泰勒公式及其应用论文
泰勒公式的应用范文

泰勒公式的应用范文泰勒公式是一种在微积分中用来近似计算函数值的方法。
它将一个函数表示为一个无穷级数的形式,使得我们可以通过计算级数中的有限项来近似计算函数的值。
泰勒公式广泛应用于数学、物理学、工程学和计算机科学等领域,并对数值计算和数学建模等重要任务具有重要意义。
以下将介绍泰勒公式在这些领域的一些应用。
一、在数学领域的应用:1.函数近似:泰勒公式可用于近似计算一个函数在其中一点的函数值,特别是在点附近的小区间内。
这对于无法直接计算的复杂函数或含有未知变量的函数是非常有用的。
2.导数和高阶导数的计算:泰勒公式可以通过计算级数中的有限项来近似计算一个函数在其中一点的导数。
这对于无法直接计算导数或高阶导数的函数是非常有用的。
3.极限计算:泰勒公式提供了一种计算函数在一个点的极限的方法,特别是对于无法直接计算的函数或复杂函数而言。
二、在物理学领域的应用:1.运动学和动力学:泰勒公式可用于近似计算运动学和动力学中各种物理量的变化率,如速度、加速度和力。
2.波动学:泰勒公式可以近似计算波函数随时间和位置的变化,从而帮助解决波动学相关的问题,如声波、光波和电磁波等。
3.热力学:泰勒公式可用于计算物体在热力学过程中的温度、能量和熵等的变化。
三、在工程学领域的应用:1.信号处理:泰勒公式可以用于近似表示信号在时间域和频域中的变化,从而帮助处理和分析各种类型的信号。
2.控制理论:泰勒公式可用于近似表示控制系统中各种变量的变化,从而帮助设计和优化控制器,以实现稳定和可靠的系统性能。
3.电路分析:泰勒公式可用于近似计算电路中各种元件的电压、电流和功率等的变化,特别是在非线性电路和非稳态电路的分析中。
四、在计算机科学领域的应用:1.数值计算:泰勒公式可用于近似计算各种数学函数的值,从而帮助实现高效和准确的数值计算方法,如数值积分、数值微分和数值优化等。
2.图像处理:泰勒公式可以用于近似表示图像中各个像素值的变化,从而帮助实现图像增强、图像压缩和图像恢复等处理算法。
泰勒定理及其在数值分析中的应用

摘要因为泰勒公式的形式简单易懂,由此,适用在很多学科。
在计算机与物理等各个方面均有着极其广泛的应用,除此之外,也在数值分析、常微分方程、最优化理论这些数学分支中产生着至关重要的作用。
可见,泰勒公式的用处很多,所以,更要弄清楚泰勒公式的概念和数学原理。
这是数学中非常基础的东西,对学生今后的数学学习将起到非常好的作用。
本论文的目的,主要是对泰勒定理在数值分析中的应用做研究,从利用泰勒公式近似计算函数值、利用泰勒公式近似计算导数值、泰勒公式在常微分方程数值求解中的应用等方面,对泰勒公式在数值分析方面的应用进行研究。
泰勒公式在数值分析的各个方面都有着重要的应用,深入探讨泰勒公式的应用,对于我们解决一些复杂问题起到事半功倍的效果.只要在解题中注意分析并注重归纳总结,就能很好地运用泰勒公式.正确的应用泰勒公式使我们的证明和计算题变得简明快捷。
关键词:泰勒公式;数值分析;应用ABSTRACTBecause of the Taylor formula is very simple, so, can be applied to many subjects. In various physical and computer etc, have a very wide range of applications, in addition, also in the ordinary differential equations, numerical analysis, optimization theory, the branch of mathematics plays an extremely important role. Therefore, a lot of, Taylor formula. So, to clarify concepts and mathematical principle of Taylor formula. This is the very basis of mathematics of mathematics learning things, the students will play a very good role. The purpose of this thesis, mainly to do research on the application of Taylor theorem in numerical analysis, calculating the function value, using the Taylor formula to calculate the value of Taylor formula, the numerical solution of ordinary differential equation application, from using Taylor's formula approximation, the Taylor formula is analyzed in terms of the application in the numerical study. Taylor formula has important applications in the numerical analysis, in-depth study of the application of Taylor formula, for us to solve some complex problems play a multiplier effect. As long as the attention and focus on solving problems of the summary, will be able to use Taylor formula. Using Taylor formula to correct the proof and calculation problems we became fast and simple.Key words: Taylor formula; numerical analysis; application目录1 引言 02 泰勒公式概述 (1)2.1 一元函数的泰勒公式 (1)2.2 二元函数的泰勒公式 (2)3.泰勒公式在数值分析中的应用 (4)3.1利用泰勒公式近似计算函数值 (4)3.2 利用泰勒公式近似计算导数值 (7)3.3泰勒公式在常微分方程数值求解中的应用 (8)3.4 泰勒公式在函数凹凸性及拐点判断中的应用 (12)4 结论 (15)参考文献 (16)1 引言因为泰勒公式的形式简单易懂,由此,适用在很多学科。
泰勒公式及其应用

