可靠性基础知识

合集下载

供电可靠性知识

供电可靠性知识

可靠性知识
1、定义:供电系统用户供电可靠性是指供电系统对用户持续供电的能力。

2、供电可靠性管理统计对象:中压用户—以10(20、6)kV电压受电的用户,称为中压用户。

3、可靠性数据的“三性”要求:及时性、准确性、完整性。

4、基础数据的收集:(1)线段台帐内容;(2)用户台帐内容。

5、可靠性地区特征划分:市中心1、市区2、城镇3、农村4。

6、基础数据管理:(1)中压线段分段原则和用户编码规则;(2)中压用户数据注册;(3)基础数据维护。

7、运行数据管理:(1)停电状态的分类;(2)停电设备的区域划分;(3)分步送电事件的录入;(4)陪停事件的录入;(5)运行数据注意事项。

8、对用户供电的可靠度指标记作RS1:
注:统计期间时间为天、月、年,如6月共30天X24小时=720小时
9、用户停电时间的长短指标记为AIHC-1:
注:总用户数为配网中压用户数的总和。

元器件可靠性基础知识大全总结

元器件可靠性基础知识大全总结

元器件可靠性基础知识大全总结元器件是整机的基础,它在制造过程中可能会由于本身固有的缺陷或制造工艺的控制不当,在使用中形成与时间或应力有关的失效。

为了保证整批元器件的可靠性,满足整机要求,必须把使用条件下可能出现初期失效的元器件剔除。

元器件的失效率随时间变化的过程可以用类似"浴盆曲线"的失效率曲线来描述,早期失效率随时间的增加而迅速下降,使用寿命期(或称偶然失效期)内失效率基本不变。

筛选的过程就是促使元器件提前进入失效率基本保持常数的使用寿命期,同时在此期间剔除失效的元器件。

事物的好与坏的判别必须要有标准去衡量。

判断元器件的失效与否是由失效判别标准一一失效判据所确定的。

失效判据是质量和可靠性的指标,有时也有成本的内涵,所以元器件失效不仅指功能的完全丧失,而且指电学特性或物理参数降低到不能满足规定的要求。

简而言之,产品失去规定的功能称为失效。

在选择可靠性筛选次序时先先了解一下元器件失效都有哪些?失效一般分为现场失效和试验失效。

现场失效一般是在装机以后出现的失效,因此,我们在元器件测试筛选过程中只考虑试验失效。

试验失效主要是封装失效和电性能失效。

封装失效主要依靠环境应力筛选来检测。

所谓环境应力筛选,即在筛选时选择若干典型的环境因素,施加于产品的硬件上,使各种潜在的缺陷加速为早期故障,然后加以排除,使产品可靠性接近设计的固有可靠性水平,而不使产品受到疲劳损伤。

在正常情况下是通过在检测时施加一段时问的环境应力后,对外观的检查(主要是镜检,根据元器件的质量要求,采用放大10倍对元器件外观进行检测;也可以根据需要安排红外线及X射线检查),以及气密性筛选来完成,当有特殊需要时,可以增加一些DPA(破坏性物理分析)等特殊测试。

可靠性工程

可靠性工程
随机变量:设试验的样本空间为Ω,在Ω上定义一个单值 实函数X=X(e),e∈Ω,对试验的每个结果e,X=X(e)有确定 的值与之对应。由于实验结果是随机的,那X=X(e) 的取值也是随机的,我们便称此定义在样本空间 上的单值 实函数X=X(e)为一个随机变量。
分布函数 :设X为随机变量,对任意实数χ,则称函数 F (χ)=P{X≤χ} 为随机变量X的分布函数。
二、可靠性统计基础知识
可靠性统计基础知识
1. 概率基础知识 2. 随机变量及其分布 3. 统计基础知识 4. 参数估计 5. 假设检验
1、概率基础知识
随机事件及其概率
随机实验:满足下列三个条件的试验称为随机试验; (1)试验可在相同条件下重复进行;(2)试验 的可能结果不止一个,且所有可能结果是已知 的;(3)每次试验哪个结果出现是未知的;随 机试验以后简称为试验,并常记为E。
失效率:失效率是工作到某时刻尚未失效的产品, 在该时刻后单位时间内发生失效的概率。一般记 为λ,它也是时间t的函数,故也记为λ(t),称为失效率 函数,有时也称为故障率函数或风险函数;它反映t 时刻失效的速率,也称为瞬时失效率。
一、可靠性工程概述
(三)浴盆曲线 对某一类产品而言,产品在不同的时刻有不同的失 效率(也就是失效率是时间的函数),对电子产品 而言,其失效率符合浴盆曲线分布 (如下图):
威布尔分 布(Ⅲ型 极值分 布)W(k,a
,b)
3、统计基础知识
研究对象的全体称为总体或母体,组成总体的每个基本单位 称为个体。
(1)按组成总体个体的多寡分为:有限总体和无限总体;
(2)总体具有同质性:每个个体具有共同的观察特征,而 与其它总体相区别;
(3)度量同一对象得到的数据也构成总体,数据之间的差 异是绝对的,因为存在不可消除的随机测量误差;

