山东省济宁市兖州区2017届中考数学二模试卷(含解析)

合集下载

2017学年山东省济宁中考数学年试题答案

2017学年山东省济宁中考数学年试题答案

四川省成都市2017年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】B【解析】解:若气温为零上10℃记作10+℃,则3-℃表示气温为零下3℃.故选:B.【提示】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可. 2.【答案】C【解析】解:从上边看一层三个小正方形,故选:C. 【提示】根据从上边看得到的图形是俯视图,可得答案. 3.【答案】【解析】解:1064764700000000 6.4710==⨯亿,故选:C.【提示】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1≥时,n 是非负数;当原数的绝对值1<时,n 是负数. 4.【答案】A【解析】解:由题意可知:10x -≥,∴1x ≥,故选A. 【提示】根据二次根式有意义的条件即可求出答案. 5.【答案】D【解析】解:A.不是轴对称图形,也不是中心对称图形,故本选项错误;B.不是轴对称图形,是中心对称图形,故本选项错误;C.是轴对称图形,不是中心对称图形,故本选项错误;D.既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【提示】根据轴对称图形和中心对称图形的概念对各选项提示判断即可得解. 6.【答案】B【解析】解:A.5552a a a +=,所以此选项错误;B.76a a a ÷=,所以此选项正确;C.325a a a =,所以此选项错误;D.326)(a a -=,所以此选项错误;故选B.【提示】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.2111xx x +=-+原式括号中两项通分并利用同分母分式的减法法则计算,123∠sinAB BAD1k ,在O 中,∵且点A 是EH 则在O 中,ADB ∠AB AC =,∴12OD AC ==,设O的半径为EAF,则FOD∠1DE r=+,在O中,∵∠是等腰三角形,∴BF BD r==EFA,∴△2,综上所述,O的半径为2,设O的半径为1EF r BD=+,求出r的值即可12x x a =,由12254x x =-12x a =,解方程得到设O 的半径为,2ππ2P =+【解析】迁移应用:(1)证明:如图2理由:如图2﹣1中,作AH CD H⊥于.cos30AD︒=A D︒= c o s30理由:1情形1,如图,作PE x E MH x H ⊥⊥轴于,轴于.。