泰勒公式及其应⽤泰勒公式的应⽤内容摘要:泰勒公式是数学分析中⼀个⾮常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及⾏列式的计算等⽅⾯有重要的应⽤。
本⽂着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个⽅⾯进⾏论述。
关键词:泰勒公式⽪亚诺余项级数拉格朗⽇余项未定式⽬录内容摘要 0关键词 01.引⾔ (2)2.泰勒公式 (2)2.1具有拉格朗⽇余项的泰勒公式 (2)2.2带有⽪亚诺型余项的泰勒公式 (2)2.3带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (3)3.泰勒公式的应⽤ (3)3.1利⽤泰勒公式求未定式的极限 (3)3.2利⽤泰勒公式判断敛散性 (6)3.3 利⽤泰勒公式证明中值问题 (11)3.4 利⽤泰勒公式证明不等式和等式 (13)4. 结束语 (19)参考⽂献 (20)1.引⾔泰勒公式是数学分析中⼀个⾮常重要的内容,微分学理论中最⼀般的情形是泰勒公式, 它建⽴了函数的增量,⾃变量增量与⼀阶及⾼阶导数的关系,将⼀些复杂的函数近似地表⽰为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有⼒杠杆。
我们可以使⽤泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定⽆穷⼩的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。
本⽂着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个⽅⾯的具体应⽤⽅法。
2.泰勒公式2.1具有拉格朗⽇余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间⾄少?⼀个ξ使得:当0x =0时,上式称为麦克劳林公式。
2.2带有⽪亚诺型余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有:2.3带有积分型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x,在0x 和x 之间⾄少?⼀个t 使得:()()()()()()()()()dt t x t f n x x n x f x x x f x f x f n x x n n n -+-?+-+=?+010000'0!1!)(其中()()()dt t x t fn n x x n -?+01!1就是泰勒公式的积分型余项。
泰勒公式及应用论文

泰勒公式及应用论文 Prepared on 22 November 2020毕业论文题目:泰勒公式及应用学生姓名:陆连荣学生学号: 05 系别:数学与计算科学系专业:数学与应用数学届别: 2012届指导教师:向伟目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言: (1)1泰勒公式 (2)带有拉格朗日余项的泰勒公式 (2)带有佩亚诺余项的泰勒公式 (2)带有积分型余项的泰勒公式 (2)带有柯西型余项的泰勒公式 (3)2 泰勒公式的应用 (3)利用泰勒公式求极限 (3)利用泰勒公式证明不等式及中值问题 (5)利用泰勒公式讨论积分及级数的敛散性 (8)利用泰勒公式求函数的高阶导数 (11)研究泰勒公式在近似计算中的应用 (12)结语 (12)致谢 (13)参考文献 (13)泰勒公式及应用学生:陆连荣指导教师:向伟淮南师范学院数学与计算科学系摘要;泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,而且在求极限、证明不等式、讨论级数及积分的敛散性、求函数的高阶导数、证明中值公式、求解导数问题及在近似计算等中都有极其重要的作用.在本文中上述所列的几个作用都有论述,但着重论述泰勒公式在求极限、级数及积分的敛散性判断、证明不等式及中值公式与求解导数问题中的作用。
关键词:泰勒公式;应用;级数;敛散性Taylor formula and its applicationStudent: Lu LiangrongInstructor : Xiang WeiDepartment of Mathematics and Computational Science: Huainan Normal University Abstract:Taylor formula in mathematical analysis is a very important content, not only in theory occupies an important position, and in the limit, to prove inequality, discuss the convergence and divergence of ser- ies and integral of function, high order derivative, mean value formula for solving the problem of proof, derivative and approximate calculation are an extremely important role. In this paper the above listed several roles are discussed, but focuses on Taylor's formula in calculating the limit, the series and the in- tegral of the divergence and judge, the proof of inequality and median formula and solving the problem of derivative function.Key words: Taylor formula; Application; Series; Convergence and divergence前言泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式及其应用

泰勒公式及其应用许雁琴【摘要】泰勒公式是高等数学的重要内容,借助它可以解决很多问题。
本文针对泰勒公式的应用讨论了9个问题,即应用泰勒公式定义某些非初等函数,近似计算和误差估计,对某些定积分进行近似计算,求某些复合函数的极限,求高阶导数在某些点的数值,研究函数的极值,证明不等式,利用泰勒公式判断级数的敛散性,求行列式的值。
