圆的单元练习
人教版六年级上册数学第五单元圆应用题专项练习

人教版六年级上册数学第五单元圆应用题专项练习1.李东以每分钟62.8米的速度绕一个圆形花坛走了一圈,恰好1分钟。
这个花坛的面积是多少平方米?2.一只挂钟的分针长20厘米,经过45分钟后,这根分针扫过的面积是多少平方厘米?3.每次妈妈回家时,三岁的乐乐都站在门旁边等着给妈妈开门。
为了避免开门时撞到乐乐,妈妈想把门的下面与地面划过的轨迹上贴上地面贴,让乐乐每次都站在地面贴的外面。
如果门的宽度是100厘米,打开的最大角是90°(如图),地面贴的面积是多少平方厘米?4.公园新建了一个周长是12.56m的圆形喷水池,在喷水池的周围有一条1m宽的鹅卵石健身小道。
这条小道的占地面积是多少平方米?5.一个圆形花坛的半径是10米,在里面种植红、黄两种颜色的花,红花与黄花的种植面积之比是3∶7。
求种植红花和黄花的面积分别是多少平方米?6.用下面这张长方形铁皮剪下一个最大的圆形铁皮,剪下的圆形铁皮大约有多少平方分米?(保留整数)7.一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图)。
∶折叠后的桌面的面积是多少平方米?∶折叠部分是多少平方米?(得数保留两位小数)8.人民公园建了一个周长为62.8米的圆形草坪,并准备为它安装一个自动旋转式喷水装置进行喷灌,现有射程为20米、15米、10米的三种装置,你认为选哪种射程的装置比较合适?安装在什么地方最好?9.天宫一号与天宫二号目标飞行器是中国自主研制的载人空间实验平台。
地球的半径的是6700km,天宫一号在地球340km高的圆形轨道上运转,天宫二号在距地球390km 高的圆形轨道上运转。
天宫二号比天宫一号的轨道长多少km?10.公园里有一个周长为62.8m的圆形花坛,沿花坛外围修一条2m宽的石头小路,这条小路的面积是多少?(π的取值为3.14)11.中国建筑中经常能见到“外方内圆”的设计。
一个正方形边长是2米,这个正方形内最大的圆面积是多少平方米?12.如图,有两块半圆形的草坪,草坪中间是一条宽1米的长方形过道,每块草坪的周长是51.4米,草坪和过道的总面积是多少平方米?13.春节贴“福”字,是中国民间由来已久的风俗,“福”字指福气、福运,寄托了人们对幸福生活的向往,对美好未来的祝愿。
【单元练】广东潮州市九年级数学上册第二十四章《圆》经典练习题(课后培优)

一、选择题1.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内C解析:C【分析】设点(-3,4)为点P ,原点为点O ,先计算出OP 的长,然后根据点与圆的位置关系的判定方法求解.【详解】解:∵设点(-3,4)为点P ,原点为点O ,∴OP =2234+=5,而⊙P 的半径为5,∴OP 等于圆的半径,∴点O 在⊙P 上.故选:C .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.2.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70°C解析:C【分析】 连接BC ,求出∠B =65°,根据翻折的性质,得到∠ADC+∠B =180°,进而得到∠BDC=∠B =65°.【详解】解:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°﹣∠BAC =90°﹣25°=65°,根据翻折的性质,AC 所对的圆周角为∠B ,ABC 所对的圆周角为∠ADC ,∴∠ADC+∠B =180°,∴∠BDC=∠B =65°,故选:C .【点睛】本题考查了圆周角定理及其推论,根据题意添加适当辅助线是解题关键.3.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm πC解析:C【分析】 首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 4.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠D解析:D【分析】 利用切线长定理证明△PAG ≌△PBG 即可得出.【详解】解:连接OA ,OB ,AB ,AB 交PO 于点G ,由切线长定理可得:∠APO =∠BPO ,PA =PB ,又∵PG=PG ,∴△PAG ≌△PBG ,从而AB ⊥OP .因此A .B .C 都正确.无法得出AB =PA =PB ,可知:D 是错误的.综上可知:只有D 是错误的.故选:D .【点睛】本题考查了切线长定理、全等三角形的判定和性质,关键是利用切线长定理解答. 5.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75°B解析:B【分析】 连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.6.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,28CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则E ∠等于( )A .28︒B .34︒C .44︒D .56︒B解析:B【分析】 连接OC ,由CE 为圆O 的切线,利用切线的性质得到OC 垂直于CE ,由OA=OC ,利用等边对等角得到一对角相等,再利用外角性质求出∠COE 的度数,即可求出∠E 的度数.【详解】解:连接OC ,∵CE 为圆O 的切线,∴OC ⊥CE ,∴∠COE=90°,∵∠CDB 与∠BAC 都对BC ,且∠CDB=28°,∴∠BAC=∠CDB=28°,∵OA=OC ,∴∠OAC=∠OCA=28°,∵∠COE 为△AOC 的外角,∴∠COE=56°,则∠E=34°.故选:B .【点睛】此题考查了切线的性质,圆周角定理,等腰三角形的性质,以及三角形内角和定理,熟练掌握切线的性质是解本题的关键.7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°B解析:B【分析】 设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B .【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.9.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°C解析:C【分析】 延长DO 交AB 于点H ,连接OB ,证明△△AOD BOD ≅,OD 是AOB ∠的角平分线,求得290345∠=︒-∠=︒,进行求解即可;【详解】延长DO 交AB 于点H ,连接OB ,∵四边形ABCD 是平行四边形,45C ∠=︒,∴345∠=︒,∵DA DB =,OA OB =,∴△△AOD BOD ≅,∴OD 是AOB ∠的角平分线,又∵AO BO =,∴DH AB ⊥,∴290345∠=︒-∠=︒,又∵221∠=∠,∴18045135AOD ∠=︒-︒=︒.故选:C .【点睛】本题主要考查了与圆有关的计算,结合全等三角形的性质和角平分线的性质计算即可. 10.