1系统可靠性基本知识

1系统可靠性基本知识

故障数。
2020/1/16
可靠性设计
11
累积故障分布函数
产品在规定的条件下和规定的时间内,丧 失规定功能的概率称为累积故障概率(又 叫不可靠度)。
依定义可知,产品的累积故障概率是时间的函 数,即
r(t) F(t)
N0
显然,以下关系成立:
R(t)F(t)1与累积故障分布函数的性质 R(t)与F(t)的性质如下表所示:
Ma=0.69 14min30s
14000m
Ma=0.584 22min36s
1200m
2020/1/16
时间(分钟) 飞机投放炸弹事件的任务剖面示例
可靠性设计
9
可靠性的度量——可靠度
可靠度
产品在规定的条件下和规定的时间内,完成规 定功能的概率称为可靠度。依定义可知,系统 的可靠度是时间的函数,表示为:
确定产品的寿命分布类型有重要意义,但要判断其属于 哪种分布类型仍很困难。目前常用方法有两种,一种是 通过失效物理分析来证实该产品的故障模式或失效机理 近似地符合于某种类型分布的物理背景。另一种方法是 通过可靠性试验,利用数理统计中的判断方法来确定其 分布。
2020/1/16
可靠性设计
34
常用的产品寿命分布
t
(系统)产品典型的故障率、可靠度和故障密度函数曲线
2020/1/16
可靠性设计
25
平均故障前时间(MTTF)
设N0个不可修复的产品在同样条件下进行试验,测
得其全部故障时间为t1,t2, …tN0。其平均故障前时间
(用符号TTF表示)为:
1 N0
TTF

N0
ti
i 1
当N0趋向无穷时,TTF为产品故障时间这一随机变量的数 学期望,因此,

质量管理之可靠性基础知识

质量管理之可靠性基础知识

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载质量管理之可靠性基础知识地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一节可靠性定义一、可靠性定义产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。

从定义本身来说,它是产品的一种能力,这是一个很抽象的概念;我们可以用个例子(100个学生即将参加考试)来理解这个定义,可靠性就是指:100个学生的考分的平均是多少?对这个平均分的准确性有多大把握?分数越高、把握越大,可靠性就越高。

我国的可靠性工作起步较晚,20世纪70年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。

其他行业可靠性工作起步更晚,差距更大,与先进国家差距20~30年,虽然国家已制订可靠性标准,但尚未引起所有企业的足够重视。

对产品而言,可靠性越高就越好。

可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。

二、可靠性的重要性调查结果显示(如某公司市场部2001年调查记录):“对可靠性的重视度,与地区的经济发达程度成正比”。

例如,英国电讯(BT)关于可靠性管理/指标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等;泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。

