作业调度实验报告

作业调度实验报告
作业调度实验报告

欢迎阅读

实验二 作业调度

一. 实验题目

1、编写并调试一个单道处理系统的作业等待模拟程序。

作业调度算法:分别采用先来先服务(FCFS ),最短作业优先(SJF )、响应比高者优先(HRN )

的调度算法。

(1)先来先服务算法:按照作业提交给系统的先后顺序来挑选作业,先提交的先被挑选。

(2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准,总是优先选取执行

(3 2

二. 实三 . 1) 2)1

2、运33)

二.最短作业优先算法 三.高响应比算法

图一.先来先服务流程图

4)源程序:

#include

#include

#include

#define getpch(type) (type*)malloc(sizeof(type))

#define NULL 0

int n;

float T1=0,T2=0;

int times=0;

struct jcb //作业控制块

{

char name[10]; //作业名

int reachtime; //作业到达时间

int starttime; //作业开始时间

void inital() //建立作业控制块队列,先将其排成先来先服务的模式队列

{

int i;

printf("\n输入作业数:");

scanf("%d",&n);

for(i=0;i

{

p=getpch(JCB);

printf("\n输入作业名:");

scanf("%s",p->name);

getch();

p->reachtime=i;

printf("作业默认到达时间:%d",i);

printf("\n输入作业要运行的时间:");

scanf("%d",&p->needtime);

p->state='W';

p->next=NULL;

if(ready==NULL) ready=q=p;

printf("周转时间:%f\n",q->cycletime);

printf("带权周转时间:%f\n",q->cltime);

getch();

}

}

void running(JCB *p,int m) //运行作业

{

if(p==ready) //先将要运行的作业从队列中分离出来 {

ready=p->next;

p->next=NULL;

}

else

{

q=ready;

while(q->next!=p) q=q->next;

q->next=p->next;

}

p->starttime=times; //计算作业运行后的完成时间,周转

}while(padv!=NULL);

}

void final() //最后打印作业的平均周转时间,平均带权周转时间{

float s,t;

t=T1/n;

s=T2/n;

getch();

printf("\n\n作业已经全部完成!");

printf("\n%d个作业的平均周转时间是:%f",n,t);

printf("\n%d个作业的平均带权周转时间是%f:\n\n\n",n,s); }

void hrn(int m) //高响应比算法

{

JCB *min;

int i,iden;

system("cls");

inital();

for(i=0;i

}

void sjf(int m) // 最短作业优先算法

{

JCB *min;

int i,iden;

system("cls");

inital();

for(i=0;i

{

p=min=ready;iden=1;

do{

if(p->state=='W'&&p->reachtime<=times)

if(iden){

min=p;iden=0;

}

else if(p->needtimeneedtime) min=p; p=p->next;

}while(p!=NULL) ;

if(iden) {

{

i--;

printf("\n没有满足要求的进程,需等待");

times++;

if(times>100){printf("\n时间过长");getch();} }

else{

running(p,m); //调用running()函数

}

}

final(); //调用running()函数

}

void mune()

{

int m;

system("cls");

printf("\n\n\t\t*********************************************\t\t \n");

system("cls");

mune();

break;

case 0:

system("cls");

break;

default:

printf("选择错误,重新选择.");

getch();

system("cls");

mune();

}

}

main() //主函数

{

inize();

mune();

}

4)源程序:

#include

#include

#include

#define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0

int j=0;

int n,i; //n为需要输入的作业数量

float T1=0,T2=0; //初始化周转时间,带权周转时间.

int times=0; //初始化开始运行时间

int freesa=100,disksa=5; //预定内存的大小为100k,磁带数量为5个. struct jcb //作业控制块

{

char username[10]; //用户名

char name[10]; //作业名

int reachtime; //作业到达时间

int starttime; //作业开始时间

int runtime; //已经运行了的时间

int needtime; //作业需要运行的时间

scanf("%d",&p->needtime);

printf("输入作业运行要占用的内存:");

scanf("%d",&p->frees);

printf("输入作业运行所需磁带:");

scanf("%d",&p->disks);

p->runtime=0;

p->state='W';

p->next=NULL;

if(ready==NULL) ready=q=p;//先将其按到达的先后顺序排成后备序列

else{

q->next=p;

q=p;

}

}

}

int space() //计算内存中作业的个数

{

int l=0; JCB* pr=start;

while(pr!=NULL)

q=ready;

while(q->next!=r) q=q->next;

q->next=r->next;

