二维随机变量及独立性--教学设计
高中数学 第二章 随机变量及其分布 2.2 二项分布及其应用 2.2.2 事件的相互独立性教案 新人

2.2.2 事件的相互独立性整体设计教材分析概率论是研究和揭示随机现象规律性的数学分支.它的理论和方法渗透到现实世界的各个领域,应用极为广泛.而在概率论中,独立性是极其重要的概念,它的主要作用是简化概率计算.相互独立事件同时发生的概率与前面学习的等可能性事件、互斥事件有一个发生的概率,是三类典型的概率模型.将复杂问题分解为这三种基本形式,是处理概率问题的基本方法.因此,本节内容的学习,既是对前面所学知识的深化与拓展,又是提高学生解决现实问题能力的一种途径,更是加强学生应用意识的良好素材.在本节中引入独立性的概念主要是为了介绍二项分布的产生背景,为下一节起铺垫作用.课时分配1课时教学目标知识与技能理解两个事件相互独立的概念,能进行与事件独立性有关的概率的计算.过程与方法通过教学渗透由特殊到一般的数学思想,提高解决实际问题的能力.情感、态度与价值观通过对实例的分析,问题的探究,学会合作,提高学习数学的兴趣.重点难点教学重点:独立事件同时发生的概率.教学难点:有关独立事件发生的概率计算.教学过程引入新课我们知道求事件的概率有加法公式:假设事件A与B互斥,那么P(A∪B)=P(A)+P(B).那么怎么求A与B的积事件AB呢?回顾旧知:1.事件A 与B 至少有一个发生的事件叫做A 与B 的和事件,记为A∪B(或A +B);2.事件A 与B 都发生的事件叫做A 与B 的积事件,记为A∩B(或AB);如果事件A 1,A 2,…,A n 彼此互斥,那么P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).提出问题:甲果盘里有3个苹果,2个橙子,乙果盘里有2个苹果,2个橙子,从这两个果盘里分别摸出1个水果,它们都是苹果的概率是多少?活动结果:不妨设事件A :“从甲果盘里摸出1个水果,得到苹果〞;事件B :“从乙果盘里摸出1个水果,得到苹果〞.“从这两个果盘里分别摸出1个水果,它们都是苹果〞是一个事件,它的发生,就是事件A ,B 同时发生,记作AB.(简称积事件)从甲果盘里摸出1个水果,有5种等可能的结果;从乙果盘里摸出1个水果,有4种等可能的结果.于是从这两个果盘里分别摸出1个水果,共有5×4种等可能的结果.同时摸出苹果的结果有3×2种.所以从这两个果盘里分别摸出1个水果,它们都是苹果的概率P(AB)=3×25×4=310. 探究新知提出问题:大家观察P(AB)与P(A)、P(B)有怎样的关系?活动结果:从甲果盘里摸出1个水果,得到苹果的概率P(A)=35,从乙果盘里摸出1个水果,得到苹果的概率P(B)=24.显然P(AB)=P(A)P(B). 继续探究:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)事件A 是否发生对事件B 发生的概率有无影响?(无影响)探究结果:显然,事件A“从甲果盘里摸出1个水果,得到苹果〞对事件B“从乙果盘里摸出1个球水果,得到苹果〞没有影响,即事件A的发生不会影响事件B发生的概率.于是:P(B|A)=P(B),又P(B|A)=P(AB)P(A),易得:P(AB)=P(A)P(B|A)=P(A)P(B).将上述问题一般化,得出如下定义:1.相互独立事件的定义:设A,B为两个事件,如果P(AB)=P(A)P(B),那么称事件A与事件B相互独立(mutually independent).理解新知事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件就叫做相互独立事件.假设A与B是相互独立事件,那么A与B,A与B,A与B也相互独立.简证:假设A与B是相互独立事件,那么P(AB)=P(A)P(B).所以P(A B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(B);P(A B)=P(B)-P(AB)=P(B)-P(A)P(B)=(1-P(A))P(B)=P(A)P(B);P(A B)=P(A)-P(A B)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(B);即A与B,A与B,A与B也相互独立.教师指出:定义说明如果P(AB)=P(A)P(B),那么称事件A与事件B相互独立,反之亦然.2.相互独立事件同时发生的概率:P(AB)=P(A)P(B).即两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.类比:假设事件A与B互斥,那么P(A∪B)=P(A)+P(B).提出问题:该结论能否推广到一般情形?P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).