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6C解析:C【分析】 过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM =22PD DM +=2243+=5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 二、填空题11.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .12【分析】根据垂径定理求出AC=5dm 再根据勾股定理求出OC 即可【详解】∵OC ⊥AB ∴AC=5dm 在Rt △AOC 中∴OC==12dm 故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm ,再根据勾股定理求出OC 即可.【详解】∵OC ⊥AB ,10dm AB =,∴AC=5dm ,在Rt △AOC 中,13dm OA =,∴2222135OA AC -=-,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.12.如图,O的半径为6,AB、CD是互相垂直的两条直径,点P是O上任意一点,过点P作PM AB⊥于M,PN CD⊥于N,点Q是MN的中点,当点P沿着圆周从点D逆时针方向运动到点C的过程中,当∠QCN度数取最大值时,线段CQ的长为______.【分析】利用矩形的性质得出OQ=MN=OP=3再利用当CQ与此圆相切时∠QCN最大此时在直角三角形CQ′O中通过勾股定理求得答案【详解】连接OQ∵MN=OP(矩形对角线相等)⊙O的半径为6∴OQ=M解析:33【分析】利用矩形的性质得出OQ=12MN=12OP=3,再利用当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,通过勾股定理求得答案.【详解】连接OQ,∵MN=OP(矩形对角线相等),⊙O的半径为6,∴OQ=12MN=12OP=3,可得点Q的运动轨迹是以O为圆心,3为半径的半圆,当CQ与此圆相切时,∠QCN最大,此时,在直角三角形CQ′O中,∠CQ′O=90°,OQ′=3,CO=6,∴CQ′22CO OQ-'33即线段CQ的长为33故答案为:33′【点睛】此题主要考查了矩形的性质、点的轨迹,圆的切线等,得出当CQ与此圆相切时,∠QCN 最大是解题的关键.13.在直径为10cm的⊙O中,弦AB=5cm,则∠AOB的度数为_______.60°【分析】如图连接OAOB根据等边三角形的性质求出∠AOB的度数【详解】解:如图在⊙O中直径为10cm弦AB=5cm∴OA=OB=5cm∴OA=OB=AB∴△OAB是等边三角形∴∠AOB=60°解析:60°【分析】如图,连接OA、OB,根据等边三角形的性质,求出∠AOB的度数.【详解】解:如图,在⊙O中,直径为10cm,弦AB=5cm,∴OA=OB=5cm,,∴OA=OB=AB∴△OAB是等边三角形,∴∠AOB=60°,故答案为:60°.【点睛】考查了圆的性质以及等边三角形的性质,熟练掌握运算性质定理是解题的关键.14.边长为2的正方形ABCD的外接圆半径是____________.【分析】如图:连接ACBD交于点O即为正方形ABCD外接圆的圆心根据正方形的性质可得OA=OC∠AOC=90°根据勾股定理可得OA和OC的值即为为正方形ABCD外接圆的半径【详解】解:如图:连接AC2【分析】如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,根据正方形的性质可得OA=OC,∠AOC=90°,根据勾股定理可得OA和OC的值,即为为正方形ABCD外接圆的半径.【详解】解:如图:连接AC、BD交于点O,即为正方形ABCD外接圆的圆心,∴OA、OB、OC、OD为正方形ABCD外接圆的半径∵四边形ABCD是正方形,∴OA=OC,∠AOC=90°在Rt △AOC 中,AC 2=OA 2+OC 2,∵AC =2,OA=OC ,∴4=2 OA 2,∴OA =2 即正方形ABCD 外接圆的半径为2故答案为2【点睛】本题考查正方形外接圆的有关知识,利用到正方形的性质,勾股定理,解题的关键是熟练掌握所学知识.15.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.相交【分析】根据勾股定理作于点则的长即为圆心到的距离利用等积法求出的长与半径比较大小再作判断【详解】解:如图作于点∵的两条直角边斜边即半径是直线与圆相交【点睛】此题考查的是勾股定理直线与圆的位置关系解析:相交【分析】根据勾股定理,5AB =.作CD AB ⊥于点D ,则CD 的长即为圆心C 到AB 的距离.利用等积法求出CD 的长,与半径比较大小,再作判断.【详解】解: 如图, 作CD AB ⊥于点D . ∵Rt ABC 的两条直角边3BC =,4AC =,∴斜边5AB =. 1122ABC S AC BC AB CD ∆==,即 512CD ,2.4CD .半径是2.5 2.4>,∴直线与圆C 相交 .【点睛】此题考查的是勾股定理,直线与圆的位置关系,熟悉相关性质是解题的关键. 16.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________【分析】根据相切的定义可得利用等面积法即可求解【详解】解:∵∠C =90°AC =3cmBC =4cm ∴由题意可得∴即故答案为:【点睛】本题考查直线与圆的位置关系勾股定理掌握相切的定义是解题的关键 解析:125【分析】根据相切的定义可得CD AB ⊥,利用等面积法即可求解.【详解】解:∵∠C =90°,AC =3cm ,BC =4cm , ∴225cm AB AC BC =+=,由题意可得CD AB ⊥, ∴1122AC BC AB CD ⋅=⋅,即125CD =, 故答案为:125. 【点睛】本题考查直线与圆的位置关系、勾股定理,掌握相切的定义是解题的关键.17.如图,ABC 10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵半圆的半径为10 ∴210AB =∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴122x =,222x =-(不合题意舍去)∴22AM =∴42BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.18.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线. ①②③④【分析】根据题意易得∠ADB=90°可得①进而根据线段垂直平分线的性质可得AC=AB 连接OD 然后根据圆的基本性质及切线的判定定理可求解【详解】解:∵是的直径∴∠ADB=90°∴AD ⊥BC 故① 解析:①②③④【分析】根据题意易得∠ADB=90°,可得①,进而根据线段垂直平分线的性质可得AC=AB ,连接OD ,然后根据圆的基本性质及切线的判定定理可求解.【详解】解:∵AB 是O 的直径,∴∠ADB=90°,∴AD ⊥BC ,故①正确;∵点D 是BC 的中点,∴AC=AB ,∴△ABC 是等腰三角形,∴∠B=∠C ,∠CAD=∠BAD ,∵DE ⊥AC ,∠CDA=90°,∴∠EDA+∠EAD=90°,∠CAD+∠C=90°,∴EDA C ∠=∠,∴EDA B ∠=∠,故②正确; ∵12OA AB =, ∴12OA AC =,故③正确; 连接OD ,如图所示:∵OD=OA ,∴∠ADO=∠DAO ,∴∠ADO=∠EAD ,∴∠ADO+∠EDA=90°,∴ED 是⊙O 的切线,故④正确;∴正确的有①②③④;故答案为①②③④.