%Talyor Formula is of great importance in advanced mathematics ,and very helpful to the solutions of many other mathematical problems .This article will discuss some applications of Talyor Formula ,i .e .defining some elementary functions ,approximate calculation and error estimation ,ap‐proximately calculating of some definite integrals ,get ting the limits of some composite functions ,get‐ting the numerical value of some points in higher derivatives ,studying the extremums of functions ,pro‐ving the inequalities ,testing of convergence and divergence of series ,and getting the values of deter mi‐nants .【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2015(023)006【总页数】5页(P11-15)【关键词】泰勒公式;非初等函数;近似计算;极限;导数;积分;不等式;敛散性【作者】许雁琴【作者单位】河南机电高等专科学校,河南新乡 453000【正文语种】中文【中图分类】O174泰勒公式是高等数学中的一个重要内容,但一般教材中仅介绍了泰勒公式和求函数的泰勒展开式,而对泰勒公式在数学问题中的作用并未说明,在教学中学生常因学用脱离而难以理解。
泰勒公式及其应用

本科生实践教学活动周实践教学成果成果形式:论文成果名称:泰勒公式及其应用学生姓名:窦凤娇学号: 1304180114专业:信息与计算科学班级:计科1301指导教师:崔喜宁完成时间:2014年7月20日泰勒公式及其应用摘要在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义、内容,并介绍了泰勒公式的10个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒公式的应用,使我们更加清楚地认识泰勒公式的重要性.关键词:泰勒公式佩亚诺余项拉格朗日余项应用目录序言 (1)一、泰勒公式 (1)(一)定义 (1)(二)余项 (1)1.佩亚诺(Peano)余项 (1)2.施勒米尔希-罗什(Schlomilch-Roche)余项 (2)3.拉格朗日(Lagrange)余项 (2)4.柯西(Cauchy)余项 (2)5.积分余项 (2)(三)推导过程 (2)1.展开式 (2)2.余项 (3)二、泰勒公式的应用 (5)(一)实例 (5)1.利用泰勒公式求初等函数的幂级数展开式 (5)2.利用泰勒公式进行近似值计算 (6)3.利用泰勒公式求极限 (6)4.利用泰勒公式证明不等式 (7)5.利用泰勒公式判断级数的敛散性 (8)6.利用泰勒公式证明根的唯一存在性 (9)7.利用泰勒公式判断函数的极值 (9)8.利用泰勒公式求初等函数的幂级数展开式 (10)9.利用泰勒公式进行近似计算 (10)10.利用泰勒公式解经济学问题 (11)三、实践总结 (12)参考文献 (13)序言在数学分析中泰勒公式是一个重要的内容,由于在分析和研究数学问题中它有着重要作用,所以成为分析和研究其他数学问题的有力杠杆。
作为数学系的学生,我认为掌握泰勒公式及其应用是非常有必要的。
本文将从泰勒公式的内容和泰勒公式的应用两方面入手。
对于泰勒公式的内容,具体研究泰勒公式的定义、表达形式、推导过程;对于泰勒公式的应用,本文是以实例的形式出现,从十个方面介绍泰勒公式的应用。
泰勒公式及其应用
第一章 绪论近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如求极限,判断函数凹凸性和收敛性,求渐近线,界的估计和近似值的计算等等.虽然泰勒公式应用到各个数学领域很多,但也还有很多方面学者还很少提及,因此在这泰勒公式及其应用方面我们有研究的必要,并且有很大的空间.泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示,又能借助于泰勒公式来研究函数近似值式和判断级数收敛性的问题.因此泰勒公式在数学实际应用中是一种重要的应用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.第二章 泰勒公式1.1泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数f .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()[()]n n R x o x x =-组成,我们来详细讨论它们. 当n =1时,有1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高.1.2泰勒公式余项的类型泰勒公式的余项分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项如佩亚诺型余项0(())n o x x -,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.定量的余项如拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+(ξ也可以写成00()x x x θ+-)、柯西余项(如在某些函数的幂级数展开时用).定量的余项一般用于函数值的计算与函数形态的研究. 1.3泰勒公式的定义(1)带有佩亚诺(Peano )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有n 阶导数, 则对此邻域内的点x ,有()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-当00x =时, 上式称为麦克劳林(Maclaurin )公式.即()(1)21(0)(0)(0)()(0)(0)(01)2!!(1)!n n n n f f f f x f f x x x x n n θθ++'''=+++++<<+(2)带有拉格朗日(Lagrange )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有1n +阶导数, 则对此邻域内的点x , 有()(1)2100000000()()()()()()()()()()2!!