}

if(start==NULL) start=s=r; // 将其插到start队列, else{

s->next=r;

s=r;

}

}

else

{

p=p->next;

}

}

len=space();

printf("\n\t此时有%d道作业在内存\n\n",len);

}

void disp(JCB * pr) /*建立作业显示函数 */

disp(s);

s=s->next;

}

r=ready;

printf("*\n\n\t\t*********当前后备作业表中作业的状态**********"); printf("\n用户名****作业名****状态****到达时间*需运行时间*已运行时间*需占用内存*需磁带数量 \n");

while(r!=NULL)

{

disp(r);

r=r->next;

}

}

void running() //运行作业

{

for(t=start;t!=NULL;)

{

start=t->next;

q=t;

}

}

main() //主函数

{

int m;

printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验三(2) 多道作业调度\n");

printf("\t\t*********************************************\t\t\n");

printf("\n\t\t1.多道作业调度演示.");

printf("\n\t\t0.退出程序");

printf("\n\t\t\t选择所要的操作:");

printf("\n\n\n\t\t\t\t\t计算机学院软件四班\n");

printf("\t\t\t\t\t蓝小花\n");

printf("\t\t\t\t\t3204007102\n");

printf("\t\t\t\t\t完成日期:2006年12月");

scanf("%d",&m);

switch(m)

{

case 1:

答:①FCFS算法总是把处理机分配给最先进入就绪队列的进程,一个进程一旦分得处理机,便执行下去,直到该进程完成或阻塞时,才释放处理机。

优点:实现简单. 缺点:没考虑进程的优先级

②SJF算法从就绪队列中选出“下一个CPU执行期”最短的进程,为之分配

处理机。

该算法虽可获得较好的调度性能,但难以准确地知道下一个CPU执行期,

而只能根据每一个进行的执行历史来预测。

③ HRN算法既照顾了短作业,又照顾了作业顺序,不会使长作业长期得不到

运行,但调度前,必须计算响应比,增加了系统的开销.

2.选择调度算法的依据是什么?

答:面向用户的准则:周转时间短;响应时间快;截止时间的保证;优先权准则

面向系统的准则:系统吞吐量高;处理机利用率好;各类资源的平衡利用

五.心得体会

每个人对作业调度的算法都存在着一定的理解,这也就是很多同学的算法实现不同的原因.可能是自己理解的不够透彻,我总觉得自己的实验不够完善,还有,可能是自己掌握c语言还不够深,总觉得自己的想法与实现的算法存在着很大差距.希望

电力系统调度自动化试验-电气工程试验教学中心

电力系统调度自动化实验指导书 电气工程实验教学中心

电力系统调度自动化实验 一、实验目的 1.了解电力系统自动化的遥测,遥信,遥控,遥调等功能。 2.了解电力系统调度的自动化。 二、基本原理 电力系统是由许多发电厂,输电线路和各种形式的负荷组成。由于元件数量大,接线复杂,因而大大增加了分析计算的复杂性。作为电力系统的调度和通信中心担负着整个电力网的调度任务,以实现电力系统的安全优质和经济运行的目标。 “PS-5G型电力系统微机监控实验台”相当于电力系统的调度和通信中心。针对5个发电厂的安全、合理分配和经济运行进行调度,针对电力网的有功功率进行频率调整,针对电力网的无功功率的合理补偿和分配进行电压调整。 微机监控实验台对电力网的输电线路、联络变压器、负荷全采用了微机型的标准电力监测仪,可以显示各支路的所有电气量。开关量的输入、输出则通过可编程控制器来实现控制,并且各监测仪和PLC通过RS-485 通信口与上位机相联,实时显示电力系统的运行状况。 所有常规监视和操作除在现地进行外,均可在远方的监控系统上完成,计算机屏幕显示整个电力系统的主接线的开关状态和潮流分布,通过画面切换可以显示每台发电机的运行状况,包括励磁电流、励磁电压,通过鼠标的点击,可远方投、切线路或负荷,还可以通过鼠标的操作增、减有功或无功功率,实现电力系统自动化的遥测、

遥信、遥控、遥调等功能。运行中可以打印实验接线图、潮流分布图、报警信息、数据表格以及历史记录等。 三、实验项目和方法 1.电力网的电压和功率分布实验。 2.电力系统有功功率平衡和频率调整实验。 3.电力系统无功功率平衡和电压调整实验。 同学们自己设计实验方案,拟定实验步骤以及实验数据表格。 四、实验报告要求 1.详细说明各种实验方案和实验步骤。 2.认真整理实验数据。 3.比较各项的实验数据,分析其产生的原因。 五、思考题 1.电路系统无功功率补偿有哪些措施?为了保证电压质量采取了哪些调压手段? 2.何为发电机的一次调频、二次调频? 3.电力系统经济运行的基本要求是什么?