活动结果:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…A n)=P(A1)P(A2)…P(A n).运用新知例1诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?设计意图:题目富有趣味性,激发学生兴趣,使其创造力得到进一步发挥.解:设“臭皮匠老大解出问题〞为事件A,“老二解出问题〞为事件B,“老三解出问题〞为事件C,“诸葛亮解出问题〞为事件D,那么三个臭皮匠中至少有一人解出问题的概率为1-P(A B C)=1-0.5×0.55×0.6=0.835>0.8=P(D).所以,合三个臭皮匠之力解出问题的把握就大过诸葛亮.例2甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率;(2)2人中恰有1人射中目标的概率;(3)2人至少有1人射中目标的概率;(4)2人至多有1人射中目标的概率.解:记“甲射击1次,击中目标〞为事件A,“乙射击1次,击中目标〞为事件B,那么A与B,A与B,A与B,A与B为相互独立事件,(1)2人都射中的概率为:P(AB)=P(A)P(B)=0.8×0.9=0.72,∴2人都射中目标的概率是0.72.(2)“2人各射击1次,恰有1人射中目标〞包括两种情况:一种是甲射中、乙未射中(事件A B发生),另一种是甲未射中、乙射中(事件A B发生).根据题意,事件A B与A B互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26,∴2人中恰有1人射中目标的概率是0.26.(3)(法1):“2人至少有1人射中〞包括“2人都中〞和“2人有1人不中〞两种情况,其概率为P=P(AB)+[P(A B)+P(A B)]=0.72+0.26=0.98.(法2):“2人至少有一个射中〞与“2人都未射中〞为对立事件,2人都未射中目标的概率是P(A B)=P(A)P(B)=(1-0.8)(1-0.9)=0.02,∴2人至少有1人射中目标的概率为P=1-P(A B)=1-0.02=0.98.(4)(法1):“至多有1人射中目标〞包括“有1人射中〞和“2人都未射中〞,故所求概率为:P=P(A B)+P(A B)+P(A B)=P(A)P(B)+P(A)P(B)+P(A)P(B)=0.02+0.08+0.18=0.28.(法2):“至多有1人射中目标〞的对立事件是“2人都射中目标〞,故所求概率为P=1-P(AB)=1-P(A)P(B)=1-0.72=0.28.[变练演编]在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.解:分别记这段时间内开关J A,,J C能够闭合为事件A,B,C.由题意,这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.7)(1-0.7)(1-0.7)=0.027.∴这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P(A BC)=1-0.027=0.973.答:在这段时间内线路正常工作的概率是0.973.变式1:如图添加第四个开关J D与其他三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率.([1-P(A B C)]·P(D)=0.973×0.7=0.681 1)变式2:如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.方法一:P(A B C)+P(A BC)+P(A B C)+P(ABC)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=0.847.方法二:分析要使这段时间内线路正常工作只要排除J C开且J A与至少有1个开的情况.那么1-P(C)[1-P(AB)]=1-0.3×(1-0.72)=0.847.[达标检测]某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?分析:因为敌机被击中就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率.解:(1)设“敌机被第k门高炮击中〞为事件为A k(k=1,2,3,4,5),那么5门高炮都未击中敌机的事件为A1A2A3A4A5 .∵事件A 1,A 2,A 3,A 4,A 5相互独立,∴敌机未被击中的概率为P(A 1A 2A 3A 4A 5 )=P(A 1)P(A 2)P(A 3)P(A 4)P(A 5)=(1-0.2)5=(45)5. ∴敌机未被击中的概率为(45)5. (2)设至少需要布置n 门高炮才能有0.9以上的概率击中敌机,仿照(1)可得:敌机被击中的概率为1-(45)n ,∴令1-(45)n ≥0.9.