(1)!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-++-+-+(ξ介于0x 与x 之间)第三章 泰勒公式的实际应用2.1利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具.利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项.当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限. 例1 求224cos limx x x ex -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单. 解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+- 441()12x o x =-+ 故2442441()cos 112lim lim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x e x-→-.解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可.24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x→-+= 112=- 带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单. 2.2利用泰勒公式进行近似计算例1 用x e 的10次泰勒多项式求e 的近似值i ,并估计误差. 解:在x e 的泰勒公式中取1,10x n ==,则有111112!3!10!e ≈+++++2.718281801=由于e 的精确度值e 2.718281801=,可以看出这么算得的结果是比较准确的.关于计算的误差,则有如下的估计11813()6.81011!11!x e d x ξ==<≈⨯. 必须注意,泰勒公式只是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差,甚至产生完全错误的结果.如在ln(1)x +的泰勒多项式中令x =1,取它的前10项计算ln 2的近似值,得到111111111ln 212345678910≈-+-+-+-+-=0.645 634 92…而ln 2=0.693 147 28…,误差相当大,但如改用其他泰勒多项式,如1lnln(1)ln(1)1xx x x+=+--- 23223221()232232n n nx x x x x x x x o x n n ⎡⎤⎡⎤=-+--------+⎢⎥⎢⎥⎣⎦⎣⎦352122()3521n nx x x x o x n -⎡⎤=+++++⎢⎥-⎣⎦, 令1,3x =只取前两项便有3111ln 22()333⎡⎤≈+=⎢⎥⎣⎦0.69135…,取前四项则可达到3571111111ln 22()()()3335373⎡⎤≈+++⎢⎥⎣⎦=0.693 124 75…,效果比前面好得多.例2 当x 很小时,推出331111x x x x +-⎛⎫⎛⎫-- ⎪ ⎪-+⎝⎭⎝⎭的简单的近似公式. 解: 当x 很小时,111133331122111111x x x x x x x x +-⎛⎫⎛⎫⎛⎫⎛⎫-=+-- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭2224[1][1]3(1)3(1)3(1)x x xx x x ≈+--=--- 43x≈2.3在不等式证明中的应用关于不等式的证明,我们已经在前面介绍了多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.下面我们举例说明,泰勒公式也是证明不等式的一个重要方法.例1 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+- 所以21112()2(1)(1)f x x ξξ-''=-<<当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.2.4泰勒公式在外推上的应用外推是一种通过将精度较低的近似值进行适当组合,产生精度较高的近似值的方法,它的基础是泰勒公式,其原理可以简述如下. 若对于某个值a ,按参数h 算出的近似值1()a h 可以展开成231123()a h a c h c h c h =++++(*)(这里先不管i c 的具体形式),那么按参数2h 算出的近似值1()2h a 就是231123111()2248h a a c h c h c h =++++ (**)1()a h 和1()2ha 与准确值a 的误差都是()o h 阶的.现在,将后(**)式乘2减去(*)式,便得到11232232()()2()21ha a h a h a d h d h -==+++-也就是说,对两个()o h 阶的近似值化了少量几步四则运算进行组合之后,却得到了具有2()o h 阶的近似值2()a h .这样的过程就称为外推.若进行了一次外推之后精度仍未达到要求,则可以从2()a h 出发再次外推,22343344()()2()41ha a h a h a e h e h -==+++-,得到3()o h 阶的近似值3()a h .这样的过程可以进行1k -步,直到11112()()2()()21k k k k k k ha a h a h a o h -----==+-, 满足预先给定的精度.外推方法能以较小的待解获得高精度的结果,因此是一种非常重要的近似计算技术.例 1 单位圆的内接正n 边形的面积可以表示为1()sin(2)2S h h hπ=, 这里1h n=,按照泰勒公式351(2)(2)()223!5!h h S h h h πππ⎡⎤=-+-⎢⎥⎣⎦246123c h c h c h π=++++因此,其内接正2n 边形的面积可以表示为351()()()23!5!h h h S h h πππ⎡⎤=-+-⎢⎥⎣⎦24612314c h c h c h π=++++,用它们作为π的近似值,误差都是()o h 量级的.现在将这两个近似的程度不够理想的值按以下方式组合:4()()()()22()()4123h hS S h S S h h S h S --==+- 那么通过简单的计算就可以知道4623()S h d h d h π=+++2h 项被消掉了!