产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。

可靠性好的产品,不但可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。

可靠性工程基础知识

可靠性工程基础知识

t
b<0
b=0
b>0
Duane可靠性增长模型
lnC(t)=a+blnt
dN ( t ) dC( t ) t a b t (b 1)e t dt dt
11
基本概念(续)
软件与硬件可靠性问题对比
特征 失效原因 磨损 硬件 物理原因(如失真、断裂、 漂移) 会受到磨损 软件 主要为设计缺陷 无磨损 开发或升级后失效率随时间 单调下降 可靠性基本不受影响 无法由物理知识预测 采用冗余设计应保证冗余软 件的高度独立性,否则无助 于可靠性提高
17
可靠性工程发展历史(续)
深入发展期(20世纪80年代以后) 可靠性向更广泛和更深入的方向发展,将可靠性、维修性 和保障性有机结合在一起,形成可靠性系统工程。进入21 世纪以来,几乎所有工业领域都应用了可靠性技术。可靠 性工程的研究主要体现在集成化、协同化、系统和精确化。
全寿命周期可靠性管理 状态监测、维修决策和综合保障 高复杂系统可靠性研究 精确评估和控制 可靠性和经济性的协同化
从广义质量观看,质量涵盖可靠性;从狭义质量观看,质 量只是“符合性”。 传统质量管理是以制造过程的程序化、规范化为目标,试 图通过使工序稳定来提高质量。而可靠性则是研究消除故 障的对策,要在论证、设计、工艺中就采取措施防止缺陷 的发生,产品的可靠性是在设计阶段就已经决定了。
质量管理更多考虑“今天质量”,可靠性侧重于考虑“明 天的质量”。质量概念没有考虑时间因素,控制的是产品 出厂时是否合格以及质保期内故障情况,对于质保期之后 发生故障不能保证,可靠性问题关注产品的寿命、疲劳、 老化。
时间相关性 失效率为常数 环境因素 振动、冲击、腐蚀、温度、 湿度等影响可靠性 故障处理的一般手段,适当 冗余可以提高可靠性,大量 冗余受共因因素影响

实用电子产品可靠性基础知识

(=n tA ) nt/ - (] tA (/ - (] t t [(+ t- (]N nt/ = nt[ nt/ ) )[ )A )N )A 23相 互关 系 .
A= B / B + T ) iMT F( MT F MT R
A= B/ T FM Y+ D ) 0 MT F( B + T R ML T M 其中 MTf ' R为平均修复时间 , D ML T为平均维修保障延误时间。 当 M D = 时 , 0 A .这就说 明了合 同参数与实际使用之 间的 LT0 A= i
21年第 2 期 01 9
科 技 圈向导
◇科技论坛◇
实 用电子产品可靠性基础知识
马 宁
( 国 电波 传 播 研 究所 山东 中
青岛
2 60 1 6 1 7
【 要】 摘 本文主要 阐述 了电子产品可靠性常用基础概念 、 常用公 式及 实施方法 , 系统地介 绍了电子产品可靠性 工作的流程 。 较为 对于初步
31 . 建立可靠性模型的作用和意义 2 常用参数 . 1 ( 建立系统可靠性模型是可靠性工程重要工作项 目, a ) 是可靠性保 实际工作中我们 常遇到 的表征电子系统产品可靠性的工程技术 。 证大纲规定的必做的工 作项 目之一 。 类型 ()建立系统可靠性工作模 型是可靠性指标与维修性指标分配和 b 类别 参数名称 预计 的基础工作。 使用参数 合 同参数 ( 建立系统可靠性模型是可靠性分析、 c ) 估算 、 评价的工具。 固有可用度 ( i A) 、 / f 建立系统可靠性模 型是对系统最佳方案权衡和优化设计首先 d ) 可用性 使用可用度 ( 0 A) 、 / 应完成的工作项 目。 ( 建立系统可靠性模型是 进行可靠性设计重要措施之一 。 e ) 如冗余 基本可靠性 平均故障间隔时I MT F  ̄( R ) 、 / 、 / 设计等。 耐久性 使用寿命 、 / 、 / 32建立可靠性模型的步骤 .

结构可靠性设计基础教案_第1章_概述


完成预定功能的能力。包括安全性、适用性和耐久性三项要
求。 • 结构可靠度是结构可靠性的概率度量,其定义是:结构在规
定的时间(设计使用年限)内,在规定的条件下(正常设计、
正常施工、正常使用维护),完成预定功能的概率,称为结 构可靠度。 必须指出:结构可靠度与使用年限长短有关,结构可靠 性设计标准所指的结构可靠度或结构失效概率,是对结构的 设计使用年限而言的,当结构的使用年限超过设计使用年限 后,结构失效概率可能较设计预期值增大。
1. 1 引言
1. 工程结构的定义
• 工程结构在相当长的使用期内,需要安全地承受各 种使用荷载,经受气象作用,以及波浪、地震等自 然作用。它们的安全与否,不但影响工农业生产, 而且还关系到人身安危。 • 对结构的要求:结构及其构件具备在各种外加作用 下防止破坏倒塌、保护人员财产不受损失的能力。
• 特别是对一些重要的纪念性建筑物,作为一个划时 代的文化特征,将流传后世,对安全、适用、美观、 耐久等方面,还有更高的要求。
1. 1 引言
3.结构设计计算的两个方面
KS ≤R 以受弯构件为例,其一般表达式为 M≤Mp/K 式中: Mp—— 截面破坏时的抵抗弯矩 K —— 构件承载力安全系数 M —— 标准荷载作用下的截面弯矩。
1. 1 引言
3.结构设计计算的两个方面
工程实测 实践经验 可靠性 结构设计 统计数据 经济性 数学理论 实验数据 专家系统
1. 3结构可靠性的基本概念及基本术语
1.3 结构可靠的基本概念及基本术语
结构的可靠性与可靠度 设计使用年限与设计基准期 结构的功能要求 设计状况 作用和作用效应 结构抗力 极限状态 极限状态方程
1.3 结构可靠的基本概念及基本术语

