10.5 原子力显微镜

10.5 原子力显微镜
10.5 原子力显微镜

实验10.5 原子力显微镜

一、引言

在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。1982年,G. Binnig和H. Rohrer在IBM公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scanning tunnelling microscope, STM),使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。1986年,Binig和Rohrer被授予诺贝尔物理学奖。但STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构。为了克服STM的不足之处,Binnig,Quate和Gerber 决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和STM的针尖之间,于1986 年推出了原子力显微镜(atomicforcemicroscope, AFM),AFM是通过探针与被测样品之间微弱的相互作用力来获得物质表面形貌的信息,因此,AFM除导电样品外,还能够观测非导电样品的表面结构,其应用领域更为广阔,除物理、化学、生物等领域外,AFM在微电子学、微机械学、新型材料、医学等领域都有着广泛的应用。以STM和AFM为基础,衍生出了一系列的扫描探针显微镜(SPM),有激光力显微镜(LFM)、磁力显微镜(MFM)等。扫描探针显微镜主要用于对物质表面在纳米级上进行成像和分析。

二、实验目的

1. 了解原子力显微镜的工作原理。

2. 初步掌握用原子力显微镜进行表面观测的方法。

三、实验原理

1. AFM的工作原理和工作模式

(1)AFM的工作原理

在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针代替STM中的金属极细探针,当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力),引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动,通过光电检测系统对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化,将信号放大与转换从而得到样品表面原子级的三维立

体形貌图像。AFM的核心部件是力的传感器件,包括微悬臂(Cantilever)和固定于其一端的针尖。

根据物理学原理,施加到Cantilever末端力的表达式为

F=KΔZ

式中,ΔZ表示针尖相对于试样间的距离,K是Cantilever的弹性系数。力的变化均可以通过Cantilever被检测。

图1 力传感器图2 微悬臂运动的电学检测法

(2)AFM的关键部分

AFM的关键部分是力敏感元件和力敏感元件检测装置。为了能准确反映出样品的表面形貌,力传感器要满足以下几个要求:①在针尖与样品的接触过程中,为了不使针尖损坏样品,要求微悬臂有相对较低的力弹性常数,即受到很小的力就能产生可检测的位移;②为了降低仪器对低频噪音的敏感性,并使其有较高的扫描速度,要求微悬臂有尽可能高的固有共振频率(一般为200 kHz~300kHz);③因为微悬臂上的针尖与样品的摩擦力会引起微悬臂的横向弯曲,从而导致图像失真,这就要求微悬臂要有高的横向刚性,实际应用中将微悬臂制成V字形就可提高其横向刚性;④如果采用隧道电流方式来检测微悬臂的位移,微悬臂的背面必须要有金属电极,若采用光学方法检测,则要求微悬臂背面有尽可能光滑的反射面;

⑤若采用光学反射方法检测微悬臂位移时,如果微悬臂一端的线性平移量是一定的,那么臂长越短,微悬臂的弯曲度就越大,检测的灵敏度就越好;⑥带有一个尽可能尖锐的针尖。AFM仪器的发展,也可以说是微悬臂和针尖不断改进的过程。一般AFM采用微机械加工技术制作的硅、氧化硅及氮化硅(Si3N4)微悬臂。力传感器如图1所示(实验中用到的微探针底宽5μm,尖径5 nm)。

微悬臂运动的检测方法有多种,主要可以分成两大类:一类是电学方法;一类是光学方法。电学方法主要包括隧道电流检测法和电容检测法两种。隧道电流检测法是第一台AFM 所采用的方法,它根据隧道电流对电极间距离非常敏感的原理,将SIM 用的针尖置于微悬臂的背面作为探测器。如图2(a)所示,通过该针尖与微悬臂间产生的隧道电流的变化就可检测由于原子间相互作用力令微悬臂产生的形变。电容法则是通过测量微悬臂与一参考电极间的电容变化来检测微弱力的。如图2(b)所示,当微悬臂发生形变时,使它与参考电极间的空间大小发生变化,即电容发生变化,通过测量该电容的变化量就可测量微悬臂的位移。这个方法对微悬臂针尖与样品的间距无特殊要求。光学法是通过测量激光束在微悬臂背面的反射来测量探针运动的。一种常用的方法如图3所示,一束激光经微悬臂背部反射到一个位置灵敏探测器(PSD )上,当微悬臂弯曲时激光束在探测器上的位置将发生移动,PSD 本身可测量光点小至1nm 的位移,微悬臂位移的放大倍数为悬臂至探测器的距离与悬臂长度之比的两倍。通常这一比例可以做得很大,使得系统可探测针尖在垂直方向上小于0.1 nm 的位移。

这种方法叫做偏转探测法。针尖与样品原子间的作用力十分微弱,数量级小于10-6N ,它推动

悬臂产生的偏转量也非常微小,不可能用常规方法直接检测。光点偏转法利用了光杠杆原理将悬臂的微位移放大。如图4所示,当激光束聚焦入射到悬臂外端时,大部分将被反射到QPSD 的光敏面上。在起始状态时,反射光点位于A ,而在原子力状态,样品原子通过针尖推动悬臂移动Δh ,偏转Δα角。显然,反射光束将偏转2Δα角,光点移动到B ,位移量Δs 。设悬臂长λ,光电接收元件到悬臂的距离为L ,则有

()h

l L l h L L s ??=??? ????=??=?222α 上式表明通过光杠杆的作用,可将针尖的微小位移放大2L /λ倍,在本仪器中取L =10cm ,悬臂长λ=200μm ,得到

h h s ??=????=?1000200

101024

这样,悬臂的微小位移,反映到光电元件的光敏面上将被放大1000倍。如果悬臂偏转1nm ,光点位移可达1μm ,这一量级的位移已可被光电元件精确分辨出来。

其他微悬臂位移的光学检测法还有自差法、外差法、干涉法等。与电学方法特别是隧道电流检测法相比,光学法有一些独特的优点:首先,由于激光東束斑的直径为几个微米,这使其反射信号受微悬臂背面粗糙度的影响较小,从而降低了仪器对热飘移的敏感程度;其次,