2017年山东济宁理科高三二模数学试卷-学生用卷

2017年山东济宁理科高三二模数学试卷-学生用卷

2017年山东济宁理科高三二模数学试卷-学生用卷一、选择题(本大题共10小题,每小题5分,共50分)1、【来源】 2017年山东济宁高三二模理科第1题5分设复数z在满足(1+i)z=|√3+i|,其中i为虚数单位,则在复平面内,z对应的点的坐标是().A. (√2,−√2)B. (1,−1)C. (1,−i)D. (2,−2i)2、【来源】 2017年山东济宁高三二模理科第2题5分已知集合A={x|y=log2(3−x)},B={x||2x−1|>1},则A∩B=().A. {x|1<x<3}B. {x|−1<x<3}C. {x|x<0或0<x<3}D. {x|x<0或1<x<3}3、【来源】 2017年山东济宁高三二模理科第3题5分2016~2017学年10月北京西城区北京师范大学第二附属中学高三上学期月考理科第2题5分“a<−2”是“函数f(x)=ax+3在区间[−1,2]上存在零点x0”的().A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4、【来源】 2017年山东济宁高三二模理科第4题5分2018年内蒙古赤峰高三一模理科第4题5分2018年内蒙古赤峰高三一模文科第4题5分2018年四川南充高三零模理科第3题5分我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ).A. 104人B. 108人C. 112人D. 120人5、【来源】 2017年山东济宁高三二模理科第5题5分2017年安徽黄山高三二模理科第6题5分过圆锥顶点的平面截去圆锥一部分,所得几何体的三视图如图所示,则原圆推的体积为().A. 1B. 2π3C. 4π3D. 8π36、【来源】 2017年山东济宁高三二模理科第6题5分2017年安徽黄山高三二模文科第6题5分在区间[0,8]上随机取一个x的值,执行如图的程序框图,则输出的y⩾3的概率为().A. 13B. 12C. 23D. 347、【来源】 2017年山东济宁高三二模理科第7题5分在△ABC中,点M为边BC上任意一点,点N为AM的中点,若AN→=λAB→+μAC→(λ,μ∈R),则λ+μ的值为().A. 12B. 13C. 14D. 158、【来源】 2017年山东济宁高三二模理科第8题5分2016年天津河北区高三一模理科第7题5分2016年天津河北区高三二模文科第7题5分2016年天津河北区高三二模理科第7题5分已知函数y=f(x)是R上的偶函数,当x1,x2∈(0,+∞)时,都有(x1−x2)⋅[f(x1)−f(x2)]< 0.设a=ln⁡1π,b=(ln⁡π)2,c=ln⁡√π,则().A. f(a)>f(b)>f(c)B. f(b)>f(a)>f(c)C. f(c)>f(a)>f(b)D. f(c)>f(b)>f(a)9、【来源】 2017年山东济宁高三二模理科第9题5分已知M(x,y) 为平面区域D :{x −y ⩾0y −1x ⩽0y ⩾a,(0<a <1)内的一个动点,若z =y+1x的最大值为3 ,则区域D 的面积为( ).A. ln⁡2+58B. ln⁡2−12C. ln⁡2+18D. ln⁡2−3810、【来源】 2017年山东济宁高三二模理科第10题5分2017年四川宜宾高三二模文科第12题5分2017年山东济宁高三二模文科第10题5分已知点A(0,−1) 是抛物线C :x 2=2py (p >0 )准线上的一点,点F 是抛物线C 的焦点,点P 在抛物线C 上且满足|PF |=m |PA | ,当m 取最小值时,点P 恰好在以原点为中心,F 为焦点的双曲线上,则此双曲线的离心率为( ).A. √2B. √3C. √2+1D. √3+1二、填空题(本大题共5小题,每小题5分,共25分)11、【来源】 2017年山东济宁高三二模理科第11题5分为了解某班学生喜欢打篮球是否与性别有关,对本班50 人进行了问卷调查,得到如下2×2 列联表:经计算得到随机变量K 2 的观测值为8.333 ,则有 %的把握认为喜爱打篮球与性别有关(临界值参考表如下).12、【来源】 2017年山东济宁高三二模理科第12题5分2015年高考真题江苏卷第8题2017~2018学年广东广州增城区高一下学期期末第15题5分2019~2020学年福建福州鼓楼区福州延安中学高一上学期期末第15题5分2018~2019学年12月江苏南京鼓楼区金陵中学高三上学期月考第5题5分已知tan⁡α=−2,tan⁡(α+β)=17,则tan⁡β的值为.13、【来源】 2017年山东济宁高三二模理科第13题5分2018~2019学年广东广州荔湾区广州市南海中学高二下学期期末理科第13题5分2018~2019学年广东广州番禺区广东仲元中学高二下学期期末理科第13题5分在(2x2−√x )6的展开式中,含x7的项的系数是.14、【来源】 2017年山东济宁高三二模理科第14题5分2018~2019学年天津河东区天津市第五十四中学高三上学期期末理科第13题5分x2+y2+2ax+a2−4=0和x2+y2−4by−1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则1a2+1b2的最小值为.15、【来源】 2017年山东济宁高三二模理科第15题5分已知函数f(x)={cos⁡(x−π2),x∈[0,π]log2017xπ,x∈(π,+∞)若存在三个不相等的实数a,b,c使得f(a)=f(b)=f(c),则a+b+c的取值范围为.三、解答题(本大题共6小题,共75分)16、【来源】 2017年山东济宁高三二模理科第16题12分已知△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,若向量π→=(a +c,sin⁡B),n →=(b −c,sin⁡A −sin⁡C),且π→//n →.(1) 求角A 的大小.(2) 设函数f(x)=tan⁡Asin⁡ωxcos⁡ωx −cos⁡Acos⁡2ωx (ω>0 ),已知其图象的相邻两条对称轴间的距离为π2 ,现将y =f(x) 的图象上各点向左平移π6 个单位,再将所得图象上各点的横坐标伸长为原来的2 倍,得到函数y =g(x) 的图象,求g(x) 在[0,π] 上的值域.17、【来源】 2017年山东济宁高三二模理科第17题12分如图所示的几何体ABCDE 中,DA ⊥ 平面EAB ,CB//DA ,EA =DA =AB =2CB ,EA ⊥AB ,M 是EC 上的点(不与端点重合),F 为DA 上的点,N 为BE 的中点.(1) 若M 是EC 的中点,AF =3FD ,求证:FN// 平面MBD .(2) 若平面MBD 与平面ABD 所成角(锐角)的余弦值为13 ,试确定点M 在EC 上的位置.18、【来源】 2017年山东济宁高三二模理科第18题12分甲、乙、丙三人玩抽红包游戏,现将装有5 元、3 元、2 元的红包各3 个,放入一不透明的暗箱中并搅拌均匀,供3人随机抽取.(1) 若甲随机从中抽取3个红包,求甲抽到的3个红包中装有的金额总数小于10 元的概率.(2) 若甲、乙、丙按下列规则抽取:①每人每次只抽取一个红包,抽取后不放回;②甲第一个抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次轮流;③一旦有人抽到装有5元的红包,游戏立即结束.求甲抽到的红包的个数X的分布列及数学期望.19、【来源】 2017年山东济宁高三二模理科第19题12分已知数列{a n}的前n项和S n=32(a n−1),数列{b n}满足b n+2=2b n+1−b n,且b6=a3,b60=a5,其中n∈N∗.(1) 求数列{a n},{b n}的通项公式.(2) 若c n=(−1)n b n b n+1,求数列{c n}的前n项和T n.20、【来源】 2017年山东济宁高三二模理科第20题13分已知椭圆C:x 2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P(1,√22)在椭圆上,连接PF1交y轴于点Q,点Q满足PQ→=QF1→.直线l不过原点O且不平行于坐标轴,l与椭圆C有两个交点A,B.(1) 求椭圆C的标准方程.(2) 已知点M(54,0),若直线l过椭圆C的右焦点F2,证明:MA→⋅MB→为定值.(3) 若直线l过点(0,2),设N为椭圆C上一点,且满足OA→+OB→=λON→,求实数λ的取值范围.21、【来源】 2017年山东济宁高三二模理科第21题14分已知函数f(x)=e xx −m(ln⁡x+1x)(m为实数,e=2.71828…是自然对数的底数).(1) 当m>1时,讨论f(x)的单调性.(2) 若g(x)=x2f′(x)−xe x在(32,3)内有两个零点,求实数m的取值范围.(3) 当m=1时,证明:xf(x)=xln⁡x+1>x+ln⁡(x+1)x.1 、【答案】 B;2 、【答案】 D;3 、【答案】 A;4 、【答案】 B;5 、【答案】 D;6 、【答案】 B;7 、【答案】 A;8 、【答案】 C;9 、【答案】 D;10 、【答案】 C;11 、【答案】99.5;12 、【答案】3;13 、【答案】240;14 、【答案】1;15 、【答案】(2π,2018π);16 、【答案】 (1) A=π.3;,1].(2) g(x)在[0,π]上的值域为[−12;17 、【答案】 (1) 证明见解析.;(2) 点M是EC的中点或EC上靠近点C的四等分点.;18 、【答案】 (1) 13.42;(2) X的分布列为:E(X)=54.;19 、【答案】 (1) a n=3n,b n=4n+3.;(2) T n={6n2+21n,n为偶数−10n2−31n−36,n为奇数.;20 、【答案】 (1) 椭圆的标准方程:x22+y2=1.;(2) 证明见解析.;(3) λ∈(−2,2).;21 、【答案】 (1) 当m=e时,f(x)在(0,+∞)递增;当m>e时,f(x)在(ln⁡m,+∞),(0,1)递增,在(1,ln⁡m)递减;当1<m<e时,f(x)在(1,+∞),(0,ln⁡m)递增,在(ln⁡m,1)递减.;(2) 实数m的取值范围为(−12e2,−e2).;(3) 证明见解析.;。