操作系统实验报告

操作系统实验报告 一、实验目的 1、处理机调度:在多道程序或多任务系统中,系统中同时处于就绪状态有 若干,也就是说能运行的进程数远远大于处理机个数。为了使系统中的 各进程能有条不紊地运行,必须选择某种调度策略,以选择一进程占用 处理机。 2、银行家算法:模拟进程的资源分配算法,了解死锁的产生和避免。 3、页面替换:在分页虚拟存储系统中,当硬件发出缺页中断后转操作系统 处理缺页中断。如果主存中已无空闲块,采用合适算法进行缺页处理。 4、移臂调度:在启动之前按驱动调度策略对访问的请求优化其排序十分必 要。就应该考虑使移动臂的移动时间最短的调度策略。 将上述算法放在一个程序中进行调度,就是本次课程设计的主要内容。二、实验要求 书写实验报告,应该包括以下几项内容: 1、实验题目 2、程序中使用的数据结构及主要符号说明。 3、程序流程图和带有注释的源程序。 4、执行程序名,并打印程序运行时的初值和运行结果,其中包括: I、各程序进程块的初始状态。 II、选中运行进程的名字、运行后各进程控制块状态以及每次调度时,就绪队列的进程排列顺序。 5、通过实验后的收获和体会及对实验的改进意见和见解。 三、实验内容 该程序中包括了处理机调度、页面置换算法、移臂调度算法;这三种算法中各包含了三种调度方式。最后还有银行家算法。 四、实验结果展示 1、初始界面如下

2、处理机调度过程

3、页面替换调度的界面

4、银行家算法界面 5、移臂调度界面 五、实验收获与体会 本次课程设计将平时做的实验综合在一起,通过界面的控制来调度不同的算法,实现不同的目的。当初单个实验执行没有错误,放在一起就出现了很多问题,比如重定义问题,整个实验中也只能出现一个main( )函数。 通过本次课程设计,收获颇多,当调出没错误时,一种前所未有的成就感油

实验五-页面调度算法模拟实验报告

《计算机操作系统》实验报告 实验五:页面调度算法模拟 学校:╳╳╳ 院系:╳╳╳ 班级:╳╳╳ 姓名:╳╳╳ 学号:╳╳╳

指导教师:╳╳╳ 目录 一、实验题目 (3) 二、实验学时 (4) 三、指导老师 (4) 四、实验日期 (4) 五、实验目的 (4) 六、实验原理 (4) 6.1页面的含义 (4) 6.2 页面置换算法的含义 (4) 6.3 置换算法 (4) 6.3.1最佳置换算法(Optimal) (5) 6.3.2先进先出(FIFO)页面置换算法 (5) 6.3.3 LRU置换算法 (5) 七、实验步骤及结果 (5)

7.1 验证最佳置换算法 (5) 7.1.1 实验截图 (5) 7.1.2 实验分析 (6) 7.2 验证先进先出(FIFO)页面置换算法 (7) 7.2.1 实验截图 (7) 7.2.2 实验分析 (7) 7.3 验证LRU置换算法 (8) 7.3.1 实验截图 (8) 7.3.2 实验分析 (8) 八、报告书写人 (9) 附录一最佳置换算法(Optimal) (9) 附录二先进先出(FIFO)页面置换算法 (15) 附录三LRU置换算法 (20) 实验五:页面调度算法模拟 一、实验题目 页面调度算法模拟

二、实验学时 2学时 三、指导老师 ╳╳╳ 四、实验日期 2018年12月10日星期一 五、实验目的 (1)熟悉操作系统页面调度算法 (2)编写程序模拟先进先出、LRU等页面调度算法,体会页面调度算法原理 六、实验原理 6.1页面的含义 分页存储管理将一个进程的逻辑地址空间分成若干大小相等的片,称为页面或页。 6.2 页面置换算法的含义 在进程运行过程中,若其所要访问的页面不在内存而需把它们调入内存,但内存已无空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据,送磁盘的对换区中。但应将哪个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法(Page_Replacement Algorithms)。 6.3 置换算法 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面换出,或将那些在较长时间内不会再访问的页面调出。