【点睛】本题主要考查切线的判定定理及等腰三角形的性质与判定,熟练掌握切线的判定定理及等腰三角形的性质与判定是解题的关键.19.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.30【分析】结合题意根据弧长计算公式计算得弧长对应圆心角;再结合扇形面积公式计算即可得到答案【详解】∵扇形的半径为6cm 弧长为10cm ∴弧长对应的圆心角n 为:∴扇形面积为:故答案为:30【点睛】本题解析:302cm【分析】结合题意,根据弧长计算公式,计算得弧长对应圆心角;再结合扇形面积公式计算,即可得到答案.【详解】∵扇形的半径为6cm ,弧长为10cm∴弧长对应的圆心角n 为:101803006ππ⨯=⨯ ∴扇形面积为:263003630360360n πππ⨯⨯=⨯=2cm 故答案为:302cm .【点睛】本题考查了弧长、扇形面积计算的知识;解题的关键是熟练掌握弧长、扇形的性质,从而完成求解.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.如图,AB 为O 的弦,,C D 是直线AB 上两点,且AC BD =,求证:C D ∠=∠.解析:见解析【分析】过O 作OH ⊥AB 于H ,则AH =BH ;再根据线段的和差关系可得:CH =DH ,即OH 是CD 的线段垂直平分线,所以OC =OD ,继而即可求证结论.【详解】证明:如图过点O 作OH ⊥AB ,于点H .∵AB 为O 的弦,∴AH =BH又∵AC =BD∴AC +AH =BD +BH ,即CH DH =又OH ⊥AB ,∴OC =OD ,∴∠C =∠D .【点睛】本题考查了垂径定理,解答本题的关键是作辅助线,利用垂径定理和线段垂直平分线的性质证明OC =OD .22.如图,已知AB 为O 的直径,点C 、D 在O 上,CD BD =,E 、F 是线段AC 、AB 的延长线上的点,并且EF 与O 相切于点D .(1)求证:2A BDF ∠=∠;(2)若3AC =,5AB =,求CE 的长.解析:(1)见解析;(2)1【分析】(1)如图连接AD ,,先证明CD BD =可得∠1=∠2,根据圆周角定理得到∠ADB=90°,再根据切线的性质得到OD EF ⊥即3490∠+∠=°,最后证明∠1=∠4即可;(2)如图,连接BC 交OD 于,由圆周角定理得到∠ACB=90°,由CD BD =得到OD BC ⊥,则CF=BF ,进而求得OF 、DF ,然后证明四边形CEDH 为矩形即可解答.【详解】(1)证明:连接AD ,如图,CD BD =,∴CD BD =,12∠∠∴=,∵AB 为直径,90ADB ∴∠=︒,190ABD ∴∠+∠=︒,∵EF 为切线,∴OD EF ⊥,∴3490∠+∠=°,∵OD OB =,3OBD ∴∠=∠,14∴∠=∠,2A BDF ∴∠=∠;(2)解:连接BC 交OD 于F ,如图,∵AB 为直径,90ACB ∴∠=︒,∵CD BD =,∴OD BC ⊥,∴CF BF =, ∴1322OF AC ==, ∴53122DF =-=, ∵ACB 90∠=︒,OD BC ⊥,OD EF ⊥∴四边形CEDF 为矩形,∴1CE DF ==.【点睛】本题主要考查了切线的性质、圆周角定理以及矩形的判定与性质,灵活应用相关知识点成为解答本题的关键.23.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.解析:(1)见解析;(2)AB=254.【分析】(1)先由垂径定理得AB⊥MN,再由平行线的性质得BC⊥AB,然后由切线的判定定理即可得到BC是⊙O的切线;(2)连接OM,设⊙O的半径是r,在Rt△OEM中,根据勾股定理得到r2=32+(4-r)2,解方程即可得到⊙O的半径,即可得出答案.【详解】(1)证明:∵ME=NE=3,∴AB⊥MN,又∵MN∥BC,∴BC⊥AB,∴BC是⊙O的切线;(2)解:连接OM,如图,设⊙O的半径是r,在Rt△OEM中,OE=AE﹣OA=4﹣r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4﹣r)2,解得:r=25 8,∴AB=2r=254.【点睛】本题考查了切线的判定定理、垂径定理和勾股定理等知识;熟练掌握切线的判定和垂径定理是解题的关键.24.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =,求⊙O 的半径的长.解析:4【分析】连接OC, 根据垂径定理可得∠CHO=90°,CD=2CH ,求出CH 的长,根据30°的直角三角形的特征以及勾股定理求出OC=2OH 即可. 【详解】连接OC ,则OA =OC .∴∠A =∠ACO =30°.∴∠COH =60°.∵AB 是⊙O 的直径,弦CD ⊥AB 于点H ,∴∠CHO=90°,CD=2CH∴∠OCH=30°,∴2OC OH =,∵CD =43,∴CH =23.∴在Rt OCH 中,222OH HC OC +=∴OH =2.∴OC =4.【点睛】本题考查了垂径定理及30度的直角三角形的性质以及勾股定理得应用,解题的关键是掌握垂径定理及30度的直角三角形的性质.25.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______; (2)判断点()5,2D -与圆M 的位置关系.解析:(1)(2,0);(2)在圆内.【分析】(1)由网格容易得出AB 的垂直平分线和BC 的垂直平分线,它们的交点即为点M ,根据图形即可得出点M 的坐标;(2)用两点间距离公式求出圆的半径和线段DM 的长,当DM 小于圆的半径时点D 在圆内.【详解】(1)如图1,点M 就是要找的圆心;圆心M 的坐标为(2,0).故答案为(2,0);(2)圆的半径AM 2224+=25线段MD =22(52)2-+=13<25,所以点D 在⊙M 内.【点睛】本题考查的是点与圆的位置关系,坐标与图形性质以及垂径定理,利用网格结构得到圆心M 的坐标是解题的关键.26.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法.(2)如果ACB α∠=,那么APB ∠=______.解析:(1)作两边的垂直平分线,交点即为所求,见解析;(2)2α.【分析】(1)分别作三角形两条边的垂直平分线,两条直线的交点即为所求;(2)根据(1)的作法,可以确定点P 是△ABC 的外接圆的圆心,再根据圆周角定理即可确定∠APB 是∠ACB 的2倍,即可求得结论.【详解】解:(1)如图所示,点P 即为所求(2)由(1)可知PA=PB=PC ,所以点A 、B 、C 在以P 为圆心,PA 为半径的圆上,即A 、B 、C 三点共圆,∴∠APB 与∠ACB 是AB 所对的圆心角和圆周角,∴∠APB=2∠ACB ,又∵ACB α∠=,∴∠APB=2α.故答案为:2α.【点睛】本题考查垂直平分线的作法和定义,三角形外心定义、三角形外接圆、圆周角定理,难度中等.27.如图,四边形ABCD 内接于O ,AB AC =,BD AC ⊥,垂足为E .(1)若40BAC ∠=︒,求ADC ∠的度数;(2)求证:2BAC DAC ∠=∠.