也就是说,用()S h 近似表示π,其精度可以大大提高.2.5求曲线的渐近线方程若曲线()y f x =上的点(,())x f x 到直线y ax b =+的距离在x →+∞或x →-∞时趋于零,则称直线y ax b =+是曲线()y f x =的一条渐近线.当0a =时称为水平渐近线,否则称为斜渐近线.显然,直线y ax b =+是曲线()y f x =的渐近线的充分必要条件为lim [()()]0x f x ax b →+∞-+=或lim [()()]0x f x ax b →-∞-+=如果y ax b =+是曲线()y f x =的渐近线,则()()lim 0x f x ax b x →+∞-+=(或()()lim 0x f x ax b x→-∞-+=). 因此首先有()lim x f x a x →+∞=(或()lim x f x a x→-∞=). 其次,再由lim [()()]0x f x ax b →+∞-+=(或lim [()()]0x f x ax b →-∞-+=)可得 lim [()]x b f x ax →+∞=-(或lim [()]x b f x ax →-∞=-) 反之,如果由以上两式确定了a 和b ,那么y ax b =+是曲线()y f x =的一条渐近线.中至少有一个成立,则称直线y ax b =+是曲线()y f x =的一条渐近线,当0a =时,称为水平渐近线,否则称为斜渐近线.而如果()f x 在x 趋于某个定值a 时趋于+∞或-∞,即成立lim ()x f x →∞=±∞则称直线x a =是()f x 的一条垂直渐近线.注意,如果上面的极限对于x →∞成立,则说明直线y ax b =+关于曲线()y f x =在x →+∞和x →-∞两个方向上都是渐近线.除上述情况外,如果当x a +→或a -时,()f x 趋于+∞或-∞,即lim ()x a f x +→=±∞或lim ()x a f x -→=±∞,则称直线x a =是曲线()y f x =的一条垂直渐近线.例1 求 2(1)3(1)x y x -=+的渐近线方程. 解: 设 2(1)3(1)x y x -=+的渐近线方程为y ax b =+,则由定义 2(1)1lim lim 3(1)3x x y x a x x x →∞→∞-===+ 2(1)lim[]3(1)x x b ax x →∞-=-+ 2(1)1l i m []3(1)3x x x x →∞-=-+ =131lim 131x x x →∞-+=-+ 由此13x y =-为曲线y =2(1)3(1)x x -+的渐近线方程。
《泰勒公式的应用综述2800字》
泰勒公式的应用综述首先, 给出常见的泰勒公式.设函数f(x)在区间(a,b)内有n+1阶导数,x0∈(a,b),则对任意x∈(a,b), 有:f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+R n(x).其中Rn(x)为余项, 常见的余项有:(1)佩亚诺型余项: R n(x)=o((x−x0)n);(2)拉格朗日型余项: R n(x)=f(n+1)(x0)(n+1)!(x−x0)n+1;(3)柯西型余项: R n(x)=f(n+1)(ϑ)n!(x−x0)(x−ϑ)n, 其中ϑ在x与x0之间.根据实际的学习情况, 我们知道遇到的大多数有关泰勒公式的问题是, 泰勒公式在x0=0时的特殊形式( 见文献[15]), 即:f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+∙∙∙+f(n)(0)n!x n+o(x n) (1)f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+f′′′(x0)3!(x−x0)3+∙∙∙+f(n)(x0)n!(x−x0)n+f(n+1)(x0)(n+1)!(x−x0)n+1(2)(1)式及(2) 式就是分别带佩亚诺型及拉格朗日型余项的麦克劳林公式. 类似的常见函数的余项不同的麦克劳林公式有:e x=1+x+x22!+∙∙∙+x nn!+o(x n);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+o(x2m);cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+o(x2m+1);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nno(x n);(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+o(x n);111−x=1+x+x2+∙∙∙+x n+o(x n).e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1,0<θ<1,x∈(−∞,+∞);sin x=x−x33!+x55!+∙∙∙+(−1)m−1x2m−1(2m−1)!+(−1)m cosθx(2m+1)!x2m+1;cos x=1−x22!+x44!+∙∙∙+(−1)m x2m(2m)!+(−1)m cosθx(2m+1)!x2m+1,0<θ<1,x∈(−∞,+∞);ln(1+x)=x−x22+x33+∙∙∙+(−1)n−1x nn+(−1)n x n+1(n+1)(1+θx)n+1,0<θ<1,x>1;(1+x)α=1+αx+α(α−1)2!x2+∙∙∙+α(α−1)∙∙∙(α−n+1)n!x n+α(α−1)∙∙∙(α−n)(n+1)!(1+θx)α−n−1x n+1,0<θ<1,x>1;1 1−x =1+x+x2+∙∙∙+x n+x n+1(1−θx)n+2,0<θ<1,|x|<1.1.1泰勒公式在数学分析中的应用1.1.1泰勒公式在求极限上的应用求极限limx→0cos x−e−x22x4讨论:观察发现针对于此题, 我们当然可以采用之前学习过的方法进行解答,但是我们发现由于题中出现指数幂的形式, 求解过程较繁琐, 在上面泰勒公式的证明中, 我们知道带有佩亚诺型余项的泰勒公式可以在极限求解中使用, 因此我们不妨一试(见文献[14]).根据前面我们可以写出余弦函数和底数为e的幂指数麦克劳林公式, 并做差有:cos x=1−x22+x224+o(x5);e−x 22=1−x22+x48+o(x5);cos x−e−x 22=−x412+o(x5);故而求得:lim x→0cos x−e−x22x4=limx→0−x412+o(x5)x4=−112.1.1.2泰勒公式在近似计算上的应用2例1: 计算e的值, 使其误差不超过10−6;解一开始我们不妨写出函数f(x)=e x的麦克劳林公式形式, 这个可以由泰勒公式写出, 即: e x=1+x+x22!+∙∙∙+x nn!+o(x n), 紧接着对于把麦克劳林公式, 我们可以直接换写为, 带有拉格朗日型余项的形式. 