⎪⎨-+='-'⎪⎩,()()22g x g x ''∴-=-+,()'∴g x 关于()2,0中心对称,则()()4g x g x ''+=--,()g x 为奇函数,()()g x g x ∴-=-,左右求导得:()()g x g x ''--=-,()()g x g x ''∴=-,()'∴g x 为偶函数,图象关于y 轴对称,()()()()()()()844g x g x g x g x g x g x ''''''⎡⎤∴+=--+=-+=---=-=⎣⎦,()'∴g x 是周期为8的周期函数,()()()88g x g x g x '''∴-=-=,D 正确;()()5f x g x '+= ,()()225f g '∴+=,又()()220g g ''-==,()25f ∴=,A 错误;令()()h x g x '=,则()()8h x h x +=,()()8h x h x ''∴+=,又()()5h x f x =-,()()858h x f x +=-+,()()8f x f x ''∴-+=-,即()()8f x f x +'=',B 错误;()()4g x g x ''+=- ,()()40g x g x ''∴++=,设()()()4F x g x g x =++,则()()()40F x g x g x '''=++=,()()F x C C ∴=∈R ,又()g x 为奇函数,()()()2220F g g ∴-=+-=,()0F x ∴=,即()()4g x g x +=-,C 错误.,求出函数导函数,即可求出切所以当0x <时的切线,只需找到1ey x =关于[方法三]:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由y ()1ln y x x x -=-,由()f x '表示函数图象上各点处的切线的斜率,象越来越平缓,即切线的斜率越来越小,所以选项C :()()21f f -【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围.【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e xy x a =+,切线斜率()001e x k x a =++,切线方程为:()()()00000e 1e x xy x a x a x x -+=++-,∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a <-或0a >,∴a 的取值范围是()(),40,-∞-+∞ ,故答案为:()(),40,-∞-+∞ 24.D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t ty e x t e =+-上,可得()()11t t t b ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,由图可知,当0a b e <<时,直线故选:D.解法二:画出函数曲线x y e =上方时才可以作出两条切线故选:D.【点睛】解法一是严格的证明求解方法,数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.;曲线的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不当时,代入曲线方程可求得切点,代入切线方程即可求得..。
2020高考数学大一轮复习第三章导数及其应用5第5讲利用导数研究不等式的恒成立问题课件理
对于不适合分离参数的不等式,常常将参数看作常数直接构造 函数,常用分类讨论法,利用导数研究单调性、最值,从而得 出参数范围.
等价转化法求参数(师生共研)
设 f(x)=ax+xlnx,g(x)=x3-x2-3. (1)如果存在 x1,x2∈[0,2]使得 g(x1)-g(x2)≥M 成立,求满足 上述条件的最大整数 M; (2)如果对于任意的 s,t∈12,2,都有 f(s)≥g(t)成立,求实数 a 的取值范围.
令 m(x)=xlnx,由 m′(x)=lnx+1>0 得 x>1e. 即 m(x)=xlnx 在1e,+∞上是增函数, 可知 h′(x)在区间12,2上是减函数, 又 h′(1)=0, 所以当 1<x<2 时,h′(x)<0; 当12<x<1 时,h′(x)>0.
即函数 h(x)=x-x2lnx 在区间12,1上单调递增,在区间(1,2) 上单调递减, 所以 h(x)max=h(1)=1, 所以 a≥1, 即实数 a 的取值范围是[1,+∞).
所以 g(x)在区间0,23上单调递减,在区间23,2上单调递增, 所以 g(x)min=g23=-8257, 又 g(0)=-3,g(2)=1, 所以 g(x)max=g(2)=1. 故[g(x1)-g(x2)]max=g(x)max-g(x)min=12172≥M, 则满足条件的最大整数 M=4.