解析:(1)110ADC ∠=︒;(2)证明见解析【分析】(1)根据等腰三角形的性质和圆内接四边形的性质即可得到结论;(2)根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】(1)解:AB AC =,40BAC ∠=︒,70ABC ACB ∴∠=∠=︒,四边形ABCD 是O 的内接四边形,180110ADC BAC ∴∠=︒-∠=︒,(2)证明:BD AC ⊥,90AEB BEC ∴∠=∠=︒,90ACB CBD ∴∠=︒-∠,AB AC =, 90ABC ACB CBD ∴∠=∠=︒-∠,18022BAC ABC CBD ∴∠=︒-∠=∠,DAC CBD ∠=∠,2BAC DAC ∠=∠∴;【点睛】本题考查了圆内接四边形,等腰三角形的性质,熟练掌握圆内接四边形的性质是解题的关键.28.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN 的长度.解析:45π 【分析】如图(见解析),先根据圆的切线的性质可得,OM AB ON AE ⊥⊥,再根据正五边形的内角和可得108A ∠=︒,然后根据四边形的内角和可得72MON ∠=︒,最后弧长公式即可得.【详解】如图:连接OM ,ON ,∵O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,∴,OM AB ON AE ⊥⊥,90AMO ANO ∴∠=∠=︒,∵正五边形的每个内角为(52)1801085-⨯︒=︒, 108A ∴∠=︒,∴在四边形AMON 中,36072AMO ANO A MON ∠-∠=-∠∠︒-=︒,∵O 的半径为2,∴劣弧MN 的长度为72241805ππ⨯=.【点睛】本题考查了正五边形的内角和、圆的切线的性质、弧长公式等知识点,熟练掌握正五边形的内角和是解题关键.。
第四单元《圆的面积公式的应用(一)例3例4》练习题

《圆的面积公式的应用(一)》练习题一、填空。
1.一个圆的直径是10厘米,半径是()厘米,周长是()厘米,面积是()平方厘米。
2.一个圆的直径是4分米,这个圆的面积是()平方分米。
3.一个圆的直径扩大5倍,圆的面积扩大()倍。
4.一个圆的直径是5米,直径增加1米后,这个圆的面积是()平方米。
5.从一个长8分米,宽6分米的长方形木板上锯下一个最大的圆,这个圆的面积是()平方分米。
二、选一选。
1.已知圆的直径,要求圆的面积,必须先求出()。
A.半径B.圆周率C.周长2.半圆的面积等于()A.圆周长的一半B.圆的面积÷2C.圆周长的一半+直径3.直径是4分米与半径是2分米圆的面积作比较,()。
A.直径是4分米圆的面积大B.半径是2分米圆的面积大C.一样大三、计算下面各图形的面积。
四、解决问题。
1.正方形的边长是8分米,这个圆的面积是多少?2.一个圆形养鱼池,直径是12米,这个养鱼池占地面积是多少平方米?3.一个圆形花坛的直径是20米,它的面积是多少平方米?4.一个半圆的直径是20厘米,这个半圆的面积是多少平方厘米?5.学校在一块长方形的空地上用铁栏杆围出了一个半圆形的花坛,在剩余地方铺上了草坪。
草坪的面积是多少平方米?答案与解析一、1.【解析】根据r=d÷2、C=πd、S=πr2求解。
【答案】5;31.4;78.5。
2.【解析】根据圆的面积公式S=πr2求解。
【答案】12.56。
3.【解析】根据面积计算公式举例求解。
【答案】25。
4.【解析】先求出增加后圆的直径,然后再求出半径,最后再求出圆的面积。
【答案】28.26。
5.【解析】圆的直径等于长方形的宽,根据圆的面积公式S=πr2求解。
【答案】28.26。
二、1.【解析】根据圆的面积公式S=πr2求解。
【答案】A。
2.【解析】半圆的面积就是圆面积的一半。
【答案】B。
3.【解析】直径是4分米圆,则半径是2分米。
【答案】C。
三、【解析】根据圆的面积公式S=πr2和长方形的面积公式直接求解。
人教版九年级上册数学《圆》单元综合检测(含答案)

人教版数学九年级上学期《圆》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·全国初三课时练习)下列直线是圆的切线的是( )A.与圆有公共点的直线B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线D.过圆直径外端点的直线2.(2019·全国初三课时练习)如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )A.8 B.18 C.16 D.143.(2019·台湾中考真题)如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.32B.52C.43D.534.(2019·辽宁中考真题)如图,CB为⊙O的切线,点B为切点,CO的延长线交⊙O于点A,若∠A=25°,则∠C的度数是( )A.25°B.30°C.35°D.40°5.(2019·辽宁中考真题)如图,BC是O的直径,A,D是O上的两点,连接AB,AD,BD,若70ADB︒∠=,∠的度数是( )则ABCA.20︒B.70︒C.30︒D.90︒∆的内切圆的半径为( )6.(2019·湖南中考真题)如图,边长为23的等边ABCA.1 B.3C.2 D.237.(2019·山东初三期中)已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内8.(2018·浙江初三期中)如图:在⊙O中,AD平分圆周角∠BAC,AE⊥BC,∠BAC=60°,∠OAD=16°,求∠C的度数为()A.50°B.30°C.44°D.45°∠为() 9.如图,CA为O的切线,A为切点,点B在O上,如果55∠=,那么AOBCABA.55B.90C.110D.12010.(2018·杭州市下沙中学初三月考)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=8cm,AE=2cm.则OF的长度是( )A. 5B. 6C. 2.5D.3二、填空题(每小题4分,共24分)11.(2019·山东初三期中)如图CD是⊙O的直径,弦AB⊥CD于E,如果CD=10,AB=8,那么CE的长为_____.12.(2019·江阴市敔山湾实验学校初三期中)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD 的度数是_____°.13.(2019·无锡市硕放中学初三期中)如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=_________.14.(2019·浙江初三期中)已知在圆O中,AB是直径,点E和点D是圆O上的点,且∠EAB=45°,延长AE和BD相交于点C,连接BE和AD交于点F,BD=12,CD=8,则直径AB的长是_____.15.(2019·江苏初三期中)如图,A是半径为2的⊙O外的一点,OA=4,AB切⊙O于点B,弦BC∥OA,连接AC,则图中阴影部分的面积为___________16.(2019·无锡市硕放中学初三期中)如图,Rt△ABC中,∠C=90°,AB=43,F是线段AC上一点,过点A的⊙F交AB于点D,E是线段BC上一点,且ED=EB,则EF的最小值为_______________.