可靠性工程师考试主要科目概览

可靠性工程师考试主要科目概览可靠性工程师考试涉及的考试科目通常涵盖了可靠性工程领域的多个方面,以确保考生具备全面的可靠性工程知识和技能。

根据中国质量协会(简称中质协)举办的CRE考试认证的相关资料,考试科目可以大致归纳为以下几个主要方面:一、可靠性基础理论●可靠性概论:包括可靠性工程的重要性、发展概况、基本概念、故障及失效的基本概念、产品可靠性度量参数、可靠性要求确定、产品故障率浴盆曲线等。

●可靠性数学基础:涉及概率论基础知识、可靠性常用的离散型分布(如二项分布、泊松分布)和连续型分布(如正态分布、指数分布、对数正态分布、威布尔分布)、可靠性参数的点估计和区间估计等。

二、可靠性设计与分析●可靠性建模:熟悉可靠性建模方法,包括各种可靠性模型的构建和应用。

●可靠性预计与分配:掌握常用可靠性预计和分配方法,确保产品在设计阶段就具备预期的可靠性水平。

●失效模式与影响分析:包括潜在失效模式影响及危害性分析(FMEA)、失效树分析(FTA)等,用于识别产品设计和制造过程中的潜在失效模式及其影响。

●可靠性设计准则:熟悉各种可靠性设计准则,如降额设计、热设计、耐环境设计等,以提高产品的可靠性。

三、可靠性试验与评价●可靠性试验基本概念:了解不同类型的可靠性试验,包括环境应力筛选试验(ESS)、可靠性增长试验(TAAF)、寿命试验和加速寿命试验(ALT)等。

●可靠性鉴定与验收试验:掌握可靠性鉴定试验和验收试验的方法和流程,确保产品满足规定的可靠性要求。

四、软件可靠性与人-机可靠性●软件可靠性:包括软件可靠性的基本概念、失效原因、设计方法及验证等。

●人-机可靠性:涉及人-机可靠性基本概念、人为差错概念及人-机可靠性设计基本方法等。

五、数据收集、处理与应用●数据类型与收集:熟悉数据类型、来源及收集方法。

●数据处理与评估:掌握数据的处理与评估技术,以支持可靠性分析和决策。

●数据管理及应用:了解数据管理的基本原则和应用场景。

可靠性基础知识-3A


Test Center NBDC QUANTA
6
Quanta Confidential
可靠性基本概念
维修性:产品在规定的条件下和规定的时间内, 维修性:产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修 保持或恢复执行规定状态的能力。 时,保持或恢复执行规定状态的能力。 规定条 具、备件、技术资料等。 规定的程序和方法:是按技术文件规定采用的维修工作类型、步骤、 方法等。 维修性是产品质量的一种特性,即由产品设计赋予的使其维修简便、迅 速、安全和经济的固有特性。
可靠性基本概念
可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。 可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。 “一个产品、三个规定” 一个产品、三个规定” 产品:指硬件和流程性材料等有形产品以及软件等无形产品。 规定条件:包括使用时的环境条件和工作条件. 规定时间:广义的工作时间,除时间外,还可以是里程,次数等。 规定功能:指产品规格书中给出的正常工作性能指标。 衡量一个产品可靠性水平时一定要给出故障(失效) 判据。因此,在规定产 品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的 说明。
1 MTTR = n
∑ ti
i =1
n
n
Test Center NBDC QUANTA
ti :第i次修复时间
:修复次数
12
Quanta Confidential
可靠性基本概念
浴盆曲线 大多数不可修复产品的故障率随时间的变化曲线形似浴盆,故将故障率曲线称 大多数不可修复产品的故障率随时间的变化曲线形似浴盆, 为浴盆曲线。 为浴盆曲线。
工程试验 可靠性试验 统计试验
Test Center NBDC QUANTA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质量人员必读-------可靠性基础知识 2012-2-2 09:26| 发布者: 小编D| 查看: 3417| 评论: 88|原作者: 昆山默默|来自: 6SQ