山东省济宁市2017年中考数学真题试题(含解析)

山东省济宁市2017年中考数学真题试题(含解析)

【答案】(1)证明见解析;(2)11. 【解析】
试题分析:(1)连接 OD,证明 OD⊥DE 即可,要证 OD⊥DE,只需证 OD∥AE,由 D 是 B»C 的中点,可得出 BOD BAE ,从而问题得证;(2)过点 O 作 OF⊥AC 于点 F,可知 ODEF 为矩形,只需求出 AF 的长度
就可求出 AE 的长度.在 Rt△OFA 中利用勾股定理可求得 AF=5,从而 AE=11.
以点 M,N 为圆心,大于 MN 的长为半径画弧,两弧在第二象限交于点 P.若点 P 的坐标为(a,b),
则 a 与 b 的数量关系为

【答案】 a b 0
【解析】 试题分析:根据作图可知,OP 为第二象限角平分线,所以 P 点的横纵坐标互为相反数,故 a+b=0. 考点:1 角平分线;2 平面直角坐标系.
A. ① 【答案】D 【解析】
B.④
C.②或④
D. ①或③
考点:1 圆;2 函数图像;3 分类思想.
二、填空题(共 5 小题,每小题 3 分,满分 15 分)
11.分解因式: ma2 2mab mb2 =

【答案】 m(a b)2
【解析】
试题分析: ma2 2mab mb2 =m(a2 2mab mb2 ) m(a b)2 .
∴OD⊥DE. ∴DE 是⊙O 的切线.
(2)过点 O 作 OF⊥AC 于点 F,∵ AC 10,
1
1
∴ AF CF AC 10 5.
2
2
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形 OFED 是矩形,
1 ∴F E=OD= AB .∵ AB 12 ,∴FE=6
2
∴AE=AF+FE=5+6=11.

2017年山东省济宁市中考数学试卷含答案

2017年山东省济宁市中考数学试卷含答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前山东省济宁市2017年初中学业水平考试数 学本试卷满分100分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.16的倒数是( ) A .6B .6-C .16D .16- 2.单项式39m x y 与单项式24n x y 是同类项,则m n +的值是( ) A .2B .3C .4D .5 3.下列图形是中心对称图形的是( )A B C D4.某桑蚕丝的直径约为0.000016m 米,将0.000016用科学记数法表示是 ( ) A .41.610-⨯ B .51.610-⨯ C .51.610-⨯D .61610-⨯5.下列哪个几何体,它的主视图、俯视图、左视图都相同的是( )ABCD6.1在实数范围内有意义,则x 满足的条件是( )A .12x ≥B .12x ≤ C .12x =D .12x ≠7.计算232323()a a a a a -+-÷的结果为( ) A .52a a - B .512a a- C .5aD .6a8.将分别标有“孔”“孟”“之”“乡”汉字的4个小球装在一个不透明的口袋中,这些小球除所标汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( ) A .18B .16C .14D .129.如图,在Rt ABC △中,90ACB ∠=,1AC BC ==.将Rt ABC △绕A 点逆时针旋转30后得到Rt ADE △,点B经过的路径为BD ,则图中阴影部分的面积是 ( )A .π6 B .π3 C .π122-D .1210.如图1,A ,B 是半径为1的O 上两点,且OA OB ⊥.点P 从点A 出发,在O 上以每秒1个单位长度的速度匀速运动,回到点A 运动结束.设运动时间为(s)x ,弦BP 的长度为y ,那么下面图象(如图2)中可能表示y 与x 的函数关系的是 ( ) A .①B .④C .②或④D .①或③①②③④(第9题)图1 (第10题)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)图2 (第10题)第Ⅱ卷(非选择题 共70分)二、填空题(本大题共5小题,每小题3分,共15分) 11.分解因式:222ma mab mb ++= .12.请写出一个过(1,1),且与x 轴无交点的函数解析式: .13.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意如下:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲、乙二人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,则可列方程组为 .14.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点(,)P a b ,则a 与b 的数量关系为 .(第14题)(第15题)15.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则六边形444444A B C D E F 的面积是 .三、解答题(本大题共7小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分5分) 解方程:21122x x x=---. 17.(本小题满分7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两幅不完整的统计图.优秀人数条形统计图优秀率折线统计图(第17题)请根据以上两图解答下列问题: (1)该班总人数是 .(2)根据计算,请你补全两幅统计图.(3)观察补全后的统计图,写出一条你发现的结论.18.(本小题满分7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为ω元. (1)求ω与x 之间的函数关系式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?.19.(本小题满分8分)如图,已知O 的直径12AB =,弦10AC =,点D 是BC 的中点,过点D 作DE AC ⊥交AC 的延长线于点E .(1)求证:DE 是O 的切线. (2)求AE 的长.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)(第19题)20.(本小题满分8分) 实验探究:(1)如图1,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,得到折痕BM ,同时得到线段BN ,MN .请你观察图1,猜想MBN ∠的度数,并证明你的结论.(2)将图1中的三角形纸片BMN 剪下,如图2.折叠该纸片,探究MN 与BM 的数量关系.写出折叠方案,并结合方案证明你的结论.图1图2(第20题)21.(本小题满分9分)已知函数2(25)2y mx m x m =--+-的图象与x 轴有两个公共点. (1)求m 的取值范围,并写出当m 为取值范围内最大整数时函数的解析式.(2)将题(1)中求得的函数记为1C .①当1n x -≤≤时,y 的取值范围是13y n -≤≤,求n 的值.②函数2C :2()y m x h k =-+的图象由函数1C 的图象平移得到,其顶点P 落在以原点为圆心,.设函数1C 的图象顶点为M ,求点P 与点M 距离最大时函数2C 的解析式.22.(本小题满分11分)定义:点P 是ABC △内部或边上的点(顶点除外),在PAB △,PBC △,PCA △中,若至少有一个三角形与ABC △相似,则称点P 是ABC △的自相似点. 例如:如图1,点P 在ABC △的内部,PBC A =∠△,PCB ABC ∠=∠,则BCP ABC △∽△,故点P 为ABC △的自相似点. 请你运用所学知识,结合上述材料,解决下列问题: 在平面直角坐标系中,点M 是曲线C:0)y x =>上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,ONP M ∠=∠,试说明点P 是MON △的自相似点;当点M的坐标是,点N的坐标是时,求点P 的坐标.(2)如图3,当点M的坐标是,点N 的坐标是(2,0)时,求MON △的自相似点的坐标.(3)是否存在点M 和点N ,使MON △无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.图1图2图3-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)(第22题)山东省济宁市2017年初中学业水平考试232a a a -÷【提示】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【考点】整式的运算 【解析】画树状图为:【解析】90ACB∠=,AC2 30π(2)360⨯Rt ABC△绕30后得到ADE Rt ACB≌△S S=+△阴影部分【提示】先根据勾股定理得到,又点90,30B∠,1A,正六边形90,30B∠,1A A数学试卷第9页(共16页)数学试卷第10页(共16页)如图所示:30)(60)(y x=-+之间的函数解析式w)根据题意得:w x=-,10-<,当250=,5048>,元的销售利润,销售,D为BCDE AC⊥90∴∠=︒AED线;2)过10AC=∠=OFE四边形OFED12AB=,6FE∴=,则5611AE AF FE=+=+=.数学试卷第11页(共16页)数学试卷第12页(共16页)数学试卷 数学试卷 第14页(共16页)30.,直线EF 是AB 60,302.130B=∠90,,OP OP =1230.只要证明折纸方案:如图,)函数图象与.m 为符合条件的最大整数,n x ≤≤-y =-)22y x =+如图所示:与O 的交点处时,的解析式为y =1y x =数学试卷 第15页(共16页) 数学试卷 第16页(共16页))ONP ∠=的自相似点;过当点M 的坐NOP △∽△3c s 62O P N ==sin 60︒=OP x ⊥轴于H 点①如图3所示:P 是MON △OQ =,P 的横坐标为②如图4所示:,P 是MON △,解得:PN 理由如下:(3,3)M 等边三角形,点存在点M 和点N 90,在Rt。