故由f(n+1)=e x, 得到e x=1+x+x2 2!+∙∙∙+x nn!+eθx(n+1)!x n+1,其中0<θ<1,x∈(−∞,+∞). 故R n(1)=eθ(n+1)!<3(n+1)!, 又n取值为9时, 可得R9(1)<310!=33628800<e−6. 则e的近似值为:e=1+1+12!+13!+∙∙∙+19!≈2.718285.例2:证明e 为无理数.证明常见函数f(x)=e x它的麦克劳林公式, 就是: e x=1+x+x22!+∙∙∙+x nn!+o(x n).写成拉格朗日型余项的时候就有:e x=1+x+x22!+∙∙∙+x nn!+eθx(n+1)!x n+1其中0<θ<1,x∈(−∞,+∞). 当x=1时有:e=1+1+12!+13!+∙∙∙+1n!+eθ(n+1)!(0<θ<1).即由上式得: n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=e θ(n+1). 倘若e=pq(p,q为正整数), 则当n>q时, n!e为正整数, 从而式子n!e−(n!+n!+3∙4∙ ∙∙∙ ∙n+ ∙∙∙ +n+1)=eθ(n+1)左边是正整数. 且我们可知:一方面e θ(n+1)<e(n+1)<1(n+1), 另一方面n大于等于2时右边不是整数, 故而e是无理数.1.2泰勒公式在数值分析中的应用(见文献[4])1.2.1泰勒公式在数值微分上的应用设步长ℎ>0, 把函数f(x+ℎ), 以及函数f(x+ℎ)在x点泰勒展开, 即:f(x+ℎ)=f(x)+ℎf′(x)+ ∙∙∙+ℎkk!f(k)(x)+ℎk+1(k+1)!f(k+1)(ϑ1)3(1)f(x−ℎ)=f(x)−ℎf′(x)+ ∙∙∙+(−ℎ)kk!f(k)(x)+(−ℎ)k+1(k+1)!f(k+1)(ϑ2)(2)其中x−ℎ<ϑ2<x<ϑ1<x+ℎ.当k=1时, 由(1) 式可得:f′(x)=f(x+ℎ)−f(x)ℎ−ℎ2f′′(ϑ1),所以,一阶导数的向前差分公式近似为: f′(x)≈f(x+ℎ)−f(x)ℎ, 同时−ℎ2f′′(ϑ1)是产生的误差. 即k取值为2时,(1) 式和(2) 式作差可得f′(x)=f(x+ℎ)−f(x−ℎ)2ℎ−ℎ26f′′′(ϑ3).其中ϑ2<ϑ3<ϑ1. 则: f′(x)≈f(x+ℎ)−f(x−ℎ)2ℎ是一阶中心差分公式, 其中−ℎ26f′′′(ϑ3)是误差. 又k取值为3时,(1) 式和(2) 作和可得:f′′(x)=f(x+ℎ)−2f(x)+f(x−ℎ)ℎ−ℎ212f′′′′(ϑ4).其中ϑ2<ϑ3<ϑ1. 则: f′′(x)≈f(x+ℎ)−2f(x)+f(x−ℎ)ℎ是二阶中心差分公式, 其中−ℎ212f′′′′(ϑ4)是误差.除了上述之外, 我们进行近似求导时, 不妨使用积分来实现, 即有:Dℎf(x)=32ℎ3∫f(x−t)dt ℎ−ℎ.对函数f(x+t),t∈[−ℎ,ℎ]. 在x点进行泰勒展开可得:f(x+t)=f(x)+tf′(x)+t22f′′(x)+t36f′′′(ϑ5),并由上式可知: x−ℎ<ϑ5<x+ℎ, 且把(4) 式代入(3) 式有:Dℎf(x)=f′(x)+ℎ210f′′′((ϑ5),即:f′(x)≈32ℎ3∫tf(x+t)dt ℎ−ℎ,且其误差为−ℎ210f′′′((ϑ5).1.2.2泰勒公式在常微分方程数值解上的应用(见文献(4))4考虑一阶常微分方程初值问题:{p′=f(x,p),x∈[a,b],p(a)=p0,的数值解.解首先我们要知道, 数值解就是将一般函数p(x), 在离散的节点上的近似值p n≈p(x n)求解出来.其次考虑在[s,t]上, 建立等距的且离散的节点: s=x0< x1< ∙∙∙ <x N=t, 步长为r,即x n=x0+nr,n=0,1,∙∙∙,N.将p(x)在x n点泰勒展开, 可得(8) 式:p(x n+1)=p(x n)+ℎp′(x n)+ℎ22p′′(x n)+o(ℎ3)=p(x n)+ℎf(x n,p(x n))+ℎ22p′′(x n)+o(ℎ3)即得求解上述问题的欧拉法:p n+1=p n+ℎf(x n,p n),n=0,1,∙∙∙,N−1.假设p n是正确的, 即p n=p(x n), 则(8) 式减(9) 式, 可得局部截断误差(10) 式:p(x n+1)−p n+1=ℎ22p′′(x n)+o(ℎ3)对泰勒公式截断误差, 我们还可以在局部进行分析. 下面, 以辛普森(Simpson) 方法:p n+1=p nℎ3[f(x n,p n)+4f(x n+1,p n+1)+f(x n+2,p n+2)](11)为例, 且当它的近似值是准确值时展开分析, 即:p n+2=p(x n)+ℎ3[p′(x n)+4p′(x n+1)+p′(x n+2)](12)分别将p(x)和p′(x)在x n点泰勒展开, 可得:p(x)=p(x n)+(x−x n)p′(x)+∙∙∙+(x−x n)kk!p(k)(x)+o[(x−x n)k+1]5(13)p′(x)=p′(x n)+(x−x n)p′′(x)+∙∙∙+(x−x n)k−1p(k)(x)+o[(x−x n)k](k−1)!(14)又k取值为5时, 在(13) 式中取x=x n+2, 在(14) 式中分别取x=x n+1和x=x n+2, 代入(12) 式得, 辛普森(Simpson) 公式的局部截断误差:p(x n+2)−p n+2=ℎ5p(5)(x n)+o(ℎ6).906参考文献[1]徐会林, 刘智广, 肖中永. 从多项式逼近函数引出泰勒公式[J]. 高师理科学刊, 2018, 38(02): 57-60.[2]张笛. 罗尔中值定理及其应用[J]. 数学学习与研究, 2014(01): 122-123.[3]李晟威. 泰勒公式的证明及应用[J]. 课程教育研究, 2018(42): 129-130.[4]徐会林. 泰勒公式在数值分析中的应用[J]. 韶关学院学报, 2019, 40(12): 5-8.[5]阙凤珍, 温少挺. 柯西中值定理的应用[J]. 数学学习与研究, 2016(21): 19+21.[6]王建云, 全宏波, 赵育林. 浅谈拉格朗日中值定理的几种证明方法[J]. 数学学习与研究, 2021(07): 150-151.[7]陈天戈. 泰勒的著作与成就[J]. 语数外学习(高中版下旬), 2021(04): 63-64.[8]胡有婧. 向量函数的泰勒公式的不同形式及其证明[J]. 数学学习与研究,2021(29): 140-141.[9]韩树新, 何军, 王钥, 王炜卿. 浅谈拉格朗日对数学的贡献[J]. 教育教学论坛,2020(32): 322-323.[10]何锐, 春光. 数学“ 诗人” ——柯西[J]. 课堂内外(小学智慧数学), 2021(12):24-27.[11]Ian Tweddle. The prickly genius – Colin MacLaurin (1698–1746)[J]. TheMathematical Gazette,1998,82(495).[12]迟炳荣, 王秀红. 用数学归纳法证明泰勒公式[J]. 中学数学杂志, 2008(09):13-14.[13]姚海燕. 带有佩亚诺型余项的泰勒公式的新证明[J]. 教育教学论坛, 2014(20):120.[14]胡汉章. 泰勒公式在数学分析解题中的应用探讨[J]. 教育教学论坛, 2020(52):281-282.7[15]何小芳. 浅谈泰勒(Taylor) 公式的应用[J]. 企业家天地(理论版), 2011(07):192-194.8。
