弹塑性力学(工学+专业+工程硕士研究生)复习题+

弹塑性力学(工学+专业+工程硕士研究生)复习题+
弹塑性力学(工学+专业+工程硕士研究生)复习题+

复习题

一、选择题

01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。

A .18个;

B .9个;

C .6个;

D .2个;

02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。

A .一般不等于零;

B .等于极大值;

C .等于极小值;

D .必定等于零 ; 03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。

A .π/2;

B .π/4;

C .π/6;

D .π;

04.正八面体单元微截面上的正应力σ8为:( )。

A .零;

B .任意值;

C .平均应力;

D .极值;

05.从应力的基本概念上讲,应力本质上是( )。

A .集中力;

B .分布力;

C .外力;

D .内力;

06.若研究物体的变形,必须分析物体内各点的( )。

A .线位移;

B .角位移;

C .刚性位移;

D .变形位移;

07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。

A .一定产生变形;

B .不一定产生变形;

C .不可能产生变形;

D .一定有平动位移;

08.弹塑性力学中的几何方程一般是指联系( )的关系式。

A .应力分量与应变分量;

B .面力分量与应力分量;

C .应变分量与位移分量;

D .位移分量和体力分量;

09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。求解主应变的方程可得出三个根。这三个根一定是( )。

A .实数根;

B .实根或虚根;

C .大于零的根;

D .小于零的根;

10.固体材料受力产生了塑性变形。此变形过程( )。

A .必定要消耗能量;

B .必定是可逆的过程;

C .不一定要消耗能量;

D .材料必定会强化;

11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。

A .脆性材料;

B .金属材料;

C .岩土材料;

D .韧性材料;

12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。

A .理想弹塑性力学模型;

B .理想线性强化弹塑性力学模型;

C .理想弹性模型;

D .理想刚塑性力学模型;

13.固体材料的弹性模E 和波桑比ν(即横向变形系数)的取值区间分别是:( )。

. 0, 00.5; . 0, 11;. 0, 0.50.5; . 0, 00.5;

A E

B E

C E

D

E νννν<<<>-<<<-<<><< 14.应力分量等于弹性势函数对相应的应变分量的一阶偏导数(0ij ij

U σε?=?)此式是用于( )。 A .刚体; B .弹性体; C .弹塑性体; D .刚塑性体 ;

15.主应力空间π 平面上各点的( )为零。

A .球应力状态m ij σδ;

B .偏斜应力状态ij s ;

C .应力状态ij σ;

D .应变状态ij ε;

16.在π 平面上屈服曲线具有的重要性质之一是( )。

A .坐标原点被包围在内的一条封闭曲线;

B .一条封闭曲线;

C .坐标原点被包围在内一条开口曲线;

D .一条封闭折线;

17.Tresca 屈服条件表达式中的k 为表征材料屈服特征的参数,其确定方法为:若用简单拉伸试

验来定,则为( )

22. ; . . ; . s s A k B k C k D k στ====18.加载和加载曲面的概念是针对( )而言的。

A .理想刚塑性材料;

B .理想弹塑性材料;

C .强化材料;

D .岩土材料 ;

19.研究表明:应力分量ij σ等于弹性应变比能函数U 0对相应的应变分量函数ij ε求一阶偏导数。

表达式为:0ij ij

U σε?=?;此关系式实质上就是( )。 A .功能关系; B .线形关系;C .本构关系; D .平衡关系;

20. 材料经过连续两次拉伸变形,第一次的真实应变为ε1=0.1,第二次的真实应变为ε2=0.25,

则总的真实应变ε =( )。

A .-0.15;

B .0.15;

C .0.35;

D .0.025;

二、计算题

01. 已知应力张量511140104ij σ--????=-????-??

MPa ,求应力张量的三个不变量;已知其中一个主应力为3MPa ,求另外两个主应力大小;求第二主应力的方向;求最大剪应力,并判断是否为纯剪切。

02. 已知物体位移场:22132312(), (), u x x v x x w x x =-=+=-,内有一点P(0,2,-1)。

求过该点的应变张量εij ;主应变及应变偏量的第二不变量并和偏应变张量。

(提示:按定义求解)

03. 物体中某点的主应力分别为(-100、-200、-300)MPa ,该材料的单向拉伸的屈服应力

为 σs =190Mpa ,用Tresca 屈服准则或Mises 屈服准则判断该点状态(弹性/塑性)。

(提示:由等效应力判断)

04. 物体中某点的主应力分别为(400、200、200)MPa ,当它对应的应力为(300、100、

0)MPa 时是加载还是卸载(分别用Tresca 屈服准则和Mises 屈服准则判断)。

(提示:看屈服函数的全微分是否大于零)