2024年山东省济宁市兖州区中考数学二模试卷(含详解)

2024年山东省济宁市兖州区中考数学二模试卷(含详解)

2024年山东省济宁市兖州区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a <−2B. b <1C. −a >bD. a >b2.如图是一个几何体的侧面展开图,这个几何体可以是( )A. 圆锥B. 圆柱C. 棱锥D. 棱柱3.不等式组{2x ≥x−1x +12>2x 3的解集在数轴上表示为( )A. B.C. D.4.如图为商场某品牌椅子的侧面图,∠DEF =118°,DE 与地面平行,∠ABD =49°,则∠ACB =( )A. 72°B. 69°C. 49°D. 31°5.下列运算结果正确的是( )A. x 3⋅x 3=x 9B. 2x 3+3x 3=5x 6C. (2x 2)3=6x 6D. (2+3x)(2−3x)=4−9x 26.若关于x 的分式方程x x−1+1=m 1−x 的解为非负数,则m 的取值范围是( )A. m⩽1且m≠−1B. m⩾−1且m≠1C. m<1且m≠−1D. m>−1且m≠17.如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A 的对应点A′的坐标是( )A. (2,−3)B. (−2,3)C. (3,−2)D. (−3,2)(k<0)的图象上,则y1,y2,y3的大小关系8.已知点A(3,y1),B(−2,y2),C(−1,y3)都在反比例函数y=kx为( )A. y3<y2<y1B. y1<y3<y2C. y1<y2<y3D. y2<y3<y19.如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是( )A. π12B. π24C. 10π60D. 5π6010.如图,在反比例函数y=1的图象上有P1,P2,P3…P2024等点,它们的横坐标依次为1,2,3,…,x2024,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为s1,s2,s3…,s2023,则s1+s2+s3+…+s2023的值为( )A. 1B. 2024C. 12024D. 20232024二、填空题:本题共5小题,每小题3分,共15分。

2017年各地中考真题-2017年山东省济宁市中考数学试卷 (3)

2017年各地中考真题-2017年山东省济宁市中考数学试卷 (3)

2017年山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2=.12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.2017年山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2017•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2017•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(2017•济宁)下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(2017•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(2017•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(2017•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(2017•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(2017•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y 与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•济宁)分解因式:ma2+2mab+mb2=m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(2017•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(2017•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(2017•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(2017•济宁)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(2017•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(2017•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(2017•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED 为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(2017•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(2017•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y 随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(2017•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P 是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。

山东省济宁市嘉祥县2017年中考数学二模试卷(含答案)