实验一进程调度实验报告书

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A》 题目:进程调度 班级:软件132 学号:2013122907 姓名:孙莹莹

操作系统原理实验——进程调度实验报告 一、目的与要求 1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。本实验可加深对进程调度算法的理解。 2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果) 3)于2015年4月18日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。 二、实验内容或题目 1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。 2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。 3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。 4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。 三、实验步骤与源程序 (1)流程图

(2)实验步骤 1)PCB的结构:优先级算法中,设PCB的结构如下图所示,其中各数据项的含义如下: Id:进程标识符号,取值1—5。 Priority:优先级,随机产生,范围1—5。 Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。 Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为5—10。并随机产生,每运行一个时间片need减1;need为0则进程结束。 Status:进程状态R(运行),W(就绪),F(完成);初始时都处于就绪状态。 Next:指向就绪队列中下一个进程的PCB的指针。 2)初始状态及就绪队列组织: 5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。各进程的优先级随机产生,范围1—5。处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head,队尾指针为tail。 3)调度原则以及运行时间的处理: 正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。程序中进程的运行时间以逻辑时间片为单位。

实时监控功能分析实验报告

实时监控功能分析实验报告 一.实验目的 1.对实时监控功能的基本作用有一个感性认识:电力系统的安全、可靠运行是发电、 供电和保障人民生产和生活用电的基本任务,发电厂和变电站当前运行状态信息必须及时准确地送到电力调度控制中心,以便调度人员进行调度。 2.掌握实时监控SCADA的基本功能、实现原理和操作方法。 3.了解表征发电厂和变电站当前运行状态的参数类型和特点、获取方式、表现形式。 如母线电压、有功功率、无功功率、电流和开关状态等。 4.了解改变发电厂和变电站当前运行方式的控制命令信息的类型和特点、下发方式。 5.了解非正常状态信息的表现形式。 二.实验要求 1.已对调度教材中有关调度自动化系统基本结构和功能以及状态信息的处理章节进 行了学习,建立了基本概念。 2.实验前认真阅读实验指导书;实验中,根据实验内容,做好实验记录;实验后,写 出实验报告。 3.认真上机操作,建立感性认识。 4.严格按照教师的指导进行操作。 5.在实验过程中做好记录。 三.系统结构

发电厂模拟一次控制屏变电站模拟一次控制屏 图1-1 系统结构

四.实验步骤及内容 1.了解实时监控控制台的硬件结构。 (1)调度自动化实验系统配置两台实时监控控制台,一台调度专用投影仪; (2)实时监控控制台联接在调度主站计算机网络系统中; (3)在实时监控控制台上运行实时监控软件; 2.启动系统 (1)启动厂站一次控制模拟屏和远方采集终端RTU; (2)启动HUB; (3)启动前置通信控制台及其软件; (4)启动服务器; (5)启动实时监控控制台及其软件。 3.了解实时监控控制台的软件配置情况 (1)IP地址 (2)共享目录的映射关系 (3)实时监控软件运行状况,菜单功能,多画面显示 4.实时画面显示 (1)分别调出系统接线图、发电厂和变电站主接线图;

嵌入式操作系统实验报告

中南大学信息科学与工程学院实验报告 姓名:安磊 班级:计科0901 学号: 0909090310

指导老师:宋虹

目录 课程设计内容 ----------------------------------- 3 uC/OS操作系统简介 ------------------------------------ 3 uC/OS操作系统的组成 ------------------------------ 3 uC/OS操作系统功能作用 ---------------------------- 4 uC/OS文件系统的建立 ---------------------------- 6 文件系统设计的原则 ------------------------------6 文件系统的层次结构和功能模块 ---------------------6 文件系统的详细设计 -------------------------------- 8 文件系统核心代码 --------------------------------- 9 课程设计感想 ------------------------------------- 11 附录-------------------------------------------------- 12