微悬臂背面的污染对光信号影响较小,对隧道电流的影响则相当严重;另外。激光束对微悬臂产生的作用力很小,从而使仪器更加可靠稳定,而且光学法对微悬臂的导电性无要求。

图3 微悬臂运动的光学检测法图4 光杠杆的位移放大原理

(3)AFM的工作模式

当AFM的微悬臂与样品表面原子相互作用时,通常有几种力同时作用于微悬臂,其中最主要的是范德瓦尔斯力。原子力与针尖至样品表面原于间的距离关系曲线如图5所示。当两个原子相互靠近时,它们先互相吸引,随着原子间距继续减小,两个原子的电子排斥力将开始抵消吸引力直到原子的间距为几个埃时,两个力达到平衡,间距更小时,原子力由负变正(排斥力),利用原子力的性质,我们可以让针尖与样品处于不同的间距,使微悬臂与针尖的工作模式有所不同。AFM有三种不同的工作模式:接触模式(contact mode)、非接触模式(non-contact mode)和共振模式或轻敲模式(Tapping Mode)。

图5 针尖至样品表面原子间的范德瓦耳斯力

接触模式:当针尖与样品间的原子力处在排斥力区时,两者的间距小于0.3nm,基本上是紧密接触的,这种模式叫做接触模式。由于这时针尖端原子与样品表面原子的电子云发生重叠,排斥力将平衡几乎所有可能使两个原子接近的力,微悬臂将弯曲而不可能使针尖原子与表面原子靠得更近,悬臂的弯曲较方便地被检测使仪器的分辨率极高,可达原子级水平。运用这种模式可以测量原子间的近程相互斥力、针尖与样品间的摩擦力。

(4)AFM中针尖与样品之间的作用力

样品与探针之间的相互作用力主要是针尖最后一个原子和样品表面附近最后一个原子之间的作用力。当探针与样品之间的距离d较大(大于5nm)时,它们之间的相互作用力表现为范德瓦尔斯力(Van der Waals forces)。可假设针尖是球状的,样品表面是平面的,则范德瓦尔斯力随1/d2变化。如果探针与样品表面相接触或它们之间的间距d小于0.3nm,则探针与样品之间的力表现为排斥力。这种排斥力与d13成反比变化,比范德瓦尔斯力随d的变化大得多。探针与样品之间的相互作用力约为10-6~10-9N,在如此小的力作用下,探针可以探测原子,而不损坏样品表面的结构细节。样品与探针的作用力还有其他形式,如当样品与探针在液体介质中相接触时,往往在它们的表面有电荷,从而产生静电力;样品与针尖都有可能发生变形,这样样品与针尖之间有形变力;特定磁性材料的样品和探针可产生磁力作用;对另一些特定样品和探针,可能样品原子与探针原子之间存在相互的化学作用,而产生化学作用力,但在研究样品与探针之间的作用力的大小时,往往假设样品与探针特定的形状(如平面样品、球状探针),可对样品和探针精心设计与预处理,避免或忽略静电力、形变力、磁力、化学作用力等的影响,而只考虑范德瓦尔斯力和排斥力。

2.AFM的针尖技术

目前,一般的探针式表面形貌测量仪垂直分辨率已达到0.1nm,而STM更高,达到0.01nm,因此足以检测出物质表面的微观形貌。但是,探针针尖曲率半径的大小将直接影响到测量的水平分辨率。针尖技术的发展在AFM中非常重要。其一是发展制得更尖锐的探针,如用电子沉积法制得的探针,其针尖曲率半径在5nm~10nm之间。其二是对探针进行修饰,从而发展起针尖修饰技术。目前,用于AFM针尖修饰的技术主要有:①自组单分子膜修饰AFM针尖。这种化学修饰过的AFM针尖可用来定量测定基底与针尖自组膜的尾部基团之间的粘附力和摩擦力。②生物分子修饰AFM针尖。Florin 等人用生物素修饰了AFM针尖,

首先测量了单个配体/受体对之间的相互作用力。③纳米碳管修饰AFM针尖。纳米碳管材料的研究是目前热门课题之一。纳米碳管具有非常适合于作为AFM针尖材料的物理、化学性质:良好的外形比例、尖端极小、良好的弹性、碳原子的反应多种多样(易于制功能化AFM 针尖)等。Wong等人用单层纳米碳管和多层纳米碳管修饰AFM针尖,它具有很高的空间分辨率,通过化学反应进行自组装膜可使针尖具有高度的化学敏感性。这些针尖修饰技术在传统探测的物理量(力场、电场、磁场等)的基础上,引入了“化学场”,从而大大地提高和改善了AFM的空间分辨率和物质识别能力。

3.AFM的应用

AFM可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,在研究时可选择适当的环境。在物理学中,AFM可以用于研究金属和半导体的表面形貌、表面重构、表面电子态及动态过程、超导体表面结构和电子态层状材料中的电荷密度等。从理论上讲,金属的表面结构可由晶体结构推断出,但实际上金属表面很复杂。衍射分析方法已经表明,在许多情况下,表面形成超晶体结构(称为表面重构),可使表面自由能达到最小值。而借助AFM可以方便得到某些金属、半导体的重构图像。AFM可以实现纳米级尺寸和纳牛级(10 9 N)微弱力的测量。

四、实验仪器

图6 实验装置示意图

样品相对于探针的横向扫描,由计算机通过D/A接口控制扫描电路实现,在扫描过程中,为使探针与样品保持一定的纵向间距,引入了反馈控制电路系统。XYZ扫描控制器由

三根互相垂直的管状压电陶瓷与样品台构成,其十字架结构的稳定性和强度使之适合对不同大小和重量的样品在较大范围内扫描成像,但样品不能过重。

在恒力模式下:光电与计算机软硬件系统,将扫描得到与样品形貌对应的反射光点的位置信号,转变成电流信号,再经电流一电压转换、前置放大、加减、除法器相除等模拟运算,通过A/D接口输入计算机。计算机根据取得的信号大小。通过D/A接口输出相应的反馈电压,控制压电陶瓷管的z向伸缩,从而控制样品与针尖之间的间距,使之保持恒定,即保持原子力大小不变。根据z向压电陶瓷的控制电压的变化情况,可以最终获得样品表面的三维微观形貌。高压控制电路系统所能提供的最高扫描电压为350 V,约对应于4 μm×4μm的最大扫描范围。