橡皮方块放在同体积的刚性盒内,上面用刚性盖密封,使盖上面承受均匀压力。设橡皮与盒和盖间雾摩擦,试求盒内两侧所受到的压力,以及橡皮块的体积应变,若将橡皮换成刚体或不可压缩

体时,其体积应变等于多少?为什么?(提示:边界应变等于0,利用各向同性体弹性本构关系)

证明不可压缩物体的泊松比为0.5(提示利用本构方程和体积应变概念)

对于线性强化模型,已知Es : E = 1 : 100,(1)给定应力路径为:0→1.5σs →0→σs →0,求对应的应变值;(2)给定应变路径:0→51εs →0→21εs →0,求对应的应力值。

提示:写出两段直线的方程。

如图等截面杆截面积A 在x=a (b>a )处作用一逐渐增加的力F ,求左端反力与外力的关系,设材料为理想弹塑性或线性强化弹塑性材料。

已知物体中某点的应力张量为:10010010010010ij σ-????=-????-??

,试求主应力值以及应力不变量I j 和偏应力不变量I ’j 。

证明:应力张量和应力偏张量的主方向互相重合。(提示:具有共同的特征方程)

证明:当一点应力状态对应的3个主应力大小不等时,时个主应力相互垂直。(提示课件中有证明)

已知物体中某点的应力张量为:5000050000-100ij σ????=??????

,试求该点的八面体上的总应力、正应力和剪应力。

(提示:八面体各面是等倾面)

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学习题题库加答案汇编

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 6073222226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+?=----+=-?+=-?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =500300800300 03008003001100-???? +-?? ??--? ? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 题—图 16

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 20XX 年 1 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2 从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5 应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形? 加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。 卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程? 协调方程和边界条件。 8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。 9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。

弹塑性力学试卷

二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、; 五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为:

式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑 的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图 4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作 用。设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用柱坐 标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为=400MPa。试求此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M s。 (提示:Mises屈服条件:;) 填空题 6 平衡微分方程 选择ABBC

弹塑性力学试题

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+-=+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量、、不是互相独立的,而是相关,否则导致位移不单值,不连续。 6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。

卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。 8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。 9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。 10什么是随动强化?试用单轴加载的情况加以解释? 2004 1对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合? ,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。 2应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3虚位移原理等价于哪两组方程?这说明了什么?

弹塑性力学复习思考题

研究生弹塑性力学复习思考题 1. 简答题: (1) 什么是主平面、主应力、应力主方向?简述求一点主应力的步骤? (2) 什么是八面体及八面体上的剪应力和正应力有何其特点 (3) 弹性本构关系和塑性本构关系的各自主要特点是什么? (4) 偏应力第二不变量J 2的物理意义是什么? (5) 什么是屈服面、屈服函数?Tresca 屈服条件和Mises 屈服条件的几何 与物理意义是什么? (6) 什么是Drucker 公设?该公设有何作用?(能得出什么推论?) (7) 什么是增量理论?什么是全量理论? (8) 什么是单一曲线假定? (9) 什么是平面应力问题?什么是平面应变问题?在弹性范围内这两类问题之间有 和联系和区别? (10) 论述薄板小挠度弯曲理论的基本假定? 二、计算题 1、已知P 点的应力张量为 311102120ij σ?? ??=?????? 求该点的主应力、主方向及最大剪应力 2、 利用应变协调条件检查其应变状态是否存在存在? , (1) x =Axy 2 , y =Bx 2 y , xy =0,A 、B 为常数 222(),,2x y xy k x y ky kxy εεγ=+== k 为常数 (2)222 22 5ij x y xz y z z xz z ε????=????? ?

3、写出如下问题的边界条件 (a)用直角坐标,(b )用极坐标 x y l h O α P q x y α α 0τ l θ r θr θ r

4、 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比=0)。 x y b b p y x a b A B C O (第4题图) (第6题图) 5、悬臂梁在自由端受集中力P 作用,如图所示。试用极小势能原理求最大挠度 第5题图 提示设梁的挠曲线为 6、对给定的应力函数: (1)32223 123,,Ax y Bx y Cxy ???===,试确定它们哪个能作为平面问题的应力函数,并 分析它们能解什么问题? (2)证明32 23[]434F xy P xy y c c c ?=-+可以作为应力函数,并求在区域0,x c y c -区 域内的应力分量,并分析该应力函数可以解决那类平面问题。 7.如图所示矩形截面柱承受偏心载荷作用,且不计其重量,若应力函数32 Ax Bx ?=+,试 求: (1)应力分量;(2)应变分量;(3)假设D 点不移动,且该点处截面内线单元不能转动( P l x y 23 23w a x a x =+

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学试题集锦(很全,有答案)

1 / 218 弹塑性力学2008级试题 一 简述题(60分) 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变 形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其 中()1 3 m x y z σσσσ=++ 偏 量 : 偏 斜 应 力 张 量 , 即 x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -??=-????-?? ,其中