山东省济宁市嘉祥县2017年中考数学二模试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.在下列实数:﹣1.3,,0,2,﹣1中,绝对值最小的数是()A.﹣1.3 B.0 C.D.﹣1【分析】根据题目中的数据可以求出它们的绝对值,从而可以找出绝对值最小的数,本题得以解决.【解答】解:∵|﹣1.3|=1.3,||=,|0|=0,|2|=2,|﹣1|=1,∴绝对值最小的数是0,故选B.【点评】本题考查实数大小比较,解答本题的关键是求出题目中各个数据的绝对值.2.“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104 B.4.62×106 C.4.62×108 D.0.462×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.方程2x2=3x的解为()A.0 B.C.D.0,【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.4.如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150°D.140°【分析】作c∥a,由于a∥b,可得c∥b.然后根据平行线的性质解答.【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.【点评】本题考查了平行线的性质,作出辅助线是解题的关键.5.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.【点评】本题主要考查平均数、众数、中位数及方差,熟练掌握这些统计量的意义及计算公式是解题的关键.6.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.8【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故选A.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE 的长是()A.B.C.D.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8.若函数y=mx2+(m﹣1)x+(m﹣1)的图象与x轴只有一个交点,那么m的值是()A.0 B.0,﹣1或1 C.1或﹣1 D.0或1【分析】分类讨论:当m=0时,函数为y=﹣x,根据一次函数的性质易得一次函数与x轴只有一个交点;当m≠0,利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到△=(m﹣1)2﹣4m×(m﹣1)=0,然后解关于m的一元二次方程.【解答】解:当m=0时,函数为y=﹣x,此一次函数与x轴只有一个交点;当m≠0,当△=(m﹣1)2﹣4m×(m﹣1)=0时,二次函数y=mx2+(m﹣1)x+(m﹣1)的图象与x轴只有一个交点,解得m=±1.故选B.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a ≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.解决本题的关键是讨论函数为一次函数或是二次函数.9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.【解答】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【分析】逐一分析5条结论是否正确:(1)由抛物线与x轴有两个不相同的交点结合根的判别式即可得出该结论正确;(2)根据抛物线的对称轴为x=﹣1,即可得出b=2a,即(2)正确;(3)根据抛物线的对称性找出点(﹣,y3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出(3)错误;(4)由x=﹣3时,y<0,即可得出3a+c<0,结合b=2a 即可得出(4)正确;(5)由方程at2+bt+a=0中△=b2﹣4a•a=0结合a<0,即可得出抛物线y=at2+bt+a中y≤0,由此即可得出(5)正确.综上即可得出结论.【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.【点评】本题考查了二次函数图象与系数的关系、二次函数与不等式以及抛物线与x轴的交点,解题的关键是逐一分析5条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,熟练掌握二次函数的图象是关键.二、填空题(本大题共5小题,每小题3分,共15分)11.在函数y=中,自变量x的取值范围是x≥4.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣4≥0且x﹣3≠0,解得x≥4且x≠3,所以,自变量x的取值范围是x≥4.故答案为:x≥4.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.直线y=x+2与双曲线y=在第一象限的交点为A(2,m),则k=6.【分析】先把A(2,m)代入直线y=x+2得出m的值,故可得出A点坐标,再代入双曲线y=,求出k的值即可.【解答】解:∵直线y=x+2与双曲线y=在第一象限的交点为A(2,m),∴m=×2+2=3,∴A(2,3),∴k=xy=2×3=6.故答案为:6.【点评】本题考查的是反比例函数与一次函数的交点问题,解答此类题目时要先求出已知点的坐标,再代入含有未知数的函数解析式.13.分解因式:ab4﹣4ab3+4ab2=ab2(b﹣2)2.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.【解答】解:ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.故答案为:ab2(b﹣2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是(﹣10,3).【分析】根据题意可以得到CE、OF的长度,根据点E在第二象限,从而可以得到点E的坐标.【解答】解:设CE=a,则BE=8﹣a,由题意可得,EF=BE=8﹣a,∵∠ECF=90°,CF=4,∴a2+42=(8﹣a)2,解得,a=3,设OF=b,∵△ECF∽△FOA,∴,即,得b=6,即CO=CF+OF=10,∴点E的坐标为(﹣10,3),故答案为(﹣10,3).【点评】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化﹣对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2017B2017C2017D2017的边长是.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2016.故答案为:.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.三、解答题(本大题共7小题,共55分)16.(5分)计算:(﹣1)2017+2•cos60°﹣+.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣1)2017+2•cos60°﹣+=﹣1+2×﹣4+1=﹣1+1﹣3=﹣3【点评】此题主要考查了实数的运算,零指数幂、负整数指数幂的运算方法以及特殊角的三角函数值的求法,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(7分)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【分析】(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢糖馅的人数即可;(2)利用总人数800乘以所对应的百分比即可;(3)利用列举法表示,然后利用概率公式即可求解【解答】解:(1)扇形统计图中,“很喜欢”所对应的圆心角为360°×40%=144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(7分)阅读材料:求1+2+22+23+24+…+22017的值.解:设S=1+2+22+23+24+…+22016+22017,等式两边同时乘2得:2S=2++22+23+24+25…+22017+22018将下式减去上式得:2S﹣S=22018﹣1S=22018﹣1即1+2+22+23+24+…+22017=22018﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【分析】(1)设原式=S,两边乘2变形后,相减求出S即可;(2)设原式=S,两边乘3变形后,相减求出S即可.【解答】解:(1)设S=1+2+22+ (210)两边乘2得:2S=2+22+ (211)两式相减得:2S﹣S=S=211﹣1,则原式=211﹣1;(2)设S=1+3+32+33+…+3n,两边乘3得:3S=3+32+33+…+3n+1,两式相减得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则原式=(3n+1﹣1).【点评】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解运算方法是解题的关键.19.(7分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°.从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)【分析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt △PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【解答】解:由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ==,∴BF==5,∴PG=BD=BF+FD=5+6,在RT△PCG中,∵tanβ=,∴CG=(5+6)•=5+2,∴CD=(6+2)米.【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.20.(9分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以写出W与x的函数关系式;(3)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少.【解答】解:(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,,解得,,即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)由题意可得,W=6x+,化简,得W=4x+100,即W与x之间的函数关系式是:W=4x+100;(3),解得,10≤x≤12.5,故有三种购买方案,由W=4x+100可知,W随x的增大而增大,故当x=12时,,即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断△DHF的形状,并说明理由;②求⊙O的半径.【分析】(1)由OD∥AC,推出∠CAD=∠ODA,由OA=OD,推出∠OAD=∠ODA,即可证明;(2)①结论:△DHF是等腰直角三角形.只要证明∠DHF=∠DFH,即可证明;②设DF=x,由①可知DH=DF=x,由△DFG∽△DAF,推出=,可得=,推出x=2,DF=2,AD=4,再根据勾股定理即可解决问题;【解答】(1)证明:连接OD.∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)解:①△DHF是等腰直角三角形.理由:∵FH平分∠AFE,∴∠AFH=∠EFH,∵∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH,∵AF是直径,∴∠ADF=90°,∴△DHF是等腰直角三角形.②设DF=x,由①可知DH=DF=x,∵OH⊥AD,∴AD=2DH=2x,∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴=,∴=,∴x=2,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF===2,∴⊙O的半径为.【点评】本题考查圆综合题、勾股定理、相似三角形的判定和性质、等腰直角三角形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考压轴题.22.(11分)在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)点M是第一象限内抛物线上的一动点,问:当点M在何处是,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)若P为x轴上方抛物线上的一动点,N为x轴上的一动点,点Q的坐标为(1,0),当点P、N、B、Q构成以BQ为一边的平行四边形时,请直接写出点P的坐标.【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,﹣x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)根据平行四边形的性质列方程即可得到结论.【解答】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)如图1,连接AA′,设直线AA′的解析式为:y=kx+b,∴,解得:,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,﹣x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(﹣1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴﹣x2+3x+4=±4,当﹣x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当﹣x2+3x+4=﹣4时,解得:x3=,x4=,∴P3(,﹣4),P4(,﹣4).【点评】此题属于二次函数的综合题,考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题.掌握分类讨论思想的应用是解此题的关键.。