系统软件分为两部分:图像扫描部分和图像处理部分。图像扫描部分,软件可对扫描范围、扫描速度、扫描偏移量等进行实时调整,并选择图像像素和图像亮度的大小。扫描获得的图像可在显示框内实时地重复显示。扫描过程中可根据需要捕获图像并存储到计算机中,图像的捕获操作可连续进行,以便对样品作实时的在线检测。在图像处理部分,可将图像作平面显示、三维立体显示,实现图像的着色、平滑、反转、裁剪等处理。在获得待测样品的AFM图像(每幅图像存有400×400或180×180个信息点)后,用鼠标在图像中拾取一区域,计算机将读取该区城内所有信息点并根据面粗糙度公式计算该区域的R a、R z、R y值,从而获得相应区域的微观几何尺寸。

五、实验装置

原子力显微镜的实验装置如图6所示。本装置分为如下几个部分:

样品台:包括压电陶瓷xy扫描单元与z向反馈系统,样品与针尖之间的z向粗调、细调机构,可选用表面较为光滑的样品,做成小片状,背面适于粘贴在样品架上。

光源系统:半导体激光器(650 nm红光,功率10mW)、电源盒。

测量控制系统PSD(position-sensitive detector,3mm×3mm)光电信号处理电路、反馈控制电路、高压电源、扫描与图像处理软件。

仪器特点:

(1)扫描时间较短。如果得到一幅图像需要十多分钟,在此过程中,周围环境的电干扰、光干扰,以及振动、温度变化等因素,都将直接影响到图像的准确性和完整性。

(2)卧式设计:主要是为了消除微悬臂自身的重力对纵向原子力的干扰。卧式AFM中的重力方向与用于成像的原子力相互垂直,从而提高了仪器的灵敏度。

图7 AFM IIa的系统框图

六、实验内容

1. 用CCD光学显微镜观察标准光栅(周期为100μm)和探针,估算微悬臂有效长度。

2. 安装样品。

3. 进入软件的扫描界面,单击“开始扫描”按钮连续扫描若干次,得到满意图像后单击“捕获图像”按钮以保存图像。

4. 如果要用鼠标选区扫描,必须先按“停止扫描”钮再用鼠标选区,否则可能损坏探针。

5. 先按“停止扫描”钮,再退出扫描界面。

6. 退出样品。

7. 数据处理:在软件的图像处理界面完善图像,标注尺寸、记录相应的粗糙度统计结果、做三维效果图。

8. 打印图像。

七、数据记录与处理

本实验中,我们分别用原子力显微镜测量了镀金薄膜样品和二维光栅两种表面结构。两者的样品形貌及三维成像,分别呈现于图8和图9中。

图8 金箔的原子力显微镜扫描结果。左:二维形貌图。右:三维成像图。

图9 二维光栅结构的原子力显微镜扫描结果。左:二维形貌图。右:三维成像图。

通过Imager软件的自动分析功能,对于两种材料的粗糙程度进行分析,得到如下结果:对于金箔:S a=6.74nm,S y=61.4nm,S z=60.3nm;

对于二维光栅:S a=9.63nm,S y=90nm,S z=67nm。

比较其他组同学的数据,可知二维光栅相比于金箔,在不同维度上都明显更加粗糙(两个数量级的差异)。这与我们的直觉是相同的,但我们组的粗糙度数据却并没有明显的数量级差异,这可能是金箔表面脏污引发的不平整的鼓包导致的。(见图8)。

另外,通过原子力显微镜,我们也直观感受到了光栅结构较为整齐的二维周期性排布,并认识到看似光滑平整的金属表面,在微观尺度上也存在着坑洼不平的现象。

本次实验中,最关键的步骤在于实验前期对于光路的调整。为了实现反射红斑刚好落于探针,需要通过显微镜粗调、软件视野细调等多部操作实现,较费时间。但此步骤的成功与否会直接影响最终形貌图、3D图的分辨率,因而不能疏忽。

八、思考题

1.AFM探测到的原子力由哪两种主要成分组成?

答:主要的两种成分为:V an de Waals力(与d-2成正比),以及电子云相互作用而产生的排斥力(与d-13成正比)。

2.怎样使用AFM-IIa和CCD光学显微镜,才能较好地保护探针?

答:保护探针的最重要步骤在于粗调、精调时,都不应让探针压住样品。具体细节为:在粗调时,样品本身和用于定位光斑的纸片都应与探针保持距离;在精调时,应缓慢调节仪器上旋钮,防止调节过度而引发探针碰触。另外,从较薄的样品(如本实验中金箔)转为测量较厚的样品(如本实验中二维光栅结构)中,应进行多次退针,以确保不会出现更换样品时发生意外事故。

3.原子力显微镜有哪些应用?

答:AFM可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,在研究时可选择适当的环境。在物理学中,AFM可以用于研究金属和半导体的表面形貌、表面重构、表面电子态及动态过程、超导体表面结构和电子态层状材料中的电荷密度等。从理论上讲,金属的表面结构可由晶体结构推断出,但实际上金属表面很复杂。衍射分析方法已经表明,在许多情况下,表面形成超晶体结构(称为表面重构),可使表面自由能达到最小值。而借助AFM可以方便得到某些金属、半导体的重构图像。AFM可以实现纳米级尺寸和纳牛级(10-9 N)微弱力的测量。

4.传统的光学显微镜、电子显微镜相比,扫描探针显微镜的分辨本领主要受什么因素限制?

答:传统的光学、电子显微镜的分辨本领主要受相应波长限制(更小的结构会因衍射效应而无法被成功分辨)。而扫描隧道显微镜则克服了波长施加的限制,其主要限制因素为探针尖的尺寸、微悬臂的弹性系数、悬臂的长度/激光光线长度比值;探测器对光斑位置灵敏度等。

5.要对悬臂的弯曲量进行精确测量,除了在AFM中使用光杠杆这个方法外,还有哪些方法可以达到相同数量级的测量精度?