三、解答题一(每小题6分,共18分)17.(2018全国初三单元测试)已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.18.(2019·山东初三期中)已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12 BC.19.(2019·江苏东绛实验学校初三期中)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC 于F,若BD=16cm,AE=4cm.(1)求⊙O的半径;(2)求OF的长.四、解答题二(每小题7分,共21分)20.(2018全国初三课时练习)如图,已知点O为等腰三角形ABC的底边AB的中点,以点O为圆心,AB 为直径的半圆分别交AC,BC于点D,E.求证:(1)∠AOE=∠BOD;(2)AD BE.21.(2019·无锡市甘露学校初三期中)如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=5DM的长.22.(2019·陕西延安职业技术学院附中初三期中)如图,在Rt ABC ∆中,90,BAC CD ∠=平分ACB ∠,交AB 于点D ,以点D 为圆心,DA 为半径的⨀D 与AB 相交于点E .(1)判断直线BC 与⨀D 的位置关系,并证明你的结论;(2)若3,5AC BC ==,求BE 的长.五、解答题三(每小题9分,共27分)23.(2019·贵州中考真题)如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC .(1)求证:△ADB ≌△BCA ;(2)若OD ⊥AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC .求证:PC 是⊙O 的切线.24.(2019广东中考真题)如图1,在ABC ∆中,AB AC =,O 是ABC ∆的外接圆,过点C 作BCD ACB ∠=∠交O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF AC =,连接AF .(1)求证:ED EC =;(2)求证:AF 是O 的切线;(3)如图2,若点G 是ACD ∆的内心,25BC BE ⋅=,求BG 的长.25.(2016安徽初三月考)如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE ⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF 。
人教版六年级数学上册第5单元《圆的周长》专项练习

人教版六年级数学上册第5单元《圆的周长》专项练习一、填空题。
1.圆的半径增加5cm ,直径增加cm,周长增加cm。
2.如下图,将一个圆转化为一个近似的长方形,已知这个长方形的宽是5 cm,那么长方形的长是cm ,圆的周长是cm。
3.圆的周长与它直径的比是,比值是。
4.一个车轮滚动100圈前进了188.4米,这个车轮的半径是米。
5.一个周长是 15.7 cm的圆,圆规两脚间的距离应是 cm。
6.计算车轮滚动一周的距离,实际是求这个车轮的。
如果车轮的直径是1.2米,这辆车的车轮转动一周能前进米。
二、选择题。
1.从甲地到乙地有A、B两条路线可以走(如下图),这两条路线相比,( )。
A.同样长B.A 路线长C.B 路线长2.将一个圆的半径由2厘米增加到5厘米,它的周长增了()厘米。
A.4πB.2πC.6πD.24π3.一个半圆形的半径是r,周长是()A.兀r B.2兀r÷2 C.兀r+r D.(兀+2)r 4.如图,从点A到点B有甲、乙、丙三条路线,每条路线都是由一个或两个半圆组成的。
比较这三条路线的长度,你认为()。
A.甲最长 B.乙最长 C.丙最长 D.三条路线长度相等5.汽车车轮旋转一周所经过的路程就是()A.车轮的半径B.车轮的周长C.车轮的直径D.以上都不对6.如下图所示,从甲地到乙地有A、B两条路可走,这两条路的长度相比,()。
A.路线A长一些 B.路线B长一些 C.一样长 D.无法比较三、判断题。
1.半圆的周长等于它所在圆的周长的一半。
()2.一个圆的半径是10cm,这个圆的周长是62.8cm。
()3.圆的周长与它直径的比值是3.14。
()4.任何圆的周长都是它直径的π倍。
()5.一个圆形铁片的周长是31.4厘米,把它沿直径剪开变成两个半圆形铁片。
每个半圆形铁片的周长是15.7厘米。
()6.小圆半径是大圆半径的12,那么小圆周长也是大圆周长的12。
()四、计算题。
1.计算如图中阴影部分的周长。
人教版数学九年级上册第24章《圆》单元培优练习题卷(含解析)

《圆》单元培优练习卷一.选择题1.面积为6π,圆心角为60°的扇形的半径为()A.2 B.3 C.6 D.92.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°3.如图:已知AB是⊙O的直径,点C在⊙O上,点D在半径OA上(不与点O,A重合).若∠COA=60°,∠CDO=70°,∠ACD的度数是()A.60°B.50°C.30°D.10°4.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长是()A.4πB.2πC.πD.5.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A.B.C.D.6.如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B.C.D.7.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=16,∠BAC=∠BOD,则⊙O 的半径为()A.4B.8 C.10 D.68.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.59.如图,四边形ABCD为⊙O的内接四边形,∠AOC=110°,则∠ADC=()A.55°B.110°C.125°D.70°10.如图,在菱形ABCD中,AC与BD交于点O,BD=CD,以点D为圆心,BD长为半径作,若AC=6,则图中阴影部分的面积是()A.2π﹣3B.2π+3C.π﹣D.π+11.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°12.如图,四边形ABCD中,CD∥AB,E是对角线AC上一点,DE=EC,以AE为直径的⊙O 与边CD相切于点D,点B在⊙O上,连接BD,若DE=4,则BD的长为()A.4 B.4C.8 D.813.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.14.Rt△ABC中,∠ACB=90°,CD为AB边上的高,P为AC的中点,连接P D,BC=6,DP =4.O为边BA上一点,以O为圆心,OB为半径作⊙O,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于.15.如图,AB为⊙O的直径,C,D为⊙O上的点,=.若∠CAB=42°,则∠CAD=16.