摘要: 产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。从定义本身来说,它是产品的一种能力,这是一个很抽象的概念;我们可以用个例子(100个学生即将参 ... 第一节 可靠性定义

一、可靠性定义 产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。从定义本身来说,它是产品的一种能力,这是一个很抽象的概念;我们可以用个例子(100个学生即将参加考试)来理解这个定义,可靠性就是指:100个学生的考分的平均是多少?对这个平均分的准确性有多大把握?分数越高、把握越大,可靠性就越高。 我国的可靠性工作起步较晚,20世纪70年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。其他行业可靠性工作起步更晚,差距更大,与先进国家差距20~30年,虽然国家已制订可靠性标准,但尚未引起所有企业的足够重视。

对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。

二、可靠性的重要性 调查结果显示(如某公司市场部2001年调查记录):“对可靠性的重视度,与地区的经济发达程度成正比”。例如,英国电讯(BT)关于可靠性管理/指标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等;泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。

产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。

随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性和安全性。日本的汽车、家用电器等产品,虽然在性能、价格方面与我国彼此相仿,却能占领美国以及国际市场。主要的原因就是日本的产品可靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地,就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存和发展的大问题,也是关系到国家经济兴衰的大问题。(呵呵,这是唱高调的内容,可以不看的„„)

三、可靠性指标 衡量产品可靠性水平有好几种标准,有定量的,也有定性的,有时要用几种标准(指标)去度量一种产品的可靠性,但最基本最常用的有以下几种标准。

1.可靠度R(t);它是产品在规定条件和规定时间内完成规定功能的概率。一批产品的数量为N,从t = 0时开始使用,随着时间的推移,失效的产品件数逐渐增加,而正常工作的产品件数n(t)逐渐减少,用R(t)表示产品在任意时刻t的可靠度。 2.可靠寿命[CR(tr)];它与一般理解的寿命有不同含义,概念也不同,设产品的可靠度为R(t),使可靠度等于规定值r时的时间tr的,即被定义为可靠寿命。

3.失效率(故障率)λ(t);它是指某产品(零部件)工作到时间t之后,在单位时间△t内发生失效的概率。 4.有效寿命与平均寿命;有效寿命一般是指产品投入使用后至达到某规定失效率水平之前的一段工作时间。而平均寿命MTTF对于不可修复产品,指从开始使用直到发生失效这一段工作时间的平均值;对于可修复的产品,是指在整个使用阶段和除维修时间之后的各段有效工作时间的平均值。

5.平均无故障工作时间MTBF;是指相邻两次故障之间的平均工作时间,也称为平均故障间隔。它仅适用于可维修产品。同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF。其他如可靠度、有效度、维修度、平均维修时间等也是衡量产品可靠性水平的一种标准,但是一般以可靠寿命失效率就足以说明产品可靠性程度了。

1. 平均故障间隔时间; 可维修的产品,其可靠性主要的参数是MTBF(Mean Time Between Fail),即平均故障间隔时间,也就是两次维修间的平均时间;不可维修的产品,用MTTB(Mean Time To Fail);两个参数的计算没有区别,下文只提到MTBF。MTBF越大,说明产品的可靠性越高。

可以用以下理想测试来精确测试一批产品的MTBF;即将该批产品投入使用,当该批产品全部出现故障以后(假如第1个产品的故障时间为t1,第2个产品的故障时间为t2,第n个产品的故障时间为tn),计算发生故障的平均时间,则

由上式可以看出,理想测试就是用全部的时间和全部的故障数来算出精确的MTBF; 2、失效密度λ 另外一个常用的参数是λ,它是指在产品在t时刻失效的可能性,是失效间隔时间的倒数,也就是:λ=1/MTBF。 对某一类产品而言,产品在不同的时刻有不同的失效率(也就是失效率是时间的函数),对电子产品而言,其失效率符合浴盆曲线分布(如下图):