课程设计内容 在uC/OS操作系统中增加一个简单的文件系统。 要求如下: (1)熟悉并分析uc/os操作系统 (2)设计并实现一个简单的文件系统 (3)可以是存放在内存的虚拟文件系统,也可以是存放在磁盘的实际文件系统 (4)编写测试代码,测试对文件的相关操作:建立,读写等 课程设计目的 操作系统课程主要讲述的内容是多道操作系统的原理与技术,与其它计算机原理、编译原理、汇编语言、计算机网络、程序设计等专业课程关系十分密切。 本课程设计的目的综合应用学生所学知识,建立系统和完整的计算机系统概念,理解和巩固操作系统基本理论、原理和方法,掌握操作系统开发的基本技能。 I.uC/OS操作系统简介 μC/OS-II是一种可移植的,可植入ROM的,可裁剪的,抢占式的,实时多任务操作系统内核。它被广泛应用于微处理器、微控制器和数字信号处理器。 μC/OS 和μC/OS-II 是专门为计算机的嵌入式应用设计的,绝大部分代码是用C语言编写的。CPU 硬件相关部分是用汇编语言编写的、总量约200行的汇编语言部分被压缩到最低限度,为的是便于移植到任何一种其它的CPU 上。用户只要有标准的ANSI 的C交叉编译器,有汇编器、连接器等软件工具,就可以将μC/OS-II嵌入到开发的产品中。μC/OS-II 具有执行效率高、占用空间小、实时性能优良和可扩展性强等特点,最小内核可编译至2KB 。μC/OS-II 已经移植到了几乎所有知名的CPU 上。 严格地说uC/OS-II只是一个实时操作系统内核,它仅仅包含了任务调度,任务管理,时间管理,内存管理和任务间的通信和同步等基本功能。没有提供输入输出管理,文件系统,网络等额外的服务。但由于uC/OS-II良好的可扩展性和源码开放,这些非必须的功能完全 可以由用户自己根据需要分别实现。 uC/OS-II目标是实现一个基于优先级调度的抢占式的实时内核,并在这个内核之上提供最基本的系统服务,如信号量,邮箱,消息队列,内存管理,中断管理等。 uC/OS操作系统的组成 μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。如下图:

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

电力系统动态模拟实验-上海交通大学电气工程实验中心

电气系统综合实验(下)电力系统动态模拟实验 实验模版 任务编号

电力系统调度自动化实验 一、实验目的 1.了解电力系统自动化的遥测,遥信,遥控,遥调等功能。 2.了解电力系统调度的自动化。 二、原理与说明 电力系统是由许多发电厂,输电线路和各种形式的负荷组成的。由于元件数量大,接线复杂,因而大大地增加了分析计算的复杂性。作为电力系统的调度和通信中心担负着整个电力网的调度任务,以实现电力系统的安全优质和经济运行的目标。随着微电子技术、计算机技术和通信技术的发展,综合自动化技术也得到迅速发展。 电网调度自动化是综合自动化的一部分,它只包括远动装置和调度主站系统,是用来监控整个电网运行状态的。为使调度人员统观全局,运筹全网,有效地指挥电网安全、稳定和经济运行,实现电网调度自动化已成为调度现代电网的重要手段,其作用主要有以下三个方面: 1、对电网安全运行状态实现监控 电网正常运行时,通过调度人员监视和控制电网的周波、电压、潮流、负荷与出力;主设备的位置状况及水、热能等方面的工况指标,使之符合规定,保证电能质量和用户计划用电、用水和用汽的要求。 2、对电网运行实现经济调度 在对电网实现安全监控的基础上,通过调度自动化的手段实现电网的经济调度,以达到降低损耗、节省能源,多发电、多供电的目的。 3、对电网运行实现安全分析和事故处理 导致电网发生故障或异常运行的因素非常复杂,且过程十分迅速,如不能及时预测、判断或处理不当,不但可能危及人身和设备安全,甚至会使电网瓦解崩溃,造成大面积停电,给国民经济带来严重损失。为此,必须增强调度自动化手段,实现电网运行的安全分析,提供事故处理对策和相应的监控手段,防止事故发生以便及时处理事故,避免或减少事故造成的重大损失。 二、电网调度自动化的基本内容 现代电网调度自动化所设计的内容范围很广,其基本内容如下: 1、运行监视

期末操作系统实验报告

深圳大学实验报告 实验项目名称:操作系统实验报告 学院:师范学院 专业:教育技术学 指导教师:涂向华 报告人:赵静静学号:2010122004 实验时间:2012.12.20 实验报告提交时间:2012 12.24 教务处制