如图,在Rt△ABC中,∠C=90°,∠B=30°,其中AC=2,以AC为直径的⊙O交AB 于点D,则圆周角∠A所对的弧长为(用含π的代数式表示)17.如图,在△ABC中,∠ABC=90°,∠ACB=30°,BC=2,BC是半圆O的直径,则图中阴影部分的面积为.18.如图,在边长为2的菱形ABCD中,∠B=45°,以点A为圆心的扇形FAG与菱形的边BC相切于点E,则图中的弧长是.19.如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若PA=2,PC=4,求AE的长.22.如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.23.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.24.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.参考答案一.选择题1.解:设扇形的半径为r.由题意:=6π,∴r2=36,∵r>0,∴r=6,故选:C.2.解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.3.解:∵OA=OC,∠COA=60°,∴△ACO为等边三角形,∴∠CAD=60°,又∵∠CDO=70°,∴∠ACD=∠CDO﹣∠CAD=10°.故选:D.4.解:∵四边形ABCD为圆O的内接四边形,∴∠B+∠D=180°,∵∠B=135°,∴∠D=45°,∵∠AOC=2∠D,∴∠AOC=90°,则l==2π,故选:B.5.解:设AD=x,∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,∴BD=BE=1,∴AB=x+1,AC=AD+CE=x+4,在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,即AD的长度为.故选:D.6.解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.7.解:∵∠BAC=∠BOD,∴,∴AB⊥CD,∵AE=CD=16,∴DE=CD=8,设OD=r,则OE=AE﹣r=16﹣r,在Rt△ODE中,OD=r,DE=8,OE=16﹣r,∵OD2=DE2+OE2,即r2=82+(16﹣r)2,解得r=10.故选:C.8.解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.9.解:由圆周角定理得,∠B=∠AOC=55°,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=180°﹣∠B=125°,故选:C.10.解:∵在菱形ABCD中,AC与BD交于点O,BD=CD,AC=6,∴AC⊥BD,OC=3,BD=CD=BC,BD=2OB,∴△BCD是等边三角形,∴∠BDC=60°,OB=,∴BD=2,∴图中阴影部分的面积是:S阴=S扇形CDB﹣S△CDB=﹣×2×3=2π﹣3,故选:A.11.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.12.解:如图,连接OD,设⊙O的半径为r,∵⊙O与边CD相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠3+∠ODE=90°,∵AE为直径,∴∠ADE=90°,∴∠ODA+∠ODE=90°,∴∠ODA=∠3,而∠ODA=∠1,∴∠1=∠3,∵ED=EC=4,∴∠2=∠3,∴∠1=∠2,∵AB∥CD,∴∠2=∠CAB,∴∠1=∠CAB∴=,∴AE⊥BD,∵∠1=∠2,DF⊥AC,∴AF=CF,∴CF=﹣4=r﹣2,∵∠DEF=∠AED,∠DFE=∠ADE,∴△EDF∽△EAD,∴DE:EA=EF:DE,即4:2r=(r﹣2):4,整理得r2﹣2r﹣8=0,解得r=﹣2(舍去)或r=4,∴EF=r﹣2=2,在Rt△DEF中,DF==2,∴DB=2DF=4.故选:B.二.填空题(共6小题)13.解:如图,设正六边形ABCDEF的中心为O,连接OA,OB,则△OAB是等边三角形,过O作OH⊥AB于H,∴∠AOH=30°,∴OH=AO=,故答案为:.14.解:∵∠ADC=90°,P是AC中点,∴AC=2DP=8,又∵BC=6,∴AB=10,则CD===,∴BD==,如图1,若⊙O与CD相切,则⊙O的半径r=BD=;如图2,若⊙O与CP相切,则BO=OE=r,AO=10﹣r,由OE⊥AC知OE∥BC,∴△AOE∽△ABC,∴=,即=,解得r=;如图3,若⊙O与DP所在直线相切,切点F,则OF⊥DP,即∠OFD=∠ACB=90°,OB=OF=r,∴OD=BD﹣BO=﹣r,∵∠ODF=∠ADP=∠A,∴△ODF∽△BAC,∴=,即=,解得r=;综上,当⊙O与△PDC的一边所在直线相切时,⊙O的半径等于或或,故答案为:或或.15.解:连接OC,OD,如图所示.∵∠CAB=42°,∴∠COB=84°.∵=,∴∠COD=(180°﹣∠COB)=48°,∴∠CAD=∠COD=24°.故答案为:24°.16.解:连接OD,在Rt△ABC中,∠C=90°,∠B=30°,∴∠A=60°,∴∠COD=2∠A=120°,∵AC=2,∴圆周角∠A所对的弧长为:=,故答案为:.17.解:如图,连接OF.S阴=(S扇形OFC﹣S△OFC)+(S△ABC﹣S△OFC﹣S扇形OBF)=﹣•×+×2×﹣××﹣=﹣+﹣=+,故答案为: +.18.解:连接AE,如图,∵以点A为圆心的扇形FAG与菱形的边BC相切于点E,∴AE⊥BC,在Rt△ABE中,∵AB=2,∠B=45°,∴∠BAE=45°,AE=AB=×2=2,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAE=∠BEA=90°,∴的弧长==π.故答案为π.三.解答题(共6小题)19.(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PF,FC,FO并延长交⊙O于G,则∠G=∠ACF,∠G+∠PFG=90°,∵AF是⊙O的切线,∴∠AFG+∠PFG=90°,∴∠AFP=∠G=∠ACF,∵∠FAP=∠A CF,∴△AFP∽△ACF,∴=,∴AF2=AP•AC,∴AF==2,∴AB=AF=2,∵AC=6,∴BC==2,∴AO==3,∵△ABO∽△AOE,∴,∴=,∴AE=3.22.解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC ﹣S扇形BOC=12﹣=12﹣4π.23.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD∥CE,∴∠AOD=∠COE=40°,∴∠ACD=AOD=20°.24.解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠A DO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,E是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形O BED的外接圆面积S2的比为:.。
人教版九年级上册数学《圆》单元测试卷(含答案)