(2)对于任意的 s,t∈12,2,都有 f(s)≥g(t)成立,等价于在区 间12,2上,函数 f(x)min≥g(x)max, 由(1)可知在区间12,2上,g(x)的最大值为 g(2)=1. 在区间12,2上,f(x)=ax+xlnx≥1 恒成立等价于 a≥x-x2lnx 恒成立. 设 h(x)=x-x2lnx, h′(x)=1-2xlnx-x,
高考数学大一轮复习第三章导数及其应用《利用导数研究不等式的恒成立问题》练习理含解析
第5讲 利用导数研究不等式的恒成立问题1.已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .a ≤1B .a ≥1C .a ≤2D .a ≥2解析:选A.由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min=4+a ,所以5≥4+a ,即a ≤1,故选A.2.(2019·吉林白山联考)设函数f (x )=e x ⎝⎛⎭⎪⎫x +3x-3-a x,若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x(x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x(x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e3.(2019·武汉市调研测试)已知函数f (x )=(x -1)ln x +ax (a ∈R ). (1)在a =0时,求f (x )的单调区间;(2)若f (x )>0在(0,+∞)上恒成立,求实数a 的取值范围. 解:(1)a =0时,f (x )=(x -1)ln x ,f ′(x )=ln x +(x -1)·1x =ln x -1x +1,设g (x )=ln x -1x+1,则g ′(x )=x +1x 2>0,所以g (x )在(0,+∞)上单调递增,而g (1)=0, 所以x ∈(0,1)时,g (x )<0,即f ′(x )<0,x ∈(1,+∞)时,g (x )>0,即f ′(x )>0,所以f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). (2)由(x -1)ln x +ax >0,得-ax <(x -1)ln x ,而x >0, 所以-a <(x -1)ln x x =ln x -ln xx.记h (x )=ln x -ln x x ,则h ′(x )=1x -1x ·x -ln xx 2=ln x +x -1x2,设m (x )=ln x +x -1(x >0),显然m (x )在(0,+∞)上单调递增,而m (1)=0, 所以x ∈(0,1)时,m (x )<0,h ′(x )<0,h (x )单调递减,x ∈(1,+∞)时,m (x )>0,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=0.所以-a <0,所以a >0,即实数a 的取值范围是(0,+∞). 4.已知函数f (x )=ax -e x(a ∈R ),g (x )=ln x x.(1)求函数f (x )的单调区间;(2)∃x 0∈(0,+∞),使不等式f (x )≤g (x )-e x成立,求a 的取值范围. 解:(1)因为f ′(x )=a -e x,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0得x =ln a .由f ′(x )>0得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0得f (x )的单调递减区间为(ln a ,+∞). (2)因为∃x 0∈(0,+∞),使不等式f (x )≤g (x )-e x, 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln x x 2,则问题转化为a ≤(ln xx2)max ,由h ′(x )=1-2ln xx3, 令h ′(x )=0,则x = e.当x 在区间(0,+∞)内变化时,h ′(x ),h (x )的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )单调递增极大值12e单调递减由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e .所以a ≤12e.5.(2019·河南郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).因为f ′(x )=1x-a ,所以f ′(1)=1-a=0,所以a =1,所以f ′(x )=1x -1=1-xx,令f ′(x )>0得0<x <1,令f ′(x )<0得x >1,所以f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1).