2 / 218 ()1 3 m x y z σσσσ= ++ 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ???????????????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即 112211221122u u v u w x y x z x v u v v w ij x y y z y w u w v w x z y z z ε?? ?? ???????++? ? ? ? ???????? ???? ? ? ????? ?????? =++ ? ??? ? ???????????? ?? ?? ?????????++ ? ? ?????????? ?? ?? 7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关

弹塑性力学读书报告

弹塑性力学读书报告 刘刚玉1020120036 同济大学交通运输工程学院道路与铁道工程 摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。 关键字:弹塑性力学本构关系 1基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 整个物体的体积都被组成物体的介质充满,不留下任何空隙。使得σ、ε、u 等量表示成坐标的连续函数。 1.1.2线弹性假定(弹性力学) 假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。 1.1.3均匀性假定 假定整个物体是由同一种材料组成的,各部分材料性质相同。这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。 1.1.4各向同性假定(弹性力学) 假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向

弹塑性力学试题及答卷-2011

---○---○--- ---○---○--- ………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 中南大学考试试卷(参考答案) 2010~2011 学年 二 学期 弹塑性力学 课程 时间110分钟 32 学时, 2学分,闭卷,总分100分,占总评成绩 90 % 一、名词解释题(每小题3分,共15分) 1、应力强度因子: 2、弹塑性共存: 3、应力集中: 4、弹塑性体 5、

二、填空题 (每小题2分,共24分) 1、主应力平面上的切应力等于零;主切应力平面上的正应力 不一定等于零。 2、全量应变是 某时刻变形之后的应变量 ; 应变增量是 变形某时刻的应变微分量 。 3、在应力分量表达式σij 中,下标i 表示 应力分量所在平面的外法线方向 , 下标j 表示 应力分量本身的作用方向 。 4、已知主应变ε1>ε2>ε3,则最大剪应变为:γmax = ε1-ε3 。 5、表征变形体内各应力分量之间相互关系的是 应力平衡微分 方程,表征各应变分量之间相互关系的是 应变连续/协调 方程。 6、在滑开型裂纹扩展模式中,应力的作用方向与裂纹扩展方向 平行 ,裂纹面与应力作用方向 平行 。 7、如图所示,受单向均匀拉伸载荷的平板构件,其上的中心穿透小孔边缘的a 、b 及远离小孔的c 、d 点,随着外载荷增加,最先进入塑性变形状态的是 a 点,受压应力的是 b 点。 8、如图所示为变形体内某点处单元体的受力状态,已知σ=σs (屈服应力),用Tresca 屈服准则判别,该点处于 塑性变形 状态;用Mises 屈服准则判别,该点处于 弹性变形 状态。 9、圆柱体在Z 向受压缩,产生均匀塑性变形,则其塑性应变之比为:=p x p x p x εεε::。 10、 11、 12、 题二(8)图 题二(7)图 1.5σ σx

(整理)弹塑性力学答案

一、简答题 1答:(1)如图1所示,理想弹塑性力学模型: e s s e E E σε εεσεσεε=≤==>当当 (2)如图2所示,线性强化弹塑性力学模型: () 1e s s e E E σε εεσσεεεε=≤=+->当当 (3)如图3所示,幂强化力学模型:n A σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性: s s εσσεσσ=≤=>当不确定 当 (b )线性强化钢塑性: ()0 /s s s E εσσεσσσσ=≤=->当当 图1理想弹塑性力学模型 图2线性强化弹塑性力学模型 图 3幂强化力学模型 (a ) (b ) 图4钢塑性力学模型 2答:

3答:根据德鲁克公设, ()00,0p p ij ij ij ij ij d d d σσεσε-≥≥。在应力空间中,可将0ij ij σσ-作为向量ij σ与向量0 ij σ之差。由于应力主轴与应变增量主轴是重合的,因此,在应力空间 中应变增量也看作是一个向量。利用向量点积的定义: ()0 0cos 0p p ij ij ij ij ij ij d σ σεσσε?-=-≥,?为两个向量的夹角。由于0ij ij σσ-和p ij ε都是 正值,要使上式成立,?必须为锐角,因此屈服面必须是凸的。 4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。 半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。如果能满足弹性力学的全部条件,则这个解就是正确的解答。否则需另外假定,重新求解。 二、计算题 1解:对于a 段有:0N a a a a F A E a a σσεε==?= ,对b 段有:0 N b b b b P F A E b b σσεε-==?= 又a b ?=? 则N bP F a b = + 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=, 3 1.5MPa σ=- ()0123/3 5.33MPa σσσσ=++= 08.62MPa τ= = 3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=, 310MPa σ=-