泰勒公式的展开及其应用_文献综述_周波
本科毕业论文(设计)文献综述泰勒公式的展开及其应用学院:数学与统计学院专业:数学与应用数学班级: 2012级1 班学号: ********** 学生姓名:**指导教师:***2016年5月25日《泰勒公式的展开及其应用》文献综述报告摘要前言:早期自然科学家们进行科学研究计算时,为了简化问题,总是将问题近似地的看作线性问题进行讨论研究。
直至Taylor展开思想的提出:利用n次多项式来逼近函数f,而多项式具有形式简单,易于计算等优点。
我们已经知道,在函数的运算中,多项式函数只用到加、减、乘三种简单的运算,把一个复杂的函数近似地用多项式表示出来,并能使误差达到预期的要求。
这大大降低了理论研究的误差,另外在高等数学方面,Taylor公式可以将给定函数用多项式和表示出来,这种化繁琐为简单的作用使得Taylor公式成为高等数学的核心内容之一。
本文将在前人的理论基础上进行应用探讨,所涉及的内容不仅有经常用到的还有一部分是我们不常见的Taylor公式的应用,本文最大的特点是让Taylor公式零散的应用系统化,进而加深大家对Taylor公式的认识和理解。
关键词:泰勒公式;余项;展开式一、正文:18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒(Brook Taylor),于1685 年8月18日在米德尔塞克斯的埃德蒙顿出生。
1709年后移居伦敦,获法学硕士学位。
他在1712年当选为英国皇家学会会员,并于两年后获法学博士学位。
同年(即1714年)出任英国皇家学会秘书,四年后因健康理由辞退职务。
1717年,他以泰勒定理求解了数值方程.最后在1731年1 2月29日于伦敦逝世。
泰勒的主要著作是1715年出版的《正的和反的增量方法》,书内以下列形式陈述出他已于1712年7月给其老师梅钦(数学家、天文学家)信中首先提出的这个定理——泰勒定理:式子内v为独立变量的增量,及为流数.他假定z随时间均匀变化,则为常数。
上述公式以现代形式表示则为:这公式是从格雷戈里-牛顿插值公式发展而成的,当x=0时便称作马克劳林定理。
泰勒公式及其在在计算方法中的应用
泰勒公式及其在在计算方法中的应用泰勒公式是数学中的一个重要工具,通过使用多项式函数逼近给定函数,从而在计算方法中得到广泛应用。
泰勒公式由苏格兰数学家詹姆斯·泰勒提出,用于将一个函数在其中一点的局部信息表示为一个多项式级数。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn在这个公式中,f(x)是要逼近的函数,x是近似计算的点,a是计算的基准点,n表示多项式的阶数。
f'(a)表示函数在点a处的一阶导数,f''(a)表示二阶导数,f^n(a)表示n阶导数。
Rn是一个余项,表示多项式逼近的误差。
当n趋向于无穷大时,余项应趋近于零,此时泰勒公式收敛于原函数。
泰勒公式在计算方法中的应用非常广泛。
下面介绍几个常见的应用:1.函数逼近:泰勒公式可以将一个复杂的函数逼近为一个多项式函数,使得计算变得更加简单。
逼近后的多项式函数在计算机程序和数值计算中更容易处理。
例如,当我们需要计算一个数的正弦值时,可以使用泰勒公式将正弦函数逼近为一个多项式级数,从而可以通过计算一系列多项式项的和来得到较为精确的近似值。
2.数值积分:泰勒公式在数值积分中有重要的应用。
通过将被积函数在其中一点进行泰勒展开,并将展开式中的高阶导数消去,可以得到一些简化的数值积分公式。
这些公式允许我们通过计算少数几个函数值来近似计算复杂函数的积分值。
数值积分在物理学、工程学和统计学等领域中都有广泛应用。
3.常微分方程的数值解:泰勒公式可以用于数值解常微分方程。
通过将微分方程在一些点进行泰勒展开,并忽略高阶导数项,可以得到一阶或二阶的数值微分方程。
从而我们可以通过迭代的方式递进计算微分方程的解。
这种数值解法在科学计算和工程模拟中非常重要。
4.误差分析:泰勒公式的余项Rn可以用来分析逼近的误差。
通过估计余项的大小,可以知道逼近多项式与原函数之间的误差有多大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 士 学 位 论 文 泰勒公式及其应用
姓 名 院 系 专 业 年 级 学 号 指导教师
2012年5月18日 毕业论文(或毕业设计)开题报告 姓名 性别 学院 数学与信息学院 年级 学号 题 目 泰勒公式及其应用 课题来源 教师推荐 课题类别 应用研究 选题意义(包括目的,在微分中的重要性,研究意义,列出主要参考文献目录): 研究目的:泰勒公式在数学研究中有着广泛应用,泰勒公式的研究有很重要的现实意义.泰勒公式在微积分的各个领域都有重要的应用,集中体现了微积分的核心.对泰勒公式的研究主要包括以下几个方面:(1)求函数的极值,(2)证明根的唯一性,(3)求泰勒函数在某点的高阶导数,(4)利用泰勒函数求函数的近似值和误差,(5)求证函数的敛散性. 研究意义:在高等数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式. 泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来求近似函数在这一点的领域中的值以及多项式和实际函数值之间的偏差.
研究主要内容 本文通过对泰勒公式的介绍,并归纳整理了其在求极限与导数、不等式证明、求函数的极限等方面的应用,本文将从以下几个内容研究泰勒公式及其应用: 1. 应用泰勒公式求函数的近似值及误差估计 2. 利用泰勒公式证明不等式 3. 泰勒公式在计算中的应用及在研究函数的极值的应用 4. 用泰勒公式求函数在某点的高阶导数值 5. 总结 主要参考文献 [1]陈传章 金福林:《数学分析》 北京: 高等教育出版社, 1986. [2]张白兰 崔福荫:《高等数学证题方法》 陕西: 陕西科学出版社, 1985. [3]陈向东:《数学分析的概念和方法》 上海: 上海科学技术出版社, 1989. [4]同济大学数学教研主编.高等数学[M].北京: 人民教育出版社, 1999.