实验一进程调度模拟程序设计 【实验内容】 设计一个有几个进程并发执行的进程调度程序,每个进程由一个进程控制块(PCB)表示,进程控制块通常应包括下述信息:进程名,进程优先数,进程需要运行的时间,占用CPU的时间以及进程的状态等,且可按照调度算法的不同而增删。 调度程序应包含2种不同的调度算法,运行时可以任选一种,以利于各种方法的分析和比较。 系统应能显示或打印各进程状态和参数的变化情况,便于观察。 【实验目的】 进程是操作系统最重要的概念之一,也是操作系统的主要内容,本实验要求学生独立地用高级语言编写一个进程调度程序,调度算法可任意选择或自行设计,本实验可使学生加深对进程调度和各种调度算法的理解。 【实验过程】 1.做出进程调用流程图: 2.先来先服务算法(FCFS) 算法思想该算法思想是按照进入就绪队列的先后次序来分配处理机。FCFS 采用非剥夺调度方式,即一旦某个进程占有处理机,就一直运行下去,直到该进程完成其工作或因等待某一事件而不能继续执行时才释放处理机。 3.时间片轮转法(Round Robin)

算法思想 该算法思想是使每个进程在就绪队列中的等待时间与享受服务的时间成比例。即将CPU的处理时间分成固定大小的时间片,如果在执行的一个进程把它分给它的时间片用完了,但任务还没有完成,则它也只能停止下来,释放它所占的CPU资源,然后排在相应的就绪队列的后面去。 本次实验运用到的时间片轮转法: 1.设系统有3个进程,每个进程用一个进程控制块PCB来代表。 2.为每个进程任意确定一个要求运行时间。 3.按照进程输入的先后顺序排成一个队列。再设一个队首指针指向第一个到达进程的首址。 4.执行处理机调度时,开始选择队首的第一个进程运行。另外,再设一个当前运行进程的指针,指向当前正在运行的进程。 5.考虑到代码的可重用性, 轮转法调度程序是调用同一个模快进行输出。注:由于轮转法调度程序和最高优先级优先调度和最高优先级优先调度是调用同一个模快进行输出,所以在时间轮转法调度算法的进程中,依然显示了随即产生的优先级数. 6.进程运行一次后,以后的调度则将当前指针依此下移一个位置,指向下一个进程,即调整当前运行指针指向该进程的链接指针所指进程,以指示应运行进程。同时还应判断该进程的要求运行时间是否等于已运行时间。若不等,则等待下一轮的运行,否则将该进程的状态置为完成态,并退出循环队列。 7.若就绪队列不空,则重复上述的(5)和(6)步骤直到所有的进程都运行完为止。 8.在所设计的调度程序中,包含显示或打印语句。显示或打印每次选中的进程的名称及运行一次后队列的变化情况。 实验代码:FCFS算法 #include #include #include #define N 5 //进程个数,可改变 int rt[N]; //到达时间 int st[N]; //服务时间 int ct[N]; //完成时间 int cyt[N]; //周转时间 float rct[N]; //带权周转时间 float av[2]; int n,m; void line() //美化程序,使程序运行时更加明朗美观 { printf("------------------------------------------------------------------\n"); }

作业调度实验报告

作业调度实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二作业调度 一.实验题目 1、编写并调试一个单道处理系统的作业等待模拟程序。 作业调度算法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。 (1)先来先服务算法:按照作业提交给系统的先后顺序来挑选作业,先提交的先被挑选。 (2)最短作业优先算法:是以进入系统的作业所提出的“执行时间”为标准,总是优先选取执行时间最短的作业。 (3)响应比高者优先算法:是在每次调度前都要计算所有被选作业(在后备队列中)的响应比,然后选择响应比最高的作业执行。 2、编写并调度一个多道程序系统的作业调度模拟程序。 作业调度算法:采用基于先来先服务的调度算法。可以参考课本中的方法进行设计。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。 二.实验目的: 本实验要求用高级语言(C语言实验环境)编写和调试一个或多个作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解三 .实验过程 <一>单道处理系统作业调度 1)单道处理程序作业调度实验的源程序: 执行程序: 2)实验分析:

1、由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的 CPU 时限等因素。 2、每个作业由一个作业控制块JCB 表示,JCB 可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。每个作业的最初状态总是等待W 。 3、对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间。 3)流程图: 二.最短作业优先算法 三.高响应比算法 图一.先来先服务流程图 4)源程序: #include <> #include <> #include <> #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 int n; float T1=0,T2=0; int times=0; struct jcb .\n",p->name); free(p); .wait...",time); if(times>1000) 代替 代替

先来先服务FCFS和短作业优先SJF进程调度算法_实验报告材料

先来先服务FCFS和短作业优先SJF进程调度算法 1、实验目的 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的转变、进程调度的策略及对系统性能的评价方法。 2、需求分析 (1) 输入的形式和输入值的范围 输入值:进程个数Num 范围:0