弹塑性力学复习思考题.doc

研究生弹塑性力学复习思考题 1.简答题: (1)什么是主平而、主应力、应力主方向?简述求一点主应力的步骤? (2)什么是八面体及八面体上的剪应力和正应力有何其特点 (3)弹性本构关系和塑性本构关系的齐白主要特点是什么? (4)偏应力第二不变量h的物理意义是什么? (5)什么是屈服面、屈服函数?Tresca屈服条件和Mises屈服条件的儿何与物理意义是什么? (6)什么是Drucker公设?该公设有何作用?(能得岀什么推论?) (7)什么是增量理论?什么是全量理论? (8)什么是单一曲线假定? (9)什么是平而应力问题?什么是平而应变问题?在弹性范围内这两类问题之间有和联系和区别? (10)论述薄板小挠度弯曲理论的基本假定? 二、计算题 1、已知P点的应力张量为 「3 1 \ 叭=10 2 1 2 0 求该点的主应力、主方向及最人剪应力 2、利用应变协调条件检杳其应变状态是否存在存在? i i | 3T h d2s a,m d%&j j dX m dx i c)x (1) e x=Axy2? £y=^2y, y xy=0? A^ B 为常数

q =k(x2 + y2)9e v = ky~.y xx = 2kxy k 为常数

3、写出如下问题的边界条件 (a)用直角坐标,(b)用极坐标 X1Z X O A h

5.悬習梁在自由端受杀中力P 作用,如图所示。 (第6题图) 试用极小势能原理求最大挠度 4、正方形薄板三边]古I 定,另一边承受法向压力p = -p. sin^,如图所示,设位移函数为 八 ?兀丫?ny ? = 0 v = a. sin ——sin — 2 h 2b 利用Ritz 法求位移近似解(泊松比v=0)o d P 丿 - Z -------------------------------------- 1 z / X < ------------ ----------------- > 'y 第5题图 提示设梁的挠曲线为 2 3 vv = a 2x +a 3x 6、对给定的应力函数: (1)(p 、= Ax'y 2,(p 2 = Bx~y 2,(p 3 = Cxy 3 ,试确定它们哪个能作为平而问题的应力函数,并 分析它们能解什么问题? 3F XV P (2)证明0 =——[Q —七]+ —于可以作为应力函数,并求在区域XAO,—cYyYc 区 4c ? 3c~ 4c ? 域内的应力分量,并分析该应力函数可以解决那类平面问题。 7. 如图所示矩形截面柱承受偏心载荷作用,且不计其重量,若应力函数(p = Ax 3^Bx 2 , 试求: (1)应力分量;(2)应变分量;(3)假设D 点不移动,且该点处截面内线单元不能转 动

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

(整理)应用弹塑性力学考试试题

《应用弹塑性力学》考试试卷班级_____________ 姓名_____________ 学号 ______________ 一、简答题(每题5分,共20分) 1试述弹塑性力学中四种常用的简化力学模型及其特点。 2分析特雷斯卡(Tresca )和米泽斯(Mises )屈服条件的异同点。 3 简单论述一下屈服曲面为什么一定是外凸的。 4试述逆解法和半逆解法的主要思想。 二、计算题(1~5题每题10分, 6~7题每题15分,共80分) 1 如图1所示的等截面直杆,截面积为0A ,且b a >,在x a =处作用一个逐渐增加的力P 。该杆材料为理想弹塑性,拉伸和压缩时性能相同,求左端反力N F 和力P 的关系。 F N 图1 2 已知下列应力状态:5383038311ij MPa σ????=?????? ,试求八面体单元的正应力0σ与剪应力0τ。 3 已知物体某点的应力分量,试求主应力及最大剪应力的值。(单位MPa ) (1)x =10σ,y =10σ-,z =10σ,=0xy τ,=0yz τ,=10zx τ-; (2)x =10σ,y =20σ,z =30σ,=5xy τ-,=0yz τ,=0zx τ。

4 当123σσσ>>时,如令21313 2σσσσμσσ--=-,试证明 0max ττ= 且该值在0.816~0.943之间。

5已知平面应变状态 1231231230 x y xy z xz yz A A x A y B B x B y C C x C y εεγεγγ=++=++=++=== (1)校核上述应变状态是否满足应变协调方程; (2)若满足应变协调方程,试求位移u 和v 的表达式; (3)已知边界条件 0x y ==,0u =,0v =; x l =,0y =,0v = 确定上述位移表达式中的待定常数。 6 物体中某点的应力状态为100000200000300-????-????-?? MPa ,该物体在单向拉伸时屈服极限为190MPa s σ=,试分别用特雷斯卡(Tresca )和米泽斯(Mises )屈服条件来判断该点是处于弹性状态还是塑性状态。 7已知函数axy ?=,试求:(1)?是否可以作为应力函数;(2)若以?作为应力函数,求出应力分量的表达式;(3)指出在图2所示的矩形板边界上的面力。 图2

相关文档
最新文档