答:主要分为电学方法和光学方法。电学方法主要包括隧道电流检测法和电容检测法两种。而其他微悬臂位移的光学检测法还有自差法、外差法、干涉法等。与电学方法特别是隧道电流检测法相比,光学法有一些独特的优点:首先,由于激光東束斑的直径为几个微米,这使其反射信号受微悬臂背面粗糙度的影响较小,从而降低了仪器对热飘移的敏感程度;其次,微悬臂背面的污染对光信号影响较小,对隧道电流的影响则相当严重;另外。激光束对微悬臂产生的作用力很小,从而使仪器更加可靠稳定,而且光学法对微悬臂的导电性无要求。

九、附录:粗糙度的概念及主要评定参数

表面粗糙度(原称表面光洁度)是反映零件表面微观几何形状误差的一个重要指标。表面粗糙度的评定参数很多,这里选用轮廓算术平均偏差R a、微观不平度十点高度R z、轮廓最大高度R y,作为系统纳米粗糙度测量的三个轮廓高度评定参数。

图8 表面粗糙度R a示意图

轮廓算术平均偏差(Arithmetical mean deviation of the profile)R a为取样长度内轮廓偏距绝对值的算术平均值(如图8所示):

∑==n

i i a y n R 1

1 y i 为基于中线的表面轮廓高度,n 为所取的轮廓偏距数。

微观不平度十点高度(Ten point height of irregularities )R z 是指在取样长度内5个最大的轮廓峰高的平均值和5个最大的轮廓谷深的平均值之和:

55151??

? ??+=∑∑==i vi i pi z y y R

轮廓最大高度(Maximum Height of profile )R y 为取样长度内轮廓峰顶线与轮廓谷底线之间的距离:

()?????+=≤≤=vi

pi i i y y y R k i R R 0max 式中,y pi ,y vi 分别为第i 个轮廓峰高和第i 个轮廓谷深,k 为取样长度内的峰谷个数。 面粗糙度中与微观不平度高度特性有关的三个表面粗糙度评定参数R a ,R z ,R y 公式与线粗糙度的公式类似,所不同的是面粗糙度公式包含x ,y 两个方向。

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

原子力显微镜实验报告

原子力显微镜实验报告 原子力显微镜应用技术 一、实验目的 1了解原子力显微镜的工作原理 2掌握用原子力显微镜进行表面观测的方法 二、实验原理 (1)AFM的工作原理 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、 反馈系统。主要工作原理如下图:

原子力显微镜的工作原理图 (2)A FM的工作模式 AFM有三种不同的工作模式:接触模式(contact mode) 、非接触模式 (noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 本实验采用轻敲模式:样品扫描时,针尖始终同样品“接触”,即针尖-样品距离在小于零点几个纳米的斥力区域。此模式通常产生稳定、高分辨图像。当沿着样品扫描时,由于表面的高低起伏使得针尖-样品距离发生变化,引起它们之间作用力的变化,从而使悬臂形变发生改变。当激光束照射到微悬臂的背面,再反射到位置灵敏的光电检测器时,检测器不同象限会接收到同悬臂形变量成一定的比例关系的激光强度差值。反馈回路根据检测器的信号与预置值的差值,不断调整针尖一样品距离,并且保持针尖一样品作用力不变,就可以得到表面形貌像。 三、实验仪器及试剂 试剂及材料:石墨烯溶液,云母片

仪器:nano scope 5.31r 四、步骤 依次按下面步骤开启实验仪器: 1.开机:先开电脑再开主控制器 2.打开程序:Nanoscope: 3.安装样品:用双面胶带将云母片粘到圆形铁片上,再将其放置到样品 台上。调节中部拨钮UP控制样品台降低到样品上表面低于样品台两侧的圆球。 4.安装探针:用镊子小心将探针安装到HOLDE中。 5.安装HOLDER调节样品台后面的旋钮,把HOLDE固定紧; 调节拨钮DOW使样品台尽量接近探针针尖; 将激光调至针尖处,同时屏幕的SUM直最大;调节样品台后面横型旋钮,用于控制样品室中的反射镜子,调节旋钮使屏幕上的SUM直最大;调节样品台上面和后面的两个旋钮,使屏幕上VERT和HORZ匀为0左右;将光敏检测器旋至最小;将左边拨钮拨至 on ; 7.开始测试:控制面板左上: (1)T UNE:弹出对话框,点击下方Auto Tune自动调节,完成之后,点击Exit 退出。 (2)下针:弹出表单,表单消失后,自动开始扫描SCAN (3)Capture : Capture file name ,弹出对话框,对图像命名,并选择保 存路径。

扫描隧道显微镜实验报告

一、实验目的 1.采用探针扫描显微镜进行微纳米级表面形貌测量。 2.了解扫描探针显微镜的工作原理并熟悉原子力显微镜的操纵。 二、实验设备 原子力显微镜、光盘块、装有SPM Console在线控制软件和Image后处理软件的计算机。 三、实验基础 原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。 原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection, Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,其工作原理如图1所示。二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。 在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针样品相互作用的强度,实现反馈控制。因此,

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

原子力显微镜

6-5 原子力显微镜 【实验简介】 扫描隧道显微镜工作时要检测针尖和样品之间隧道电流的变化,因此它只能用于导体和半导体的研究。而在研究非导电材料时必须在其表面覆盖一层导电膜。导电膜的存在往往掩盖了样品表面结构的细节。为了弥补扫描隧道显微镜的这一不足,1986年宾尼希等发明了第一台原子力显微镜AFM(atomic force microscopy)。原子力显微镜不仅可以在原子水平测量各种表面形貌,而且可用于表面弹性、塑性、硬度、摩擦力等性质的研究。 【实验目的】 1.学习和了解原子力显微镜的结构和原理; 2.学习扫描隧道显微镜的操作和调试过程,并以之来观察样品的表面形貌; 【实验原理】 1.原子力显微镜 与STM不同,原子力显微镜测量的是针尖与样品表面之间的力。将微小针尖放在悬臂的一端,当针尖与样品间距小到一定程度时,由于针尖与样品的相互作用(引力、斥力等),使悬臂发生弯曲形变。如图使样品与针尖之间作扫描运动,测量悬臂的形变位移,即可得到 图6-5-1 原子力显微镜示意图 样品表面的形貌信息。 由于微悬臂的位移很小,对它的测量是一个关键技术。最早发明者宾尼希等人利用隧道电流对间距的敏感性来测量悬臂的位移,但由于隧道效应对悬臂的功函数(由于污染等原因)变化同样敏感,所以稳定性较差。现在大多数均采用光学方法或电容检测法。本实验采用光