说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。 4、详细设计 5、调试分析 (1)调试过程中遇到的问题以及解决方法,设计与实现的回顾讨论和分析 ○1开始的时候没有判断进程是否到达,导致短进程优先算法运行结果错误,后来加上了判断语句后就解决了改问题。 ○2 基本完成的设计所要实现的功能,总的来说,FCFS编写容易,SJF 需要先找到已经到达的进程,再从已经到达的进程里找到进程服务时间最短的进程,再进行计算。 (2)算法的改进设想 改进:即使用户输入的进程到达时间没有先后顺序也能准确的计算出结果。(就是再加个循环,判断各个进程的到达时间先后,组成一个有序的序列) (3)经验和体会 通过本次实验,深入理解了先来先服务和短进程优先进程调度算法的思想,培养了自己的动手能力,通过实践加深了记忆。 6、用户使用说明 (1)输入进程个数Num

进程调度算法模拟实验

华北科技学院计算机系综合性实验 实验报告 课程名称操作系统C 实验学期2012至2013学年第2学期学生所在系部计算机系 年级专业班级 学生姓名学号 任课教师杜杏菁 实验成绩 计算机系制

《操作系统C》课程综合性实验报告 开课实验室:基础六机房2013年6月3日 实验题目进程调度算法模拟 一、实验目的 通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。 二、设备与环境 1.硬件设备:PC机一台 2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。 三、实验内容 (1)用C语言(或其它语言,如Java)实现对N个进程采用某种进程调度算法(如动态优先权调度)的调度。 (2)每个用来标识进程的进程控制块PCB可用结构来描述,包括以下字段: ?进程标识数ID。 ?进程优先数PRIORITY,并规定优先数越大的进程,其优先权越高。 ?进程已占用CPU时间CPUTIME。 ?进程还需占用的CPU时间ALLTIME。当进程运行完毕时,ALLTIME变为0。 ?进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进 入阻塞状态。 ?进程被阻塞的时间BLOCKTIME,表示已阻塞的进程再等待BLOCKTIME个时间片后,将 转换成就绪状态。 ?进程状态STATE。 ?队列指针NEXT,用来将PCB排成队列。 (3)优先数改变的原则: ?进程在就绪队列中呆一个时间片,优先数增加1。 ?进程每运行一个时间片,优先数减3。 (4)为了清楚地观察每个进程的调度过程,程序应将每个时间片内的进程的情况显示出来,包括正在运行的进程,处于就绪队列中的进程和处于阻塞队列中的进程。

配网自动化实验报告

配网自动化实验报告 学院:电气信息学院 学生: 学号: 班级: 任课教师:

一.实验名称: 馈线自动化功能分析 二.实验目的: 1.对馈线自动化功能的基本作用有一个感性认识:配电网的安全、可靠运 行是发电、供电和保障人民生产和生活用电的重要任务,馈线的运行方 式和负荷信息必须及时准确地送到配网监控中心,以便运行管理人员进 行调度控制管理;当故障发生后,能及时准确地确定故障区段,迅速隔 离故障区段并恢复健全区域供电。 2.掌握配网SCADA的基本功能、实现原理和操作方法。 3.了解表征馈线当前运行状态的参数类型和特点、获取方式、表现形式。 如馈电点电压、有功功率、无功功率、电流和开关状态等。 4.了解改变馈线当前运行方式的控制命令信息的类型和特点、下发方式。 5.了解非正常状态信息的表现形式。 6.掌握故障判断、隔离和健全区域恢复供电功能的原理和实现。 三.实验要求: 1.已对配网教材中有关馈线自动化系统基本结构和功能以及状态信息的 处理章节进行了学习,建立了基本概念。 2.实验前认真阅读实验指导书;实验中,根据实验内容,做好实验记录; 实验后,写出实验报告。 3.认真上机操作,建立感性认识。 4.严格按照教师的指导进行操作。 5.在实验过程中做好记录。 四.系统结构:

FTU FTU 图4-1 系统结构 五.系统功能:

图4-2 系统功能

六.实验步骤及内容: 1.了解馈线自动化的硬件结构 (1)调度自动化实验系统配置两台实时监控控制台,一台调度专用投影仪; (2)实时监控控制台联接在调度主站计算机网络系统中; (3)在实时监控控制台上运行实时监控软件,既监控输电网又监控配电网的运行情况; (4)本实验将连接在调度主站计算机网络系统中的多台微机控制台安装并运行实时监控软件,以满足更多同学同时上机操作的需要。 2.启动系统 (1)启动厂站一次控制模拟屏和远方采集终端RTU; (2)启动HUB; (3)启动服务器; (4)启动前置通信控制台及其软件; (5)启动实时监控控制台及其软件。 3.了解实时监控控制台的软件配置情况 (1) IP地址 (2)共享目录的映射关系 (3)实时监控软件运行状况,菜单功能,多画面显示 图4-3 主界面

移臂调度算法

移臂调度算法 一、实验目的 作为操作系统的辅助存储器,用来存放文件的磁盘是一类高速大容量旋转型存储设备,在繁重的I/O设备负载下,同时会有若干传输请求来到并等待处理,系统必须采用一种调度策略,能够按最佳次序执行要求访问的诸多请求,这叫做驱动调度,所使用的算法叫做驱动调度算法。 驱动调度算法能减少为若干I/O请求服务所需消耗的总时间,从而提高系统效率。 对于磁盘设备,在启动之前按驱动调度策略对访问的请求优化其排序十分必要。除了使旋转圈数达到最少的调度策略外,还应考虑使移动臂的移动时间最短的调度策略。 二、实验要求 书写实验报告,应该包括以下几项内容: (1)实验题目; (2)程序中使用的数据结构及主要符号说明; (3)程序流程图和带有注释的源程序; (4)执行程序名,并打印程序运行时的初值和运行结果; (5)通过实验后的收获与体会及对实验的改进意见和见解。 三、程序及主要符号说明 (1)先来先服务(FCFS) 这是一种简单的磁盘调度算法。它根据进程请求访问磁盘的先后次序进行调度。此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出

现某一进程的请求长期得不到满足的情况。但此算法由于未对寻道进行优化,致使平均寻道时间可能较长。 (2)最短寻道时间优先(SSTF) 该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,但这种调度算法却不能保证平均寻道时间最短。 (3)扫描算法(SCAN) SCAN算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。例如,当磁头正在自里向外移动时,SCAN算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。 四、实验结果 1、先来先服务调度(FCFS) 2、最短寻道时间优先调度(SSTF)

操作系统实验报告-作业调度

作业调度 一、实验目的 1、对作业调度的相关内容作进一步的理解。 2、明白作业调度的主要任务。 3、通过编程掌握作业调度的主要算法。 二、实验内容及要求 1、对于给定的一组作业, 给出其到达时间和运行时间,例如下表所示: 2、分别用先来先服务算法、短作业优先和响应比高者优先三种算法给出作业的调度顺序。 3、计算每一种算法的平均周转时间及平均带权周转时间并比较不同算法的优劣。

测试数据 workA={'作业名':'A','到达时间':0,'服务时间':6} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} 运行结果 先来先服务算法 调度顺序:['A', 'B', 'C', 'D', 'E', 'F'] 周转时间: 带权周转时间:

短作业优先算法 调度顺序:['A', 'D', 'F', 'C', 'E', 'B'] 周转时间: 带权周转时间:1. 响应比高者优先算法 调度顺序:['A', 'D', 'F', 'E', 'C', 'B'] 周转时间: 带权周转时间: 五、代码 #encoding=gbk workA={'作业名':'A','到达时间':0,'服务时间':6,'结束时间':0,'周转时间':0,'带权周转时间':0} workB={'作业名':'B','到达时间':2,'服务时间':50} workC={'作业名':'C','到达时间':5,'服务时间':20} workD={'作业名':'D','到达时间':5,'服务时间':10} workE={'作业名':'E','到达时间':12,'服务时间':40} workF={'作业名':'F','到达时间':15,'服务时间':8} list1=[workB,workA,workC,workD,workE,workF] list2=[workB,workA,workC,workD,workE,workF] list3=[workB,workA,workC,workD,workE,workF] #先来先服务算法 def fcfs(list): resultlist = sorted(list, key=lambda s: s['到达时间']) return resultlist #短作业优先算法 def sjf(list): time=0 resultlist=[] for work1 in list: time+=work1['服务时间'] listdd=[] ctime=0 for i in range(time): for work2 in list: if work2['到达时间']<=ctime: (work2) if len(listdd)!=0: li = sorted(listdd, key=lambda s: s['服务时间']) (li[0]) (li[0]) ctime+=li[0]['服务时间'] listdd=[]

(完整word版)操作系统实验报告 实验一 进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5));

相关文档
最新文档