山东省济宁市2017届高三第二次模拟考试数学(文)试题含答案

2017年高考模拟考试文科数学试题2017.05本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.第Ⅱ卷必须用0. 5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

参考公式: 锥体体积公13V Sh =其中S 为底面面积,h 为高 第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}213,log 2A x x B x y x =<<==-,则A B ⋂=(A)(0,3) (B)(0,1)(C)(1,2) (D)(2,3) 2.复数1i z i=-,其中i 为虚数单位,则=z(A) 12(B) 2 (C)1 (D)2 3.已知命题p :,cos 1,x R p ∀∈≤⌝则是(A) ,cos 1x R x ∃∈≥(B) ,cos 1x R x ∀∈≥ (C) ,cos 1x R x ∃∈>(D) ,cos 1x R x ∀∈>4.已知,x y 满足约束条件0,31,2x y y x y z x x -≥⎧+⎪+≥=⎨⎪≤⎩则的最小值为 (A) 1- (B)7 (C) 52(D)1 5.“2a <-”是“函数3y ax =+在区间()1,3-上存在零点”的(A)充分不必要条件(B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件6.已知函数()()sin 2f x x ϕ=+,将其图象向左平移6π个单位长度后得到的函数为偶函数,则ϕ的最小正值为 (A) 12π (B) 6π (C) 3π (D 23π 7.在区间[-4,4]上随机地取一个数a ,则事件“对任意的正实数,使210x ax -+≥成立”发生的概率为 (A) 34 (B) 12 (C) 13 (D) 148.已知点P 是直线:320l x y --=上的任意一点,过点P 引圆()()22311x y +++=的切线,则切线长度的最小值为(A)3(B) (C)2 (D)19.若函数()f x 满足:当()112x x f x ⎛⎫<= ⎪⎝⎭时,;当1x ≥时,()()1f x f x +=-,则()22017log 3f + (A) 112 (B) 18 (C) 38 (D) 2310.已知点()0,1A -是抛物线()220C x py p =>:准线上的一点,点F 是C 的焦点,点P在C 上且满足PF m PA m =,当取最小值时,点P 恰好在以原点为中心,F 为焦点的双曲线上,则该双曲线的离心率为(A)(B)(C) 1(D) 1第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.以下茎叶图记录的是某同学高三5次模拟考试数学得分:则这5次得分的方差为_______________.12.执行右图所示的程序框图,则输出的S 的值为_____________.13.在梯形ABCD 中,AB//CD ,∠BAD=2π,M 为BC 中点,且AB=AD=2CD=2,则A M B D 的值为_____________.14.正方体1111ABCD A B C D -的棱长为2,点P 是线段1BD 的中点,M 是线段11B C 上的动点,则三棱锥M PBC -的体积为____________. 15.已知函数()21,1,ln , 1.x x f x x x x⎧-<⎪=⎨≥⎪⎩若方程()f x m =恰有五个不相等的实数根,则实数m的取值范围为_______________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校学生中随机抽取了部分同学进行调查,得到男生、女生每周使用共享单车的时间(单位:小时)如下表:按每周使用时间分层抽样的方法在这些学生中抽取10人,其中每周使用时间在[]0,2内的学生有2人.(I)求的值;(Ⅱ)将每周使用时间在(2,4]内的学生按性别分层抽样的方法抽取一个容量为6的样本.若从该样本中任取2人,求至少有1位女生的概率.17.(本小题满分12分)已知向量)()(),cos ,sin ,cos 0m x x n x x ωωωωω==>,函数()f x m n =⋅的最小正周期为π.(I)求ω的值及函数()f x 的单调递增区间;(Ⅱ)在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a=1,()A f 取得最大值时,求边c.18.(本小题满分12分)在四棱锥P —ABCD 中,PA ⊥平面ABCD ,AD//BC ,AD⊥DC ,BC=4,AD=DC=2,E 为PA 的中点,F 为线段BC 上一点,且CF=1.(I)证明:EF//平面PCD ;(Ⅱ)证明:平面PAB ⊥平面PAC .19.(本小题满分12分)已知数列{}n a 的前n 项和()21n n S a =-,等差数列{}n b 满足b 1=a 1,b 4=a 3,其中n ∈N *. (I)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若()11nn n n c b b +=-,求数列{}n c 的前2n 项和T 2n .20.(本小题满分13分)已知函数()()()()22122ln 0,.02f x ax x x ag x x b b =-+≥=+>. (I)讨论函数()f x 的单调性;(Ⅱ)当a=0时,若对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,使()()2214g x f x e e -<+成立,其中e=2.71828…,是自然对数的底数,求b 的取值范围.21.(本小题满分14分)在平面直角坐标系Oy 中,点A(,1)关于原点O 的对称点为点B ,椭圆C :()222210x y a b a b +=>>的离心率是2,且过点B . (I)求椭圆C 的标准方程;(Ⅱ)若点P 是椭圆C 上异于点A ,B 的一动点,直线AP 斜率为1,直线BP 斜率为2,证明:1212k k =-. (Ⅲ)是否存在直线l 与椭圆C 交于不同的两点M ,N ,使四边形OMBN 为平行四边形,若存在,求出直线l 的方程;若不存在,请说明理由.。