图6-5-2 原子力显微镜光路图 束偏转检测方法,如图2所示。激光束经微悬臂背面反射、再经平面反射镜至四相限接受器,当微悬臂弯曲时激光束在接受器上的位置将发生移动,由四象限接受器检测出悬臂弯曲位移,便可得到样品的表面形貌。 2.轻敲模式成象技术 常规的接触模式扫描由于针尖对样品的作用力较大,会在软样品表面形成划痕,或使样品变形,对粉体颗粒样品,会使样品移动,或将样品碎片吸附在针尖上,分辨率较差,而理想的非接触模式由于工作程短,又是难于有效实施的。 轻敲扫描模式的特点是在扫描过程中由压电驱动器将微悬臂激发到共振振荡状态,针尖随着悬臂的振荡,极其短暂地与样品表面进行接触,同时由于针尖与样品的接触时间非常短,因此剪切力引起的对样品的破坏几乎完全消失,可以清晰观测完好的表面结构而不受表面高度起伏的影响。AFM轻敲扫描模式,特别适用于检测生物样品及其它柔软、易碎、粘附性较强的样品。并对针尖损耗相对最少。 【实验装置】(见扫描隧道显微镜) 【实验内容及步骤】 1.扫描光栅样品 注意:所有插件栏的操作都应当是鼠标单击 1.1 放针尖。把针尖架插入探头; 1.2 放样品(用镊子操作,注意不要让镊子碰到样品表面)。 1.3打开电脑。开启控制箱电源。打开软件,切换到在线工作模式(此时仪器会自动识别当前针尖类型,软硬件自动切换到相应工作模式,头部液晶屏也会立即显示出当前工作模

AFM原子力显微镜技术及应用实验报告

AFM原子力显微镜技术及应用实验报告 ——指导老师:袁求理 近 代 物 理 实 验 报 告 物理班实验小组 2012年12月18日

引言 在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。扫描隧道显微镜(STM) 使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。 STM 要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构。为了克服STM 的不足之处,推出了原子力显微镜(AFM)。AFM是通过探针与被测样品之间微弱的相互作用力(原子力) 来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域将更为广阔。除物理,化学生物等领域外,AFM在为微电子,微机械学,新型材料,医学等领域有着广泛的应用,以STM和AFM为基础,衍生出一系列的扫描探针显微镜,有激光里显微镜,磁力显微镜,扫描探针显微镜主要用于对物质表面在纳米线上进行成像和分析。 一、实验组员: 邵孙国(10072127)、周柬辉(10072137)、陈俊峰(10072122)、任寿良(10072126)。 二、实验目的: Ⅰ、学习和了解AFM的结构和原理。 Ⅱ、掌握AFM的操作和调试过程,并以之来观察样品表面的形貌。 Ⅲ、学习用计算机软件来处理原始数据图像。 三、实验原理简析: 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。

原子力显微镜操作详细流程

原子力显微镜操作简要说明 一、设备开机 1、打开原子力显微镜主机电源(在光学平台下方)。 2、开启电脑、运行软件(软件10,如有问题可换9重新运行)。 3、在软件界面点击 SPM init 进行设备初始化,如显示SPM OK可继续操作,如不显示SPM OK重启软件。 4、点open door开操作门,点灯泡按钮照亮。 二、样品准备 1、将表面洁净样品使用专用双面胶粘贴至设备配备的圆形载物片上(最好两个台子一起使用,以便旋转样品)。 2、通过检测组件上的按钮或者软件点open door开启样品室舱门,点灯泡按钮照亮,点击软件界面上的AFM-STM退针钮使显微镜探头缩回。 3、使用专用镊子将样品连同载物片放入磁性样品台上,小心调整样品区域之中间。小心不要碰触探头、激光源等。 4、点击软件界面的AFM-STM使探头移回。关闭舱门。 三、操作程序 1、运行软件的camera功能,点击绿色的play键。运行approach,点击蓝色step move,将样品降低到安全距离。 2、运行软件的aiming功能,点击tools-motors-video calibration-右下角specify laser step 1-Alt+左键-确定-手动Alt+左键点击红十字中心,使激光与十字匹配。 3、运行AFM钮,使针头伸出。点击Shift+左键点击针悬臂梁的中间或偏上三分之一处,点击move laser使激光移动到点击位置,然后用Laser X和Y将Laser 调到最大,点击Aiming,使DFL、LF为0。 4、运行软件的Resonance功能,选择semicontact模式,在probes里选择对应针尖,点击Auto,调节探针悬臂的共振频率。如产生共振,调节Gain和lockgain 的大小(保证其乘积大小不变),确定setpoint为典型值Mag的一半,Gain0.5-1之间。 5、运行landing,观察way值变化。 6、运行软件的Approach功能,自动完成下针。使探针下降至检测距离。 7、点击Scanning按钮,开始样品扫描,扫描图样将自动保存至指定文件夹。注意: 1、除去扫描过程,其他改变任何程序或移动样品的操作都应先关闭反馈键使ON 变为OFF。操作过程中确保XY是闭环状态? 2、取放样品时均应首先软件操作使探头缩回。 3、扫描结果的优劣决定于当前探针状态(是否断针和污染)和所选用的反馈灵 敏度Gain。在确保不损伤仪器以及珍贵探针的情况下进行优化调节。

原子力显微镜的工作原理及基本操作

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:原子力显微镜的工作原理及基本操作学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别:应用型 考核结果阅卷人

原子力显微镜的工作原理及基本操作 一、实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二、原子力显微镜结构及工作原理 2.1 AFM的工作原理 AFM是用一个一端装有探针而另一端固定的弹性微悬臂来检测样品表面信息的,当探针扫描样品时,与样品和探针距离有关的相互作用力作用在针尖上,使微悬臂发生形变。AFM系统就是通过检测这个形变量,从而获得样品表面形貌及其他表面相关信息 1.原子力作用机制 当两个物体的距离小到一定程度的时候,它们之间将会有原子力作用.这个力主要与针尖和样品之间的距离有关.从对微悬臂形变的作用效果来分,可简单将其分为吸引力和排斥力,它们分别在不同的工作模式下、不同的作用距离起主导作用.探针与样品的距离不同,作用力的大小也不相同,针尖/样品距离曲线如图1所示. 图1 针尖/样品距离曲线 2.原子力显微镜的成像原理 AFM的微悬臂绵薄而修长,当对样品表面进行扫描时,针尖与样品之间力的作用会使微悬臂发生弹性形变,针尖碰到样品表面时,很容易弹起和起伏,它非常的灵敏,极小的力的作用也能反应出来.也就是说如果检测出这种形变,就可以知道针尖-样品间的相互作用力,从而得知样品的形貌。