令g (x )=ln x -x22+x -12-k (x -1)(x >1),则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x ,令h (x )=-x 2+(1-k )x +1,x >1,h (x )的对称轴为x =1-k 2.①当1-k 2≤1时,即k ≥-1,易知h (x )在(1,x 0)上单调递减,所以h (x )<h (1)=1-k ,若k ≥1,则h (x )≤0,所以g ′(x )≤0,所以g (x )在(1,x 0)上单调递减,所以g (x )<g (1)=0,不合题意.若-1≤k <1,则h (1)>0,所以必存在x 0使得x ∈(1,x 0)时g ′(x )>0,所以g (x )在(1,x 0)上单调递增,所以g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1时,即k <-1,易知必存在x 0,使得h (x )在(1,x 0)上单调递增.所以h (x )>h (1)=1-k >0,所以g ′(x )>0,所以g (x )在(1,x 0)上单调递增.所以g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围是(-∞,1).6.(2019·重庆六校联考)已知函数f (x )=12x 2-ax +(a -1)ln x .(1)讨论函数f (x )的单调性;(2)若对任意的x 1,x 2∈(0,+∞),x 1>x 2,恒有f (x 1)-f (x 2)>x 2-x 1,求实数a 的取值范围.解:(1)f ′(x )=x -a +a -1x =x 2-ax +a -1x =1x(x -1)[x -(a -1)],①若a >2,由f ′(x )>0,得0<x <1或x >a -1,由f ′(x )<0,得1<x <a -1,则f (x )在(0,1),(a -1,+∞)上单调递增,在(1,a -1)上单调递减;②若a =2,则f ′(x )≥0,f (x )在(0,+∞)上单调递增;③若1<a <2,由f ′(x )>0,得0<x <a -1或x >1,由f ′(x )<0,得a -1<x <1,则f (x )在(0,a -1),(1,+∞)上单调递增,在(a -1,1)上单调递减;④若a ≤1,由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1,则f (x )在(1,+∞)上单调递增,在(0,1)上单调递减.综上,若a >2,则f (x )在(0,1),(a -1,+∞)上单调递增,在(1,a -1)上单调递减;若a =2,则f (x )在(0,+∞)上单调递增;若1<a <2,则f (x )在(0,a -1),(1,+∞)上单调递增,在(a -1,1)上单调递减; 若a ≤1,则f (x )在(1,+∞)上单调递增,在(0,1)上单调递减. (2)f (x 1)-f (x 2)>x 2-x 1⇔f (x 1)+x 1>f (x 2)+x 2, 令F (x )=f (x )+x =12x 2-ax +(a -1)ln x +x ,对任意的x 1,x 2∈(0,+∞),x 1>x 2,恒有f (x 1)-f (x 2)>x 2-x 1等价于函数F (x )在(0,+∞)上是增函数.F ′(x )=x -a +1+a -1x =1x[x 2-(a -1)x +a -1],令g (x )=x 2-(a -1)x +a -1, 当a -1<0,即a <1时,x =a -12<0,故要使F ′(x )≥0在(0,+∞)上恒成立,需g (0)≥0,即a -1≥0,a ≥1,无解. 当a -1≥0,即a ≥1时,x =a -12≥0,故要使F ′(x )≥0在(0,+∞)上恒成立,需g ⎝⎛⎭⎪⎫a -12≥0,即⎝ ⎛⎭⎪⎫a -122-(a -1)·a -12+a -1≥0,化简得(a -1)(a -5)≤0, 解得1≤a ≤5.综上,实数a 的取值范围是[1,5].。
高考数学一轮复习第三章导数及其应用3.1导数的概念及运算
3.(2018课标全国Ⅰ,6,5分)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的 切线方程为 ( ) A.y=-2x B.y=-x C.y=2x D.y=x
2
ln
x
.
当0<x<1时,x2-1<0,ln x<0,所以g'(x)<0,故g(x)单调递减;
当x>1时,x2-1>0,ln x>0,所以g'(x)>0,故g(x)单调递增.
所以,g(x)>g(1)=0(∀x>0,x≠1). 所以除切点之外,曲线C在直线L的下方.
思路分析 (1)先求导,再求切线斜率,进而得出切线方程; (2)令g(x)=x-1-f(x),待证等价于g(x)>0(∀x>0,x≠1),再利用函数单调性和最值解决问题.
又g(e)=0,∴ln x= ex 有唯一解x=e.∴x0=e.
∴点A的坐标为(e,1).