浴盆曲线,分为三部份(I、II、III三部份): 第I部份是早期失效阶段。这段时间内,从外形上看,在失效率从一个很高的指标迅速下降;从物理意义上理解,由于少数产品在制作后,存在一些制程、运输、调试等问题,产品有比较明显的缺陷,在投入使用的最初期,这缺陷很快就显露出来,随着时间的增长,这些明显的缺陷越来越少,也就形成了“失效率迅速下降”的现象;

第II部份是中期稳定阶段。这段时间内,产品的失效率稳定在一个较低水平;从物理意义上理解,当少数产品的明显缺陷显露出来后,剩下的就是正常的产品,这部份产品可以较稳定、持久地工作,所以失效率也稳定在一个较低水平;

第III部份是后期失效阶段;这段时间内,产品的失效率迅速上升;从物理意义上理解,到了后期,产品经过长时间的工作、磨损、老化,慢慢接近寿命终点,随着时间的增加(Tmax以内),到达寿命终点的产品越来越多,失效率也就随之上升; 知道了λ,就可以找到产品连续工作 t。t,此时已经失效的概率为F(t)=1-R(t)=1-e-了t时间后、还正常的概率为R(t)=e- t是一个经验公式,一般电子产品的寿命服从这一指数分布,其它分布下文再叙;R(t)=e-

第二节 可靠性测试 可靠性测试应该在可靠性设计之后,但目前我国的可靠性工作主要还是在测试阶段,这里将测试放在前面(目前大部分公司都会忽略最初的可靠性设计,比如我们公司,设计的时候,从来都没有考虑过可靠性,开发部的兄弟们不要拿砖头仍我„„这是实话,只有在测试出现失效后才开始考虑设计)。

为了测得产品的可靠度(也就是为了测出产品的MTBF),我们需要拿出一定的样品,做较长时间的运行测试,找出每个样品的失效时间,根据第一节的公式计算出MTBF,当然样品数量越多,测试结果就越准确。但是,这样的理想测试实际上是不可能的,因为对这种测试而言,要等到最后一个样品出现故障――需要的测试时间长得无法想象,要所有样品都出现故障——需要的成本高得无法想象。 为了测试可靠性,这里介绍:加速测试(也就增加应力*),使缺陷迅速显现;经过大量专家、长时间的统计,找到了一些增加应力的方法,转化成一些测试的项目。如果产品经过这些项目的测试,依然没有明显的缺陷,就说明产品的可靠性至少可以达到某一水平,经过换算可以计算出MTBF(因产品能通过这些测试,并无明显缺陷出现,说明未达到产品的极限能力,所以此时对应的MTBF是产品的最小值)。其它计算方法见下文。(*应力:就是指外界各种环境对产品的破坏力,如产品在85℃下工作受到的应力比在25℃下工作受到的应力大;在高应力下工作,产品失效的可能性就大大增加了);

一、环境测试 产品在使用过程中,有不同的使用环境(有些安装在室外、有些随身携带、有些装有船上等等),会受到不同环境的应力(有些受到风吹雨湿、有些受到振动与跌落、有些受到盐雾蚀侵等等);为了确认产品能在这些环境下正常工作,国标、行标都要求产品在环境方法模拟一些测试项目,这些测试项目包括:

1 高温测试(高温运行、高温贮存); 2 低温测试(低温运行、低温贮存); 3 高低温交变测试(温度循环测试、热冲击测试); 4 高温高湿测试(湿热贮存、湿热循环); 5 机械振动测试(随机振动测试、扫频振动测试); 6 汽车运输测试(模拟运输测试、碰撞测试); 7 机械冲击测试; 8 开关电测试; 9 电源拉偏测试; 10冷启动测试; 11盐雾测试; 12淋雨测试; 13尘砂测试; 上述环境试验的相关国家标准如下(部分试验可能没有相关国标,或者是我还没有找到):

1、 低温试验 按GB/T 2423.1—89 《电工电子产品环境试验 第二部分:试验方法 低温试验》; GB/T 2423.22—87 《电工电子产品环境试验 第二部分:试验方法 温度变化试验方法》 进行低温试验及温度变化试验。 温度范围:-70℃~10℃。

2、 高温试验 按GB/T 2423.2—89 《电工电子产品环境试验 第二部分:试验方法 高温试验》; GB/T 2423.22—87 《电工电子产品环境试验 第二部分:试验方法 温度变化

相关文档
最新文档