图2 光束偏转法的原理图 微悬臂形变的检测方法一般有电容、隧道电流、外差、自差、激光二极管反馈、偏振、偏转方法。偏转方法是采用最多的方法,也是原子力显微镜批量生产所采用的方法.图2就是光束偏转法的原理图。 3.原子力显微镜的工作模式 AFM主要有三种工作模式:接触模式(ContactMode)、非接触模式(Non-contact Mode)和轻敲模式( Tapping Mode),如图3. 图3 三种工作模式 接触模式中,针尖一直和样品接触并在其表面上简单地移动.针尖与样品间的相互作用力是两者相接触原子间的排斥力,其大小约为10-8~10-11N。 非接触模式是控制探针一直不与样品表面接触,让探针始终在样品上方5~20nm 距离内扫描.因为探针与样品始终不接触,故而避免了接触模式中遇到的破坏样品和污染针尖的问题,灵敏度也比接触式高,但分辨率相对接触式较低,且非接触模式不适合在液体中成像。 轻敲模式是介于接触模式和非接触模式之间新发展起来的成像技术,类似与非接触模式,但微悬臂的共振频率的振幅相对非接触模式较大,一般在0.01~1nm.分辨率几乎和接触模式一样好,同时对样品的破坏也几乎完全消失,克服了以往常规模式的局限。 4.原子力显微镜的构成 SPA-300HV型显微镜主要包括以下四个系统: 减震系统、头部系统、电子学控制系统、计算机软件系统(图4为结构图)。

原子力显微镜实验报告_南京大学

原子力显微镜 一、实验目的 1.了解原子力显微镜的工作原理。 2.初步掌握用原子力显微镜进行表面观测的方法。 二、实验原理 1.AFM (1)AFM的工作原理 在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针。当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力) ,引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动, 因而会使反射光的位置改变而造成偏移量,通过光电检测系统(通常利用光学、电容或隧道电流方法) 对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化, 此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整。将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。 AFM 的核心部件是力的传感器件, 包括微悬臂(Cantilever) 和固定于其一端的针尖。根据物理学原理,施加到Cantilever 末端力的表达式为: F = KΔZ ΔZ 表示针尖相对于试样间的距离, K 为Can2tilever 的弹性系数,力的变化均可以通过Cantilever 被检测。 (2)AFM关键部位: AFM关键部份是力敏感元件和力敏感检测装置。所以微悬臂和针尖是决定AFM灵敏度的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM 的灵敏度,微悬臂的设计通常要求满足下述条件: ①较低的力学弹性系数,使很小的力就可以产生可观测的位移; ②较高的力学共振频率; ③高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲; ④微悬臂长度尽可能短;⑤微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极; ⑥针尖尽可能尖锐。 (3) AFM的针尖技术 探针是AFM的核心部件。如右图。 目前,一般的探针式表面形貌测量仪垂直分辨率已达到0.1 nm , 因此足以检测出物质表面的微观形貌。普通的AFM 探针材料是 硅、氧化硅或氮化硅(Si3N4 ) ,其最小曲率半径可达10 nm。由 于可能存在“扩宽效应”,针尖技术的发展在AFM中非常重要。 探针针尖的几何物理特性制约着针尖的敏感性及样品图像的空 间分辨率。因此针尖技术的发展有赖于对针尖进行能动的、功 能化的分子水平的设计。只有设计出更尖锐、更功能化的探针, 改善AFM 的力调制成像(force modulation imaging) 技术和相 位成像(phase imaging)技术的成像环境,同时改进被测样品的 制备方法,才能真正地提高样品表面形貌图像的质量。 (4) AFM的工作模式 AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。 ①接触模式 接触模式包括恒力模式(constant2force mode) 和恒高(constant2height mode) 。在恒力模式中过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当

材料分析实验报告合辑 --浙江师范大学 材料物理系

浙江师范大学Zhejiang normal university 论文 作者: 专业: 完成日期:2013年12月21日

第一元素 实验 实验一 XRD 衍射 一、实验目的 1. 了解X 射线衍射仪的结构及工作原理 2. 熟悉X 射线衍射仪的操作 3. 掌握运用X 射线衍射分析软件进行物相分析的方法 二.X 衍射原理: X 射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。 晶体所产生的衍射花样都反映出晶体内部的原子分布规律。概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成: 一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定 另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。 X 射线衍射理论所要解决的中心问题: 在衍射现象与晶体结构之间建立起定性和定量的关系。 布拉格方程: λθn dSin =2 根据布拉格方程,Sin θ不能大于1, 因此:对衍射而言,n 的最小值为1,所以在任何可观测的衍射角下,产生衍射的条件为λ<2d ,这也就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍,否则不能产生衍射现象。 若将布拉格方程中的n 隐含在d 中得到简化的布拉格方程: λθλθ===Sin d n d d Sin n d HKL hkl HKL hkl 2,2 则有:令 把(hkl )晶面的n 级反射看成为与(hkl )晶面平行、面间距为(nh,nk,nl) 的晶面的一级反射。面间距为dHKL 的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,我们把这样的反射面称为干涉面。干涉面的面指数称为干涉指数。 三、使用仪器、材料 XRD ,带测试的未知材料

原子力显微镜使用说明书

SII 操作说明书 Nanopics NPX100M001 原子力显微镜 湖南大学机械与汽车精密制造工程实验室翻译

1.1版本 1999年11月 1.2版本 2000年9月 在使用该仪器之前请认真阅读该操作手册并按里面的说明操作。把该说明书放置在仪器旁边,当遇到仪器操作的问题时请参考之。 该产品的技术受国际交易控制法和国际贸易控制法的保护,未经日本政府权威机构的书面允许不得泄漏。 ?1999,2000日本精工Seiko公司。所有的权利都受保护 未经许可不得复制该手册 该说明书内容改变不再通知