∴(45)n ≤110. 两边取常用对数,得n≥11-3lg2≈10.3. ∵n∈N *,∴n=11.∴至少需要布置11门高炮才能有0.9以上的概率击中敌机.点评:逆向思考方法在解决带有词语“至多〞、“至少〞的问题时的运用,常常能使问题的解答变得简便.课堂小结1.一般地,两个事件不可能既互斥又相互独立,因为互斥事件不可能同时发生,而相互独立事件是以它们能够同时发生为前提.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.(列表比较)2.解决概率问题的关键:分解复杂问题为基本的互斥事件与相互独立事件. 补充练习[基础练习]1.袋中有2个白球,3个黑球,从中依次取出2个,那么取出两个都是白球的概率是( )A.12B.25C.35D.1102.甲、乙、丙三人独立地去译一个密码,分别译出的概率为15,13,14,那么此密码能译出的概率是( )A.160B.25C.35D.59603.两个篮球运动员在罚球时命中概率分别是0.7和0.6,每人投篮3次,那么2人都恰好进2球的概率是________.答案:1.D 2.C 3.0.190 512[拓展练习]某人忘记了的最后一个数字,因而他随意地拨号,假设拨过了的不再重复,试求以下事件的概率:(1)第3次拨号才接通;(2)拨号不超过3次而接通.解:设A i ={第i 次拨号接通},i =1,2,3.(1)第3次才接通可表示为A 1A 2A 3,于是所求概率为P(A 1A 2A 3)=910×89×18=110; (2)拨号不超过3次而接通可表示为:A 1+A 1A 2+A 1A 2A 3,于是所求概率为P(A 1+A 1A 2+A 1A 2A 3)=P(A 1)+P(A 1A 2)+P(A 1A 2A 3)=110+910×19+910×89×18=310. 设计说明本节课由六个基本环节组成:复习旧知,创造类比条件―→提出问题,引发思考―→合作交流,感知问题―→类比联想,探索问题―→实践应用,解决问题―→小结反思,深化拓展.(1)以问题作为教学的主线.在趣味性情境中发现问题,在猜想、对比性问题中展开探索,在实践应用性问题中感悟数学的思维与方法.(2)以课堂作为教学的辐射源.通过教师、学生、多媒体多点辐射,带动和提高所有学生的学习积极性与主动性.备课资料1.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)答案:B2.某商场推出二次开奖活动,凡购买一定价值的商品可以获得一X奖券.奖券上有一个兑奖,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定;(2)恰有一次抽到某一指定;(3)至少有一次抽到某一指定.解:记“第一次抽奖抽到某一指定〞为事件A,“第二次抽奖抽到某一指定〞为事件B,那么“两次抽奖都抽到某一指定〞就是事件AB.(1)由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定的概率为P(AB)=P(A)P(B)=0.05×0.05=0.002 5.(2)“两次抽奖恰有一次抽到某一指定〞可以用(A B)∪(A B)表示.由于事件A B与A B互斥,根据概率的加法公式和相互独立事件的定义,可得所求的概率为P(A B)+P(A B)=P(A)P(B)+P(A)P(B)=0.05×(1-0.05)+(1-0.05)×0.05=0.095.(3)“两次抽奖至少有一次抽到某一指定〞可以用(AB)∪(A B)∪(A B)表示.由于事件AB,A B和A B两两互斥,根据概率的加法公式和相互独立事件的定义,可得所求的概率为P(AB)+P(A B)+P(A B)=0.002 5+0.095=0.097 5.。
§3.4相互独立的随机变量

9
可以验证此时有
p ij p ip j i 1 ,2 ;j 1 ,2 ,3
因 此 , 取 a=2,b1时 X 与 Y 相 互 独 立 .
99
7
例3 设X和Y相互独立,其边缘分布律如下 表,试求(X,Y)的联合分布律和P(X+Y=1)及 P(X+Y≠0).
X -2 -1 0 1/2 pi. 1/4 1/3 1/12 1/3
Y
-1/2 1
3
p.j
1/2 1/4 1/4
8
解:因X和Y相互独立,
应 有 p i j p i p j i 1 ,2 ,3 ,4 ;j 1 ,2 ,3
故(X,Y)的联合分布律为
Y
-1/2
1
3
X
-2
1/8
1/16
1/16
-1
1/6
1/12
1/12
0
1/24
1/48
1/48
1/2
1/6
1/12
1
由二维随机变量 ( X, Y ) 相互独立的定义 可知,二维随机变量 ( X, Y ) 相互独立的 充要条件是:对任意的x,y,有
F (x ,y ) F X (x )F Y (y )
它表明,两个随机变量相互独立时,它们 的联合分布函数等于两个边缘分布函数的乘 积.