山东省济宁市2017届高三第二次模拟考试数学(文)试题Word版含答案

2017年高考模拟考试文科数学试题2017.05本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.第Ⅱ卷必须用0. 5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

参考公式: 锥体体积公13V Sh =其中S 为底面面积,h 为高 第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}213,log 2A x x B x y x =<<==-,则A B ⋂=(A)(0,3) (B)(0,1)(C)(1,2) (D)(2,3) 2.复数1i z i=-,其中i 为虚数单位,则=z(A) 12(B) 2 (C)1 (D)2 3.已知命题p :,cos 1,x R p ∀∈≤⌝则是(A) ,cos 1x R x ∃∈≥(B) ,cos 1x R x ∀∈≥ (C) ,cos 1x R x ∃∈>(D) ,cos 1x R x ∀∈>4.已知,x y 满足约束条件0,31,2x y y x y z x x -≥⎧+⎪+≥=⎨⎪≤⎩则的最小值为 (A) 1- (B)7 (C) 52(D)1 5.“2a <-”是“函数3y ax =+在区间()1,3-上存在零点”的(A)充分不必要条件(B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件6.已知函数()()sin 2f x x ϕ=+,将其图象向左平移6π个单位长度后得到的函数为偶函数,则ϕ的最小正值为 (A) 12π (B) 6π (C) 3π (D 23π 7.在区间[-4,4]上随机地取一个数a ,则事件“对任意的正实数x ,使210x ax -+≥成立”发生的概率为 (A) 34 (B) 12 (C) 13 (D) 148.已知点P 是直线:320l x y --=上的任意一点,过点P 引圆()()22311x y +++=的切线,则切线长度的最小值为(A)3(B) (C)2 (D)19.若函数()f x 满足:当()112x x f x ⎛⎫<= ⎪⎝⎭时,;当1x ≥时,()()1f x f x +=-,则()22017log 3f + (A) 112 (B) 18 (C) 38 (D) 2310.已知点()0,1A -是抛物线()220C x py p =>:准线上的一点,点F 是C 的焦点,点P在C 上且满足PF m PA m =,当取最小值时,点P 恰好在以原点为中心,F 为焦点的双曲线上,则该双曲线的离心率为(A)(B)(C) 1(D) 1第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.以下茎叶图记录的是某同学高三5次模拟考试数学得分:则这5次得分的方差为_______________.12.执行右图所示的程序框图,则输出的S 的值为_____________.13.在梯形ABCD 中,AB//CD ,∠BAD=2π,M 为BC 中点,且AB=AD=2CD=2,则A M B D 的值为_____________.14.正方体1111ABCD A B C D -的棱长为2,点P 是线段1BD 的中点,M 是线段11B C 上的动点,则三棱锥M PBC -的体积为____________. 15.已知函数()21,1,ln , 1.x x f x x x x⎧-<⎪=⎨≥⎪⎩若方程()f x m =恰有五个不相等的实数根,则实数m的取值范围为_______________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)共享单车的出现方便了人们的出行,深受市民的喜爱.为调查某校大学生对共享单车的使用情况,从该校学生中随机抽取了部分同学进行调查,得到男生、女生每周使用共享单车的时间(单位:小时)如下表:按每周使用时间分层抽样的方法在这些学生中抽取10人,其中每周使用时间在[]0,2内的学生有2人.(I)求z的值;(Ⅱ)将每周使用时间在(2,4]内的学生按性别分层抽样的方法抽取一个容量为6的样本.若从该样本中任取2人,求至少有1位女生的概率.17.(本小题满分12分)已知向量)()(),cos ,sin ,cos 0m x x n x x ωωωωω==>,函数()f x m n =⋅的最小正周期为π.(I)求ω的值及函数()f x 的单调递增区间;(Ⅱ)在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a=1,()A f 取得最大值时,求边c.18.(本小题满分12分)在四棱锥P —ABCD 中,PA ⊥平面ABCD ,AD//BC ,AD⊥DC ,BC=4,AD=DC=2,E 为PA 的中点,F 为线段BC 上一点,且CF=1.(I)证明:EF//平面PCD ;(Ⅱ)证明:平面PAB ⊥平面PAC .19.(本小题满分12分)已知数列{}n a 的前n 项和()21n n S a =-,等差数列{}n b 满足b 1=a 1,b 4=a 3,其中n ∈N *. (I)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若()11nn n n c b b +=-,求数列{}n c 的前2n 项和T 2n .20.(本小题满分13分)已知函数()()()()22122ln 0,.02f x ax x x ag x x b b =-+≥=+>. (I)讨论函数()f x 的单调性;(Ⅱ)当a=0时,若对任意121,,x x e e ⎡⎤∈⎢⎥⎣⎦,使()()2214g x f x e e -<+成立,其中e=2.71828…,是自然对数的底数,求b 的取值范围.21.(本小题满分14分)在平面直角坐标系xOy 中,点A(,1)关于原点O 的对称点为点B ,椭圆C :()222210x y a b a b +=>>的离心率是2,且过点B . (I)求椭圆C 的标准方程;(Ⅱ)若点P 是椭圆C 上异于点A ,B 的一动点,直线AP 斜率为k 1,直线BP 斜率为k 2,证明:1212k k =-. (Ⅲ)是否存在直线l 与椭圆C 交于不同的两点M ,N ,使四边形OMBN 为平行四边形,若存在,求出直线l 的方程;若不存在,请说明理由.。

2017市中数学二模

27.将两块全等的三角板如图1摆放,,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°. (1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ; (2)在图2中,若AP1=a,则CQ等于多少? (3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.