前言 感谢您选择了Nanopics产品。该手册为使用注意事项和指导说明,将有助于您安全地使用本仪器,为了充分发挥该仪器的功能,请务必彻底地阅读操作说明书,必要时参考该说明书。 用途 在操作该仪器之前请仔细阅读说明书的安全指南和警告标志,并按照说明书及仪器上所示的注意事项操作,以获得一个安全的使用环境。 保修 该仪器的保修期为从交货之日起一年内。在该期间内提供免费保修,但由于不按操作说明书操作而产生的损坏除外。保修内容的详细信息请参阅5.4节的保修部分。 用户登记 为了方便使SII向您提供软件不断升级及维护服务通知,请返回Nanopics用户信息。在该说明书内有一张用户登记卡,请按卡上的传真号码寄回。若不寄回该卡则可能对该仪器的升级信息的通知及免费维修等带来不便,故建议您及时寄回。

安全指导 为了正确使用该仪器,请注意以下事项 1.在操作之前参考主要设备及附件的操作说明书,按照说明书上的指导要求操作,可保证操作的安全简便。 2.请把操作说明及安全指导书放在仪器旁边,以便于参考。 3.请注意仪器上的所有警告标志,参考后续部分的警告栏信息。 4.该仪器通过三根插线接地,为了避免触电请不要随意乱动或拔下接地线。 5.在修理设备的任何部件之前,请关掉所有的电源。 6.为了防止温升,在腔内置有通风冷却扇,请不要取下或阻碍其运转。 7.为了避免触电类事件发生,请不要把您的手或身体其他部分靠近仪器的开关,特别是通风部分。 8.请把仪器放置在稳定的位置。 9.不要在粉尘过多或温度过高的环境中使用该仪器。 10.不要改置改仪器,除非特殊情况下向SII代理商请求被许可或者在警告栏的指导下。打开或除去罩子会产生大量的电流,从而发生危险事件,如漏电或着火。

南京大学-原子力显微镜实验报告

南京大学-原子力显微镜实验报告

原子力显微镜实验报告 一.实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二.实验原理 1.AFM工作原理 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针。当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力) ,引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动, 因而会使反射光的位置改变而造成偏移量,通过光电检测系统(通常利用光学、电容或隧道电流方法)

对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化, 此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整。将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。AFM 的核心部件是力的传感器件, 包括微悬臂(Cantilever) 和固定于其一端的针尖。根据物理学原理,施加到Cantilever末端力的表达式为: =? F K Z ?表示针尖相对于试样间的距离, K为Cantilever的弹性Z 系数,力的变化均可以通过Cantilever被检测。 AFM 有三种不同的工作模式:接触模式、非接触模式和共振模式或轻敲模式。本实验采用接触模式:样品扫描时,针尖始终同样品“接触”,即针尖-样品距离在小于零点几个纳米的斥力区域。此模式通常产生稳定、高分辨图像。当沿着样品扫描时,由于表面

的高低起伏使得针尖-样品距离发生变化,引起它们之间作用力的变化,从而使悬臂形变发生改变。当激光束照射到微悬臂的背面,再反射到位置灵敏的光电检测器时,检测器不同象限会接收到同悬臂形变量成一定的比例关系的激光强度差值。反馈回路根据检测器的信号与预置值的差值,不断调整针尖一样品距离,并且保持针尖一样品作用力不变,就可以得到表面形貌像。 2.粗糙度的概念 表面粗糙度是反映零件表面微观几何形状误差的一个重要指标。表面粗糙度的评定参数很多,这里选用轮廓算数平均偏差Ra,微观不平度十点高度Rz,轮廓最大高度Ry作为系统纳米粗糙度测量的三个轮廓高度评定参数。 轮廓算数平均偏差Ra为取样长度内轮廓偏距绝

原子力显微镜及其应用

原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。 原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。 一、基本原理 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 二、原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。 4.软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。 三、应用实例 1.应用于纸张质量检验。2.应用于陶瓷膜表面形貌分析。3.评定材料纳米尺度表面形貌特征 1

扫描电子显微镜与原子力显微镜技术之比较_陈耀文

中国体视学与图像分析 2006年 第11卷 第1期CH I N ESE JOURNAL O F S TER EOLO GY AND I M AGE ANALYS I S Vo l .11No.1M a rch 2006 53  收稿日期:2005-08-01 基金项目:国家自然科学基金资助(No .30470900);汕头大学研究与发展基金资助(No .L00015)作者简介:陈耀文(1964-),男,副教授,研究方向:医学图像处理与识别,E 2mail:y wchen@stu .edu .cn 文章编号:1007-1482(2006)01-0053-06 ?综述? 扫描电子显微镜与原子力显微镜技术之比较 陈耀文1 , 林月娟1 , 张海丹1 , 沈智威1 , 沈忠英 2 (1.汕头大学中心实验室, 广东 汕头 515063; 2.汕头大学医学院, 广东 汕头 515031) 摘 要:SE M 和AF M 技术是最常用的表面分析方法。本文介绍了SE M 和AF M 两种技术的原理, 描述了这两种技术在样品形貌结构、成分分析和实验环境等方面的性能,比较了两种技术的特性和不足,充分利用两种技术的互补性,将两种技术结合使用,有助于更加深刻地认识样品的特性。关键词:原子力显微镜;扫描电子显微镜;表面形貌;化学成分中图分类号:TG115.21+ 5.3,R319 文献标识码:A The co m par ison of SE M and AF M techn i ques CHEN Yaowen 1 , L I N Yuejuan 1 , ZHANG Haidan 1 , SHEN Zhewei 1 , SHEN Zhongying 2 (1.Central Laborat ory,Shant ou University,Guangdong Shant ou 515063,China;2.Medical College,Shant ou University,Guangdong Shant ou 515031,China ) Abstract:Scanning electr on m icr oscopy (SE M )and at om ic f orce m icr oscopy (AF M )are powerful t ools f or surface investigati ons .This article described the p rinci p les of these t w o techniques,compared and contrasted these t w o techniques with res pect t o the surface structure and compositi on of materials,and en 2vir on ment .SE M and AF M are comp le mentary techniques,by having both techniques in an analytical fa 2cility,surface investigati ons will be p r ovided a more comp lete rep resentati on . Key words:at om ic f orce m icr oscopy;scanning electr on m icr oscopy;surface structure;compositi on 显微镜由于受到衍射极限的限制,其分辨率只能达到光波半波长数量级(0.3μm ),无法观察更小的物体。1924年,德布罗意提出了微观粒子具有波粒二象性的概念,科学家们在物质领域找到了一种波长更短的媒质—电子,并利用电子在磁场中的运动与光线在介质中的传播相似的原理,研制出以电子为光源的各类电子显微镜。扫描电子显微镜(Scanning Electr on M icr oscopy,SE M )的设计思想,早在1935年便已被提出来了,1942年,英国首先制成实验室用的扫描电镜,主要应用于大样品的形貌分析,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。随着电子工业技术水平的不断发展,到1965年开始生产商品扫描电镜,近数十年来,SE M 各项性能不断提高,如分辨率由初期的50nm 发展到现在约0.5nm ,功能除样品的形貌分析之外,现在可获得特征X 2射线,背散射电子和样品电流等 信息。 1982年,Gerd B innig 和Heinrich Rohrer 在I B M 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(Scanning Tunneling M icr oscope,ST M ),使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。然而,由于ST M 的信号是由针尖与样品之间的隧道电流的变化决定的,只适用于研究电子性导体和半导体样品,为了克服ST M 的不足之处,ST M 的发明者B innig 等又在1986年发明了原子力显微镜(A t om ic Force M icr oscope,AF M )。AF M 是通过探测探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息,分辨率可达原子级水平。之后,以ST M 和AF M 为基础,衍生出扫描探针显微镜(Scanning Pr obe M icr oscope,SP M )家族,包括扫描隧道显微镜、原子力显微镜、磁力显微镜、静电