2
若(X,Y)是连续型随机变量,则上述独立性的 定义等价于:若对任意的 x, y, 有
1 x2y2
f(x,y)2e 2
x,y
P {X2Y21} f(x,y)dxdy x2y21
1
x2 y2
e 2 dxdy
2 x2 y2 1
17
《概率论与数理统计》教案第13课二维随机变量的条件分布

课题二维随机变量的条件分布课时2课时(90min)教学目标知识技能目标:(1)理解二维随机变量的条件分布(2)理解二维离散型随机变量的边缘分布律(3)理解二维连续型随机变量的边缘概率密度素质目标:(1)帮助学生树立正确看待随机现象的世界观,掌握统计估计的思想与方法教学重难点教学重点:二维随机变量的条件分布,二维离散型随机变量的边缘分布律教学难点:二维连续型随机变量的边缘概率密度教学方法讲练结合法、问答法、讨论法教学用具电脑、投影仪、多媒体课件、教材教学过程主要教学内容及步骤课前任务【教师】布置课前任务,和学生负责人取得联系,让其提醒同学通过APP或其他学习软件,搜集并了解二维随机变量条件分布的相关知识【学生】完成课前任务考勤【教师】使用APP进行签到【学生】按照老师要求签到互动导入【教师】提出问题什么是条件分布?【学生】思考、讨论、回答传授新知【教师】通过大家的发言,引入新的知识点,讲解二维随机变量条件分布的相关知识【教师】介绍条件分布的概念对于二维随机变量来说,要描述(X f Y)整体的统计规律,可用联合分布;要描述单个分量的统计规律,可用边缘分布;而当一个分量固定取一个值时,在此条件下考虑另一个分量的统计规律,这就是所谓的条件分布.以下同样分别从离散型和连续型随机变量来讨论它们的条件分布.一、离散型设(X'丫)是二维离散型随机变量,其分布率为P(X=Xi,Y=yj)=Pij(J,j=l,2,)(X'丫)关于X和Y的边缘分布率为P(X三x∕)三ΣPy=Pi.(,=1,2,)J=I9p(y=x)=£p,=p,j(/=1,2,)r=l设R/>°,考虑在事件"=")已经发生的条件下事件(X=XJ 发生的概率,由条件概率公式可得P(X=X,Y=y)P尸-W 而k =方―,)易知上述条件概率具有分布率的性质:P(X=x i ∖Y=y j )...0.∖三/f SP(X=XjlY=X)==—∑⅞-1=1 (2Ji 日Pj P J i=∣Pj于是引入下面的定义.定义1设(X'丫)是二维离散型随机变量,对于固定的j ,若'"=»)>°,则称P(X=x i ∖Y=y)=P(x=X 'tY=>>p =⅛(i=ι,2,) 'PGF Pr (3-U) 为,=为条件下随机变量X 的条件分布率.同样,对于固定的i,若P(X=Xj >°,则称P(X=Xy=y)p始7"“)=Pfn ”2,)为在X=Xi 条件下随机变量Y 的条件分布率.条1牛分布率就是在边缘分布率的基础上都加上"另一个随机变量取定某值”这个条件. 从定义易知,条件分布率也满足非负性和规范性.例1设(X'')的联合分布率如表3-12所示.表3-121 2 00.1 0.3 0.1 1 0.2 0.2 0.1求在y=°条件下,X 的条件分布率;χ=ι条件下Y 的条件分布率.……(详见教材)二、连续型设(x'y)是二维连续型随机变量这时由于对任意的X'),有P(X=X)=°,P(y=y)=()因此不能直接用条件概率公式引入"条件分布函数"了.考虑o ,v3ctll1v 、P(X^χt y<Yy+ε) P(X^∖χ∖y<y y+£)=——-~⅛ ------------------------ U — P(y<y,,y+ε) 当C 很小时,在某些条件下有P(X 别加“y+上瞎爱打:甯必(3-15)∫r÷4 /(χ,y)dy y因此,给出以下定义./(χ,y)定义2设(''V的概率密度为/(“'田,4(y)为Y的边缘密度,对于固定的y,八°,)为在丫=>条件下X的条件概率密度,记为册α∣y)=gι1人⑴,(3.16)并称∕⅛(x∣y)=P(X,,Xly=y)=匚窗II ck为在Y=丁条I牛下X的条件分布函数.类似地,可以定义源(川外-/()JX⑶(3-17)及∕⅛(yI外=P(K,y∖x=χ)=J:由,例2设二维随机变量(X'V具有概率密度r -»X2+J2…1»/(χ>y)=¼0,其他.求/种(Xly)解- 2y j"y?Λ(J)=∫∕*,y)口=π,ιn,.0, 其他.于是,对符合I川”1的一切y,有f(x,y) i----- IXL,Ji y»Λ∣rU∣^)=277f=2√1-/λo0,其他.【学生】聆听、思考、理解、记忆【教师】给出题目,组织学生以小组为单位进行解题把三个球等可能地放入编号为1,2,3的三个盒子中,每盒可容球数无限记X为落入1号盒fi弼激,Y为落入2号盒的屐,求:(1)在Y=O的条件下,X的分布律;拓展训练(2)在X=2的条件下,Y的分布律.【学生】聆听、思考、讨论、解题【教师】公布正确答案,讲解解题步骤【学生】对比答案和解题步骤,提高自身解题技巧课堂小结【教师】简要总结本节课的要点二维随机变量的条件分布二维离散型随机变量的边缘分布律二维连续型随机变量的边缘概率密度【学生】总结回顾知识点作业布置【教师】布置课后作业(I)完邮材中的习题3-3;(2)除APP蝌酵习平相【学生】完成课后任务教学反思。
二维随机变量(ξ ,η)

多维随机变量及其概率分布
§3.1 多维随机变量及其联合概率分布
第三章作业题
P158
1,3,5,7,8 10,12,14,17,18 21,26,27,30 31,34,39,40
有些随机现象用一个随机变量来描述不够, 例如
1、 在打靶时,命中点的位置是由一对r.v(两个坐
标)来确定的.