人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。
新人教版六年级上册《第4章_圆》小学数学-有答案-单元检测训练卷(一)
新人教版六年级上册《第4章圆》单元检测训练卷(一)一、细心思考,认真填写.(每空l分,共23分)1. 如图,圆的半径是________cm,直径是________cm,周长是________cm,面积是________cm2.2. 长方形有________条对称轴,正方形有________条对称轴,等腰梯形有________条对称轴,等边三角形有________条对称轴,圆有________条对称轴。
3. 一个圆形游泳池的半径是20m,绕池一周是________m,游泳池的占地面积是________m2.4. 一个圆环,内圆半径是1dm,环宽1dm,圆环的面积是________dm2.5. 约l500年前,________国的数学家________是世界上第一个把圆周率的值精确到七位小数的人。
6. 画一个周长是15.7cm的圆,圆规两脚间的距离是2.5cm.7. 有一个小圆的半径是2cm,一个大圆的半径是3cm,则小圆直径与大圆直径之比是________,小圆周长与大圆周长之比是________,小圆面积与大圆面积之比是________.8. 把一个圆剪拼成一个近似的长方形,已知剪拼成的长方形长是12.56cm,宽为圆的半径,则原来圆的周长是________cm.面积是________cm2.9. 在一张长8cm,宽6cm的长方形纸片上画一个最大的圆,这个圆的半径是________cm,周长是________cm,若将这个圆剪去,剩下的面积是________cm2.10. 一个小闹钟的分针长4厘米,从l2:00整走到18:00整,分针的针尖走过________厘米的距离。
二、仔细推敲.认真辨析.(对的打“√”,错的打“×”)(5分)圆心决定圆的位置,半径决定圆的大小。
________.(判断对错)一个圆的周长是直径的3.14倍。
________.(判断对错)两个圆直径相等时,周长一定相等,但面积不一定相等。
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)
人教版六年级数学上册第五单元圆(知识梳理+课本例题+练习)一、知识梳理1、圆心:圆中心一点叫做圆心。
用字母“O ”来表示。
半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r ”来表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d ”表示。
2、圆心确定圆的位置,半径确定圆的大小。
3、在同一个圆内,所有的半径都相等,所有的直径都相等。
在同一个圆内,有无数条半径,有无数条直径。
在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:r d 2= d r 21= 4、圆的周长:围成圆的曲线的长度叫做圆的周长。
5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母π表示。
圆周率是一个无限不循环小数。
在计算时,取14.3π≈。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
6、圆的周长公式:πd C = 或πr 2C =7、圆的面积:圆所占平面的大小叫圆的面积。
8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积2πr r ×r ×π==9、圆的面积公式:22)÷π(d S = 或者2πr S = 或者22)÷π÷π(C S =10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
圆的面积和正方形面积的比是π:4。
在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2 。
11、在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12、一个环形,外圆的半径是R,内圆的半径是r,它的面积是22πr πR S -=或 )r π(R S 22-=(其中R =r +环的宽度.)13、环形的周长=外圆周长+内圆周长14、半圆的周长等于圆的周长的一半加直径。
第五单元圆(单元测试)-六年级数学上册人教版
第五单元圆(单元测试)-六年级数学上册人教版学校:__________姓名:___________班级:___________考号:___________一、选择题1.下图中,从M 到N ,走路线①与路线①的结果是()。
A.路线①远B .路线①远C .一样远D .无法比较2.一个圆的周长是31.4cm ,半径增加了2cm 后,面积增加了( )π。
(π取3.14) A .16B .24C .40D .803.直径是3厘米的圆,在2分米的距离内可以滚动( )。
A .2周多B .3周多C .4周多D .6周多4.有两个圆,大圆的半径是6cm ,小圆的直径是4cm ,这两个圆的面积之比是( )。
A .3①2B .3①1C .9①4D .9①15.有一组互相咬合的齿轮,大齿轮每分钟转30圈,小齿轮每分钟转60圈,下列说法错误的是( )。
A .大齿轮的齿数①小齿轮的齿数=2①1B .大齿轮的直径①小齿轮的直径=2①1C .大齿轮的周长①小齿轮的周长=2①1D .大齿轮和小齿轮的转速相等 6.一个圆的周长与直径的比是( )。
A .1①πB .π①1C .πD .3.14二、填空题7.小圆和大圆的半径比是2①5,它们的面积相差84平方厘米,则大圆的面积是( )平方厘米,小圆面积是( )平方厘米。
8.一个圆的直径是6厘米,周长是C 厘米。
C①6的比值保留两位小数是( )。
9.小明画了一个圆,在这个圆中所有半径都( ),所有的直径都( ),而且直径的长度是半径的( )倍。
10.一个环形,它的外半径是5分米,内半径是3分米,这个圆环的面积是( )平方厘米。
11.下图是由两个半径为2分米的圆纸片重叠放在桌面上,甲、乙的面积比为3①1,桌面被盖住的面积是( )平方分米。
12.在长8厘米、宽6厘米的长方形内画一个最大的圆,这个圆的面积是( )平方厘米。
13.如图,正方形的面积为6平方厘米,那么这个圆的面积为( )平方厘米(π取3.14).14.圆形花坛的周长是62.8米,它的面积是( )平方米.边长是10m 的正方形中放置一个最大的圆,这个圆的面积是( )m 2.15.一根铁丝能围成半径时3分米的圆,如果把这根铁丝围成一个等边三角形,这个三角形的边长是( ). 16.如图,在一个大圆里面,两个小圆的半径比是2①1,那么大圆周长与这两个小圆周长之和的比是( ),大圆面积与这两个小圆面积之和的比是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学阶段测试试卷第1页 共4页
班
级
_
_
_
_
_
_
_
_
_
姓
名
_
_
_
_
_
_
_
_
_
学
号
_
_
_
_
_
_
_
_
_
九年级数学阶段测试试卷
(2007年10月)
一、精心选一选(本大题共10小题,每小题3分,共计30分,注意每小题所给出的四个选项中,只有一项
是正确的,请把正确选项前的字母代号填入题前的表格内).