考点:三角形;旋转 解:(1)在△B1CQ与△BCP1中: ∠B=∠B1 BC=B1C ∴△B1CQ与△BCP1 ∠B1CQ=∠BCP1 ∴:CP1=CQ; (2)过P1作P1D⊥AC于D

则P1D=2a,CP1=22a 由(1)可知CQ=CP1 ∴CQ=CP1=22a (3)当∠P1CP2=∠A=30°时 又∵∠CP1P2为△AP1C与△CP1P2的公共角 ∴△AP1C∽△CP1P2 ∴当△A1B1C顺时针旋转30°时△AP1C∽△CP1P2

此时1211122PPCPCPAP ∴1122PPCP 28.如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(4,0)经过点A、B的抛物线2yxbxc与y轴交于点C. (1)求抛物线的关系式. (2)△ABC的外接圆与y轴交于点D,在抛物线上是否存在点M使MBCDBCSS△△,若存在,请求出M的坐标. (3)点P是直线y=-x上的一动点,连接PB,PC,当PB+PC+PO最小时,求点P的坐标及其最小值.

考点:抛物线;圆 解:(1)2-3-4yxx (2)因为MBC△与DBC△同底,∴若使MBCDBCSS△△只需两个三角形的高相同 只需点在过点D且平行于BC的直线上。 圆心为BC与AB垂直平分线的交点, 32xyx



得圆心为(32,32) 由垂径定理可得D(0,1)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省济宁市兖州区中考数学二模试卷 一、选择题(共10小题,每小题3分,满分30分) 1.如图所示,a与b的大小关系是( )

A.a<b B.a>b C.a=b D.b=2a 2.下列运算正确的是( ) A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C. =±3 D. =﹣2 3.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是( ) A.2 B.4 C.5 D.7 4.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )

A.5个 B.6个 C.7个 D.8个 5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是( )

A. cm B.5cm C.6cm D.10cm 6.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为( ) A.﹣4 B.4 C.﹣16 D.16 7.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差: 甲 乙 丙 丁 平均数(cm) 185 180 185 180 方差 3.6 3.6 7.4 8.1 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁 8.下列图形: 任取一个是中心对称图形的概率是( ) A. B. C. D.1 9.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )

A. B.2 C.3 D.2 10.如图,直线y=﹣x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有( )

A.0个 B.1个 C.2个 D.0个,或1个,或2个

二、填空题(共5小题,每小题3分,满分15分) 11.如果分式有意义,那么x的取值范围是 . 12.如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是 . 13.已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为 . 14.书店举行购书优惠活动: ①一次性购书不超过100元,不享受打折优惠; ②一次性购书超过100元但不超过200元一律打九折; ③一次性购书超过200元一律打七折. 小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元. 15.观察如图等式:在数字宝塔中,从上往下数,2017在第 层. 第一层1+2=3 第二层4+5+6=7+8 第三层9+10+11+12=13+14+15 第四层16+17+18+19+20=21+22+23+24 …

三、解答题(共7小题,满分55分) 16.(5分)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入. 17.(7分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有 人; (2)请你将条形统计图补充完成; (3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答). 18.(7分)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)

19.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km. (1)当速度为50km/h、100km/h时,该汽车的耗油量分别为 L/km、 L/km. (2)求线段AB所表示的y与x之间的函数表达式. (3)速度是多少时,该汽车的耗油量最低?最低是多少?

20.(8分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF. (1)证明:∠E=∠C; (2)若∠E=55°,求∠BDF的度数; (3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.

21.(9分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形. (1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系. 猜想结论:(要求用文字语言叙述) 写出证明过程(先画出图形,写出已知、求证). (3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

22.(11分)如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A (1)求抛物线的解析式; (2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. 2017年山东省济宁市兖州区中考数学二模试卷 参考答案与试题解析

一、选择题(共10小题,每小题3分,满分30分) 1.如图所示,a与b的大小关系是( )

A.a<b B.a>b C.a=b D.b=2a 【考点】18:有理数大小比较. 【分析】根据数轴判断出a,b与零的关系,即可. 【解答】根据数轴得到a<0,b>0, ∴b>a, 故选A 【点评】此题是有理数大小的比较,主要考查了识别数轴上的点表示的数,也是解本题的难点.

2.下列运算正确的是( ) A.(a﹣3)2=a2﹣9 B.a2•a4=a8 C. =±3 D. =﹣2 【考点】46:同底数幂的乘法;22:算术平方根;24:立方根;4C:完全平方公式. 【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项. 【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误; B、a2•a4=a6,故错误; C、=3,故错误; D、=﹣2,故正确, 故选D. 【点评】本题考查了同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式,属于基础知识,比较简单. 3.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是( ) A.2 B.4 C.5 D.7 【考点】J4:垂线段最短. 【分析】根据垂线段最短得出结论. 【解答】解:如图,根据垂线段最短可知:PC≤3, ∴CP的长可能是2, 故选A.

【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.

4.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )

A.5个 B.6个 C.7个 D.8个 【考点】U3:由三视图判断几何体. 【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数. 【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个. 故选A. 【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.

5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是( )

A. cm B.5cm C.6cm D.10cm 【考点】M5:圆周角定理;KQ:勾股定理. 【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可. 【解答】解:如图,连接MN, ∵∠O=90°, ∴MN是直径, 又OM=8cm,ON=6cm, ∴MN===10(cm). ∴该圆玻璃镜的半径是: MN=5cm. 故选:B.

【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

6.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为( ) A.﹣4 B.4 C.﹣16 D.16 【考点】33:代数式求值.

相关文档
最新文档