2、 飞机的重心在空中的位置是由三个r.v (三个 坐标)来确定的等等.
区域A是x=0,y=0和x+y=1三条直线所围成的 三角区域,并且包含在圆域x2+y2≤4之内,面积 =0.5
∴ P{(ξ,η)A}=0.5/4=1/8
2、 二维正态分布
若二维随机变量(ξ,η)具有概率密度
p(x,
y)
1
21 2
1
2
exp{
2(1
1
2
)
[(
x
1 1
3、研究某年龄段儿童的身体发育情况,同时 考虑身高、体重、肺活量、血压等指标
4、研究某日的天气状况,同时考虑最高温度、最 大湿度、最大风力等指标。
一、多维随机变量的概念
设随机试验E的样本空间是Ω.ξ =ξ() 和η=η()都是定义在Ω上的随机变量,由它 们构成的变量(ξ,η),称为二维随机变量.
对任意n个实数x1,x2, xn,n元函数 F (x1,x2, xn, ) P{ X1 x1, X 2 x2,
Xn xn}
§3.4 边际分布与 随机变量的独立性
一、 边际分布
1、随机变量的边际分布函数
二维随机变量(ξ,η)作为一个整体,具有 分布函数F(x,y).
其分量ξ和η也都是随机变量,也有自己 的分布函数,将其分别记为Fξ (x ),Fη(y). 依次称为ξ 和η的 边际分布函数.
第三节二维随机变量的独立性

X Y y1 y2 … yj … x1 p11 p12 ... p1j ... x2 p21 p22 ... P2j ...
xi pi1 pi2 ... Pij ...
3. 联合分布律的性质 :
(1) pij 0;(2) pij=1.
F ( x1 ,, xn ) FX1 ( x1 )FX2 ( x2 )FXn ( xn )
则称X1 , X2, …, Xn 相互独立,或称(X1 , X2, …, Xn )是独立的.
一、二维离散型随机变量
1. 定义:若二维随机变量(X, Y)只能取至多可列个值(xi, yj), (i, j=1, 2, … ),则称(X, Y)为二维离散型随机变量。
2. 联合分布律: 若二维随机变量(X, Y) 取 (xi, yj)的概率为Pij, 则称P{X=xi, Y= yj}= Pij为随机变量(X, Y)的分布律,
等价定义:设X, Y为两个随机变量,如果对任意实数a<b, c<d, 有P{a<Xb, c<Yd} =P{a<Xb}P{c<Yd},即事件{a<Xb}与 事件{c<Yd} 独立,则称随机变量X与Y相互独立.
2. 独立的充要条件 (1) 设( X,Y )为离散型随机变量,分布律为 pij,则 X与Y相互独立 pij pi. p. j . (2) 设( X,Y )为连续型随机变量,概率密度为 f ( x,y),则
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
XY 1 2 0 0.15 0.15 1 ab
例2. 设( X,Y )的分布律为 且X与 Y独立,求a,b.