方法总结 求曲线y=f(x)过点(x1,y1)的切线问题的一般步骤: ①设切点为(x0, f(x0)); ②求k=f '(x0); ③得出切线的方程为y-f(x0)=f '(x0)(x-x0); ④由切线经过已知点(x1,y1)求得x0,进而得出切线方程.
= 2
.
(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),
则y0=2 x03 -3x0,且切线斜率为k=6 x02-3,所以切线方程为y-y0=(6 -3)(x-x0), 因此t-y0=(6 x02 -3)(1-x0).整x理02 得4 x03 -6 x02 +t+3=0. 设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.
高考数学异构异模复习第三章导数及其应用3.2.2函数的极值与最值课件理
(2)由题可知 g(x)=(x2-a)e1-x, 则 g′(x)=(2x-x2+a)e1-x=(-x2+2x+a)e1-x. 根据题意,方程-x2+2x+a=0 有两个不同的实根 x1,x2(x1<x2), 所以 Δ=4+4a>0,即 a>-1,且 x1+x2=2,
注意点 极值点的含义及极值与最值的关系 (1)“极值点”不是点,若函数 f(x)在 x1 处取得极大值,则 x1 即为极大值点,极大值为 f(x1);在 x2 处取 得极小值,则 x2 为极小值点,极小值为 f(x2). (2)极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未 必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
第三章 导数及其应用
第2讲 导数的应用
考点二 函数的极值与最值
撬点·基础点 重难点
1 判断函数极值的方法 一般地,当函数 f(x)在点 x0 处连续时, (1)如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是 极大值 ; (2)如果在 x0 附近的左侧 f′(x)<0,右侧 f′(x)>0,那么 f(x0)是 极小值 . 2 求可导函数 f(x)的极值的步骤 (1)求导函数 f′(x); (2)求方程 f′(x)=0 的根; (3)检验 f′(x)在方程 f′(x)=0 的根的左右两侧的函数值的符号,如果 左正右负,那么函数 y=f(x)在这 个根处取得极大值;如果 左负右正 ,那么函数 y=f(x)在这个根处取得极小值,可列表完成. 3 函数的最值 在闭区间[a,b]上的连续函数 y=f(x),在[a,b]上必有最大值与最小值.在区间(a,b)上的连续函数 y =f(x),若有唯一的极值点,则这个极值点就是最值点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------
信达
第三章 导数及其应用
【知识网络】
-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------
信达
【考情分析】
近几年江苏高考对导数的考查十分重视,难度保持中等以上,考试中有时会涉
及一些文字型应用题,在数学思想上也有很强的体现.其考查情况如下:
年 份 试题 知识点 备注
2013 第20题 利用导数研究函数的性质
分类讨论思想、方程
思想
2014 第11,19题 导数的几何意义,利用导数研究函数的单调性 分类讨论思想
2015 第17,19,20(3)题 利用导数求函数的最值,导数的几何意义,利用导数研究函数的
单调性、极值、函数零点
分类讨论思想、函数
与方程思想
【备考策略】
1.由上面的考情分析可知,导数的复习重点是理解导数的概念,熟记导数的运
算法则和求导公式,熟练掌握导数的几何意义及在实际问题中的应用,会利用导数
研究函数的单调性与极(最)值,并且能够将导数知识灵活地运用于求解不等式等相
关内容
.
2.导数是求解函数的单调性、极(最)值问题及曲线的切线方程等最有力的工具
.
对导数问题的考查多以三次函数、二次函数为载体,常常伴随不等式的证明一起考
查,复习时应加强这方面的训练
.
3.导数是高中数学知识的一个重要交汇点,是联系多个章节内容及解决相关问
题的重要工具,它常与方程、不等式等内容交叉渗透、自然交汇.这类问题的解决,
首先利用导数判断其单调性(对方程而言首先构造函数),然后画出草图,利用数形
结合的思想,并根据图象与x轴的交点情况,建立参数方程组或不等式组进行求解
.
复习时要求学生领会应用函数和导数解决问题的思想方法,并将知识融会贯通
.