教育部《基础课实验教学示范中心》建设标准(讨论稿)

教育部《基础课实验教学示范中心》建设标准(讨论稿) 一、体制与管理 1、基础课实验教学示范中心(以下简称“中心”)属于校级实验中心,建制相对独立。中心实施校、院(系)两级管理,全面负责本科学生基础课实验教学工作。 2、学校负责中心的建设,提供其正常运转、维修及更新经费,教育部必要时给予支持。 3、中心实行主任负责制,主任由学校任免。中心实行人才流动、竞争上岗、定期考核的管理机制。 4、中心除承担学校本科基础课实验教学工作外,同时开展实验教学课程体系、内容、理论和技术方法、手段的研究,负责人员培训并提供开放服务。 5、中心向校内外开放,对外服务的收入可作为运行经费的补贴。 6、中心应具备先进的多媒体开放实验教学软硬件环境,实现实验教学、基本工作信息和仪器设备的计算机网络化管理,可作为向全国院校提供资源的网站和网络系统。 7、中心必须贯彻《高等学校实验室工作规程》(国家教委主任20号令),执行《高等学校仪器设备管理办法》(教高[2000]9号文件),在按照《高等学校基础课教学实验室评估办法和标准表》(教备[1995]33号文件),在按照《高等学校基础课教学实验室评估验收的基础上申请作为“基础课实验教学示范中心”,教育部经组织专家组审查认定后,授予“教育部基础课实验教学示范中心”称号。之后每四年复查一次,审查不合格的将取消资格。 二、实验教学 1、实验课程体系 实验课程同理论课程一样,是构成高等学校课程教学的重要组成部分。中心的基础课实验教学原则上应独立设课并形成完整、科学的实验教学课程体系。 中心应按照新世纪经济建设和社会发展对高素质人才培养的需求,在综合各个层次实验内容的基础上,建立相关内容融合、贯通和渗透,形成科学的相互联系的实验教学课程新体系。中心通过科学的设置实验项目,全面培养学生的实验技能、综合分析和解决问题的能力,使学生具有创新精神和实践能力。 2、实验教学项目 实验教学应包括以下几个层次: 基本实验教学; 提高型实验教学(综合性、设计性等); 研究创新型实验教学。 其中,基本实验项目应根据学科的不同占到所开实验项目的50%左右。 3、实验教学方法

AFM原子力显微镜技术及应用实验报告

原子力显微技术观测薄膜形貌 姓名:吴涵颖学号:5404312065 班级:工业工程122 一、实验目的: Ⅰ、学习和了解AFM的结构和原理。 Ⅱ、掌握AFM的操作和调试过程,并以之来观察薄膜表面的形貌。 Ⅲ、学习用计算机软件来处理原始数据图像。 二、实验原理简析: 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 (1)力检测部分在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强

进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。 (1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10 - 10~10 - 6 N。若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。 (2)非接触模式 非接触模式探测试样表面时悬臂在距离试样表面上方5~10 nm 的距离处振荡。这时,样品与针尖之间的相互作用由范德华力控制,通常为10 - 12 N ,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加尖端对表面的压力。 (3)敲击模式 在敲击模式中,一种恒定的驱使力使探针悬臂以一定的频率振动。当针尖刚接触样品时,悬臂振幅会减少到某一数值。在扫描过程中,反馈回路维持悬臂振幅在这一数值恒定,亦即作用在样品上的力恒定,通过记录压电陶瓷管的移动得到样品表面形貌图。对于接触模式,由于探针和样品间的相互作用力会引起微悬臂发生形变,也就是说微悬臂的形变作为样品和针尖相互作用力的直接度量。同上述轻敲式,反馈系统保持针尖—样品作用力恒定从而得到表面形貌图。 原子力显微镜是用微小探针“摸索”样品表面来获得信息,所以测得的图像是样品最表面的形貌,而没有深度信息。扫描过程中,探针在选定区域沿着样品表面逐行扫描。 实验扫描的是光栅,纳米铜微粒以及纳米微粒,选用的是轻敲式。 敲击模式优点:敲击模式在一定程度上减小样品对针尖的粘滞现象,因为针尖与样品表面接触时,利用其振幅来克服针尖"样品间的粘附力。并且由于敲击模式作用力是垂直的,表面材料受横向摩擦力和剪切力的影响都比较小,减小扫描过程中针尖对样品的损坏。所以对于较软以及粘性较大的样品,应选用敲击模式。 三、实验步骤: 一、实验前准备: ①样品制备 1)薄膜样品制备 把之前实验制备得的铜微粒纳米材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。 2)纳米微粒制备 把纳米微粒材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片

相关文档
最新文档