3-4 随机变量的独立性

解: X与Y的边缘分布律分别为
X -1/2 1 1/2 pi. 1/4 1/4 1/2 Y -1 0 p.j 2/5 1/5 2 2/5
逐一验证可知, pij= pi. · p.j(i=1,2,3,j=1,2,3)。 从而X与Y相互独立。
上一页
下一页
返回
例3.14: 设X和Y都服从参数为1的指数分布,且相互 独立,试求P{X+Y<1}。 解 :设fX(x),fY(y)分别为X和Y的概率密度,则
第四节 随机变量的独立性
定义3.7 设X和Y是两个随机变量,如果对于任意实 数x和y,事件{X≤x}与{Y≤y}相互独立,即有P{ X≤x , Y≤y }=P{X≤x}P{Y≤y},则称随机变量X与Y相互独立。 设F(x,y)为二维随机变量(X,Y)的分布函数, (X,Y)关于 X和关于Y的边缘分布函数分别为FX(x),FY(y),则上 式等价于 由独立性定义可证 “若X与Y相互独立,则对于任意实数 x1<x2,y1<y2,事件{ x1<X≤x2}与事件{ y1<Y≤y2}相互独立”。
上一页
下一页
返回
P{x1<X≤x2 ,y1<Y≤y2}
=F(x2, y2)-F(x2, y1)-F(x1, y2)+F(x1, y1) =FX(x2) FY(y2)-FX(x2) FY(y1)-FX(x1) FY(y2)+FX(x1) FY(y1) =[ FX(x2)-FX(x1)][ FY(y2)-FY(y1)] = P{x1<X≤x2}P{y1<Y≤y2} 所以事件{x1<X≤x2}与{y1<Y≤y2}是相互独立的。 结论推广:“若X与Y独立,则对于任意一维区间I1和 I2,事件{X∈I1}与{Y∈I2}相互独立”。
3.3 相互独立的随机变量
离散型随机变量的联合分布列等于其边缘分布列的乘积
2. 若(X,Y)为连续随机变量
X与Y 相互独立充分必要条件:
f ( x, y ) f X ( x ) fY ( y ) (对任意实数 x, y )
连续型随机变量的联合密度等于其边缘密度的乘积
例1 已知随机变量(X, Y )的分布律为
Y X 0 1 1 0.15 a
Ex4. 设( X, Y ) 的联合概率密度为 Ae 2 y , x 0, y 0 2 f ( x, y ) 1 x 0 , 其它 求常数A 的值, 边缘概率密度 fX (x) 和 f Y (y), 并讨论X与Y 的相互独立性. y
解
1 1
0
xe ( x y )dy xe x , xe
( x y )
x0
y0
fY ( y )
0
dx e ,
y
例2 设 ( X ,Y ) 的概率密度为
(1) (2)
xe ( x y ) , x 0, y 0 f ( x, y) ; 其它 0, 2, 0 x y ,0 y 1 f ( x, y) , 其它 0,
0.15+a
2 0.15 b
0.15+b
pi.
0.30 a +b
p.j
且X与Y 独立,求a、b的值。 解 X与Y相互独立,故pij =pi••p•j
P(X=0,Y=1)= P(X=0)•P(Y=1),
X 0 1 p•j
Y
1 0.15 0.35 0.50
2 0.15 0.35 0.50
p i• 0.30 0.70
例2 设 ( X ,Y ) 的概率密度为 (1) (2)
§3.3 随机变量的独立性§3.4 两个随机变量函数的分布
第9页
例3.3.2 已知 (X, Y) 的联合密度为
e x y , f (x, y ) 0, 问 X 与Y 是否独立?
解: 边缘分布密度分别为:
( x y ) dy e x x 0 0 e f (x) x0 0
x 0, y 0; 其 他.
若(X,Y)的所有可能取值为(xi, yj) (i, j=1, 2, …), 则X与 Y相互独立的充分必要条件是对一切 i, j=1, 2,… , 有 P{X = xi,Y= yj}= P{X= xi}· P{Y= yi}
(Pij Pi P ) j
第3章
§3.3—3.4
第7页
2. (X, Y)是连续型
14
14
16
18
18
1 12
( X,Y ) (-1,-1) (-1,0) (1,-1) (1,0) (2,-1) (2,0) X +Y -2 0 1 -1 -1 0 0 2 -1 1 1 0 1 3 -2 2 2 0
dx
0
1/2
e y dy
1 2
1 e1 2e
第3章
§3.3—3.4
第6页
§3.3 随机变量的独立性
定义 设两个随机变量X, Y, 若对任意的实数 x, y 有 F(x,y) = FX(x) FY(y) 即 P{X≤x, Y≤y} = P{X≤x} P{Y≤y}
则称随机变量X与Y是相互独立的。 1. (X, Y)是离散型
e y , 0 x y f ( x, y ) 其他 0,
求概率P{X+Y≤1}.