1、如图,正方形ABCD四个顶点都在⊙O上,点P是在弧AB上的一点,则∠CPD的度数是( )
A、35° B、40° C、45° D、60°
2、同一平面内两圆的半径是2和3,圆心距是6,这两个圆的位置关系是( )
A.外离 B.相切 C.相交 D.内含
3、如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
A.35° B.70° C.110° D.140°
4、如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值
范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5
5、如图,AB是⊙O的直径,AC是弦.OD⊥AC于D,OC与BD交于E,若BD=6,则DE等于
( ) A.1 B.2 C.3 D.4
第1题图 第3题图 图 第8题图
6、下列命题:①长度相等的弧是等弧 ②半圆既包括圆弧又包括直径 ③相等的圆心角所对的弦相等 ④
外心在三角形的一条边上的三角形是直角三角形,其中正确的命题共有( )
A.0个 B.1个 C.2个 D.3个
7、一个点与定圆上最近点的距离为4cm,最远点的距离为9cm,则此圆的半径为 ( )
A. 2.5cm B. 6.5cm C. 13cm或5cm D. 2.5cm或6.5cm
8、如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )
A、2cm B、4cm C、6cm D、8cm
9、设⊙O的半径为2,圆心O到直线l的距离OP=m,且m使得关于x的方程012222mxx有
实数根,则直线l与⊙O的位置关系为( )
A、相离或相切 B、相切或相交 C、相离或相交 D、无法确定
10、已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若⊙C与⊙O1、⊙O2相切,且
半径为4的圆有( ) A、2个 B、4个 C、5个 D、6个
二、细心填一填(本大题共10小题,每小题3分,共计30分).
11、如图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC等于 .
12、如图,一个量角器放在∠BAC的上面,则∠BAC= °.
B
A
D
E O · 第5题图 C B A M O · 第4题A B C D E A B C D
P
九年级数学阶段测试试卷第2页 共4页
13、如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是 .
14、两圆内切,圆心距d=2cm其中一圆的半径为3cm,则另一圆的半径为 .
15、如图,△ABC内接于⊙0,∠B=∠OAC, OA = 4cm,则AC= cm.
16、若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为 .
17、如果圆的内接正六边形的边长为6cm,则其外接圆的半径为 .
18、如图,三个半径为1的圆两两外切,且等边三角形的每一条边都与其中的两个圆相切,则△ABC的周
长为 。
19、已知:如图,在⊙O中弦AB、CD交于点M、AC、DB的延长线交于点N,则图中相似三角形有_____
对.
20、如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆
心坐标为 .
三、认真算一算、答一答(本大题共10小题,共计90分).
21、(本小题8分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于C,交弦AB于D.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)若AB=24cm,CD=8cm,求(1)中所作圆的半径.
22、(本小题8分)如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O 于点C,
且∠DAC=∠BAC,(1)试说明:AD⊥CD;(2)若AD=4,AB=6,求AC.
23、(本小题8分)已知⊙O1与⊙O2相交于A、B两点,⊙O1的半径R=17,⊙O2的半径r=10, AB=16,
求圆心距O1O2的长.
A
B
C D M N O 第19题 A B
C
第18题图
C
B A
D
·
D
B
O
A
C
九年级数学阶段测试试卷第3页 共4页
24、(本小题8分) 如图,已知半圆O的直径AB,将—个三角板的直角顶点固定在圆心O上,当三角板绕着
点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E.
(1)求证:△ACE∽△BDE;(2)求证:BD = DE;
25、(本小题8分)如图:△ABC中,∠C=900,点O在BC上,以OC为半径的半圆切AB于点E,交BC
于点D,若BE=4,BD=2,求⊙O的半径和边AC的长.
26、(本小题8分)△ABC 外切于⊙O ,切点分别为点D、E、F,∠A=600,BC=7,⊙O的半径为3.
求△ABC的周长.
27、(本小题10分)如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD的反向
延长线与△ABC的外接圆交于点F,连接FB、FC,且FC与AB交于E,
(1)判断△FBC的形状,并说明理由;
(2)请探索线段AB、AC与AF之间满足条件的关系式并说明理由.
28、(本小题10分)有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任
一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一
点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一
点,且RP=RQ. 说明:RQ为⊙O的切线.
O
R
B
Q
A P
图1
F
B
C
D
M
A
E
E
C
F
D
A
B
O
B
A
C
E
O
D
九年级数学阶段测试试卷第4页 共4页
变化二:运动探求.
1.如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
2.如图3,如果P在OA的延长线上时,BP交⊙O于Q,
过点Q作⊙O的切线交OA的延长线于R,原题中的结论 还成立吗?为什么? 3.若OA所在的直线向上平移且与⊙O无公共点,请你根 据原题中的条件完成图4,并判断结论是否还成立? (只需交待判断) 29、(本小题10分)已知:如图,点D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,过C作CE∥AB,交AD或其延长线于E,连结BE交AC于G. (1)求证:AE=CE; (2)若过点C作CM⊥AD交AD的延长线于点M, 试说明:MC与⊙O相切; (3)若CE=7,CD=6,求EG的长. 30、(本小题12分)如图,已知Rt△ABC中,∠B=900,∠A=600,AB=32cm.点O从C点出发,沿CB以每秒1cm的速度向B点方向运动,运动到B点时运动停止.当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与BC边所在直线相交于E、F两点.过E作EG⊥DE交直线AB于G,连结DG. (1)求BC的长; (2)若E与B不重合,问t为何值时,△BEG与△DEG相似? (3)试问:当t在什么范围内时,点G在线段BA的延长线上?当t在什么范围内时,点G在线段AB的延长线上? (4)当点G在线段AB上(不包括端点A、B)时,求四边形ADEG的面积S(cm2)关于O点运动时间t(秒)的函数关系式,并问点O运动了几秒时,S取得最大值?最大值为多少? O A B C E F D G 图2 O B Q A P R O P B
Q
A
R
图3
•
O
A
图4
G
M
E
C
B O A
D