指导教师意见(对论文选题的意义、学术性、可行性、进度与计划等内容进行评价,填写审核结果:同意开题、修改后再开题、不同意开题): 该课题对泰勒公式应用问题做了一些系统的归纳与总结。该论文的选题将解决有关泰勒公式应用的求法问题,对于学好《数学分析》这门基础课程将有一定的促进的作用,同时也为进一步学习多元微积分有关知识有关概念和方法奠定了基础。建议继续查找有关资料。收集有关泰勒公式应用的大量例子,从中总结出泰勒公式应用方法。在每一种方法中,应说明用到的最重要的知识级应该注意的有关问题,然后就每种方法举出例子。 论文组织的整体感较强, 结构清晰明了, 内容详实, 同意开题。
签名: 年3月16 日 院(系)毕业论文(设计)领导小组意见:
同 意 开 题 (签章) 年3月20日 毕业论文结题报告 姓名 性别 院系 年级 学号 题 目 泰勒函数及其应用 课题来源 教师推荐 课题类别 应用研究 本课题完成情况介绍(包括) 首先通过认真查阅学习文献, 理解与此课题相关的基本概念, 然后对相关概念或举例说明或进行详细介绍, 再利用这些知识针对交通流这一实际问题进行研究, 举例说明.举例说明泰勒公式的应用.
指导教师评语: 在高等数学中,泰勒公式是一个 用函数在某点的信息描述其附近取值的公式。泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分。该生首先通过查阅学习文献,理解与此课题相关的基本理念,然后对相关概念或举例说明或进行详细介绍,再利用这些知识针对这一实际问题进行研究,举例说明了泰勒公式的应用。 经审阅,该论文是一篇较好的学士学位论文,同意结题。
签名: 年5月18日
院(系)毕业论文(设计)领导小组意见:
同 意 结 题
(公章) 年5月18日 指导教师 评定成绩
毕业论文成绩评定表 v
院(系):数学与信息学院 学号: 姓 名 总成绩:
题 目 泰勒公式及其应用
评 阅 人 评 语
论文组织的整体感较强, 结构清晰明了, 内容详实。论文研究了泰勒公式将一些复杂函数近似的表示为简单的多项式函数,在高等数学中不等式,极限,极值及凹凸性和拐点中的应用,然后对相关概念或举例说明或进行详细介绍,再利用这些知识针对这一实际问题进行研究,举例说明了泰勒公式的应用。 经审阅, 该论文是一篇较好的学士学位论文。
评定成绩: 签名: 年5月25日 答 辩 小 组 评 语
答辩成绩: 组长签名: 年 月 日 独 创 声 明 本人在此声明:本篇论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议.尽我所知,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明. 此声明的法律后果由本人承担.
作者签名: 二〇一二年 五月 十八日
毕业论文使用授权声明 本人完全了解鲁东大学关于收集、保存、使用毕业论文的规定. 本人愿意按照学校要求提交论文的印刷本和电子版,同意学校保存论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文;同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文的部分或全部内容,允许他人依法合理使用. (保密论文在解密后遵守此规定)
论文作者(签名): 二〇一二年 五月 十八日 I
目 录 1.引言 .................................................................. 1 2. 泰勒公式及其应用 ..................................................... 1 2.1 预备知识 ............................................................ 1 3 泰勒公式的应用 ........................................................ 3 3.1利用泰勒公式求极限 ................................................... 3 3.2 利用泰勒公式求不等式 ................................................ 3 3.3利用泰勒级数判断级数的敛散性 ......................................... 4 3.4利用泰勒公式证明根的唯一性 ........................................... 5 3.5利用泰勒公式判断函数的极值 ........................................... 5 3.6利用泰勒公式求初等函数的幂级展开式 ................................... 6 3.7利用泰勒公式进行近似计算 ............................................. 6 3.8利用泰勒公式判断函数的凸凹性和拐点 ................................... 7 3.9 利用泰勒公式求高阶导数在某点的数 .................................... 8
参考文献 ................................................................ 8
致 谢 ................................................................... 8 1
泰勒公式及其应用 (数学与信息学院 数学与应用数学 2008级数本2班20082112010) 摘要:在数学分析中泰勒公式是一个重要的内容.本文论述了泰勒公式的定义,内容 ,并介绍
了泰勒公式的9个应用及举例说明.利用泰勒公式求不等式,求极限,证明敛散性,根的唯一性等一系列泰勒函数的应用,使我们更加清楚地认识泰勒公式的重要性. 关键词:泰勒公式 皮亚诺余项 拉格朗日余项 应用
Taylor formula and it’s application
(20082112010 Class 2 Grade 2008 Mathematics & Applied Mathematics School of Mathematics & Information)
Abstract:In the mathematical analysis Taylor formula is a important content. This paper
discusses the definition of Taylor formula, content, and introduces the Taylor formula nine application and give an example. Use Taylor formula for inequality, please limit, folding proof scattered sex, the uniqueness of root, a series of Taylor function of application, make us more clearly know the importance of Taylor formula.
Keywords: Taylor’s formula The emaining of the Piano The remaining of the Lagrangian
Application
1.引言
泰勒公式将一些复杂函数近似的表示为简单的多项式函数,是高等数学中重要部分.作者通过查阅一些参考文献,从中搜集了大量的习题,通过认真计算,其中部分难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳总结.由于本文的主要内容是介绍泰勒公式的应用,所以,本文以例题为主进行讲解说明.
2. 泰勒公式及其应用
2.1 预备知识 定义12.1 若函数f在0t存在n阶导数,则有 20000001!2!!nnnn
n
ftftftftftttttttottn