第3章
§3.3—3.4
第4页
D为 2x+3y≤6. 1.解:
初中数学随机变量教案
初中数学随机变量教案教学目标:1. 理解随机变量的概念,掌握随机变量的定义和性质。
2. 能够运用随机变量描述实际问题中的不确定性,解决相关问题。
3. 掌握随机变量的期望和方差的概念,并能计算简单随机变量的期望和方差。
教学重点:1. 随机变量的概念和性质。
2. 随机变量的期望和方差。
教学难点:1. 随机变量的期望和方差的计算。
教学准备:1. 教师准备PPT或黑板,用于展示随机变量的图像和例子。
2. 准备一些实际问题,用于引导学生运用随机变量描述不确定性。
教学过程:一、导入(5分钟)1. 引入随机变量的概念,让学生思考实际生活中遇到的不确定性问题。
2. 举例说明随机变量的概念,如掷骰子、抽奖等。
二、随机变量的定义和性质(15分钟)1. 给出随机变量的定义,解释随机变量的取值和可能性。
2. 引导学生理解随机变量的性质,如可加性、独立性等。
三、随机变量的期望(15分钟)1. 介绍期望的概念,解释期望的计算方法。
2. 引导学生理解期望的意义,如期望值可以描述随机变量的平均取值。
四、随机变量的方差(15分钟)1. 介绍方差的概念,解释方差的计算方法。
2. 引导学生理解方差的意义,如方差可以描述随机变量的波动程度。
五、实际问题分析(10分钟)1. 给出一些实际问题,让学生运用随机变量描述不确定性。
2. 引导学生运用期望和方差的概念,解决实际问题。
六、总结和练习(5分钟)1. 对本节课的内容进行总结,强调随机变量的概念和性质。
2. 布置一些练习题,让学生巩固所学知识。
教学反思:本节课通过引入实际问题,引导学生理解随机变量的概念和性质,掌握期望和方差的概念和计算方法。
在教学过程中,注意引导学生主动思考和解决问题,培养学生的数学思维能力。
同时,通过练习题的布置,让学生巩固所学知识,提高解题能力。
2015届高考数学总复习第十一章计数原理、随机变量及分布列第5课时独立性及二项分布教学案(含最新模拟)
第十一章 计数原理、随机变量及分布列第5课时 独立性及二项分布(对应学生用书(理)174~176页)1. (选修23P 59练习2改编)省工商局于2003年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶x 饮料,并限定每人喝2瓶.则甲喝2瓶合格的x 饮料的概率是________.答案:0.64解析:记“第一瓶x 饮料合格”为事件A 1,“第二瓶x 饮料合格”为事件A 2,A 1与A 2是相互独立事件,“甲喝2瓶x 饮料都合格就是事件A 1、A 2同时发生,根据相互独立事件的概率乘法公式得P(A 1·A 2)=P(A 1)·P(A 2)=0.8×0.8=0.64.2. (选修23P 63练习2改编)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为________.答案:54125解析:本题符合独立重复试验,是二项分布问题,所以此人恰有两次击中目标的概率为C 23(0.6)2·(1-0.6)=54125.3. 甲、乙两地都位于长江下游,根据天气预报记录知,一年中下雨天甲市占20%,乙市占18%,假定在这段时间内两市是否降雨相互之间没有影响,则甲、乙两市同时下雨的概率为________.答案:0.036解析:设甲市下雨为事件A ,乙市下雨为事件B ,由题设知,事件A 与B 相互独立,且P(A)=0.2,P(B)=0.18,则P(AB)=P(A)P(B)=0.2×0.18=0.036.4. (选修23P 63练习2改编)某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.答案:49解析:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.3个景区都有部门选择可能出现的结果数为C 24·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P(A 1)=C 24·3!34=49.5. 在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是6581,则事件A 在一次试验中出现的概率是________.答案:13解析:设A 发生概率为P ,1-(1-P)4=6581,P =13.1. 相互独立事件(1) 对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 相互独立. (2) 若A 与B 相互独立,则P(AB)=P(A)P(B).(3) 若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4) 若P(AB)=P(A)P(B),则A 、B 相互独立. 2. 二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(X =k)=C k n p k q n -k,其中k =0,1,2,3,…,n ,q =1-p.于是得到随机变量X 的概率分布如下:由于Cn pq 恰好是二项展开式(p +q)=C n p q +C n p q +…+C k n p q +…+C n n p n q 0中的第k +1项(k =0,1,2,…,n)中的值,故称随机变量X 为二项分布,记作X ~B(n ,p).3. “互斥”与“相互独立”的区别与联系题型1 相互独立事件例1 A 高校自主招生设置了先后三道程序:部分高校联合考试、本校专业考试、本校面试.在每道程序中,设置三个成绩等级:优、良、中.若考生在某道程序中获得“中”,则该考生在本道程序中不通过,且不能进入下面的程序.考生只有全部通过三道程序,自主招生考试才算通过.某中学学生甲参加A 高校自主招生考试,已知该生在每道程序中通过的概率均为34,每道程序中得优、良、中的概率分别为p 1、12、p 2.(1) 求学生甲不能通过A 高校自主招生考试的概率;(2) 设ξ为学生甲在三道程序中获优的次数,求ξ的分布列.解:由题意,得11213,241,2p p p ìïï+=ïïíïï+=ïïïî解得p 1=p 2=14.(1) 设事件A 为学生甲不能通过A 高校自主招生考试,则P(A)=14+34×14+34×34×14=3764.答:学生甲不能通过A 高校自主招生考试的概率为3764.(2) 由题意知:ξ=0,1,2,3.P(ξ=0)=14+12×14+12×12×14+12×12×12=916,P(ξ=2)=14×14×14+14×14×12+14×12×14+12×14×14=764,P(ξ=3)=14×14×14=164,∵i =03P (ξ=i)=1,∴P(ξ=1)=1-P(ξ=0)-P(ξ=2)-P(ξ=3)=516.故ξ的分布列为变式训练有一种闯三关游戏规则规定如下:用抛掷正四面体型骰子(各面上分别有1,2,3,4点数的质地均匀的正四面体)决定是否过关,在闯第n(n =1,2,3)关时,需要抛掷n 次骰子,当n 次骰子面朝下的点数之和大于n 2时,则算闯此关成功,并且继续闯关,否则停止闯关.每次抛掷骰子相互独立.(1) 求仅闯过第一关的概率;(2) 记成功闯过的关数为ξ,求ξ的分布列.解:(1) 记“仅闯过第一关的概率”这一事件为A ,则P(A)=34·616=932.(2) 由题意得,ξ的取值有0,1,2,3,且P(ξ=0)=14,P(ξ=1)=932,P(ξ=2)=34·1016·5464=4051 024,P(ξ=3)=34·1016·1064=751 024,即随机变量ξ的概率分布列为题型2 例2 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1) 求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (2) 求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3) 记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列.解:记A 表示事件:进入商场的1位顾客购买甲种商品;记B 表示事件:进入商场的1位顾客购买乙种商品;记C 表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种;记D 表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种.(1) C =A·B +A·B ,P(C)=P(A·B +A·B)=P(A·B)+P(A·B)=P(A)·P(B)+P(A -)·P(B)=0.5×0.4+0.5×0.6=0.5.(2) D =A·B , P(D)=P(A·B)=P(A)·P(B)=0.5×0.4=0.2, P(D)=1-P(D)=0.8.(3) ξ~B(3,0.8),故ξ的分布列 P(ξ=0)=0.23=0.008;P(ξ=1)=C 13×0.8×0.22=0.096;P(ξ=2)=C 23×0.82×0.2=0.384; P(ξ=3)=0.83=0.512.某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,且只能从中选一门.该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同.(1) 求3个学生选择了3门不同的选修课的概率;(2) 求恰有2门选修课这3个学生都没有选择的概率;(3) 设随机变量X 为甲、乙、丙这三个学生选修数学史这门课的人数,求X 的分布列.解:(1) 3个学生选择了3门不同的选修课的概率:P 1 =A 3443=38.(2) 恰有2门选修课这3个学生都没有选择的概率:P 2=C 24·C 23·A 2243=916. (3) X =0,1,2,3,则有P (ξ= 0 ) =3343=2764;P (X = 1) =C 13·3243=2764;P (X = 2 ) =C 23·343=964;464∴ X 的概率分布表为:题型3 例3 某商场为促销设计了一个抽奖模型,一定数额的消费可以获得一张抽奖券,每张抽奖券可以从一个装有大小相同的4个白球和2个红球的口袋中一次性摸出3个球,至少摸到一个红球则中奖.(1) 求一次抽奖中奖的概率;(2) 若每次中奖可获得10元的奖金,一位顾客获得两张抽奖券,求两次抽奖所得的奖金额之和X(元)的概率分布.解:(1) 设“一次抽奖中奖”为事件A ,则P(A)=C 12C 24+C 22C 14C 36=1620=45. 答:一次抽奖中奖的概率为45.(2) X 可取0,10,20,P(X =0)=(0.2)2=0.04,P(X =10)=C 12×0.8×0.2=0.32,P(X =20)=(0.8)2=0.64. X 的概率分布列为备选变式(教师专享)甲、乙、丙三名射击运动员射中目标的概率分别为12、a 、a(0<a <1),三人各射击一次,击中目标的次数记为ξ.(1) 求ξ的分布列及数学期望;(2) 在概率P(ξ=i)(i =0、1、2、3)中,若P(ξ=1)的值最大,求实数a 的取值范围. 解:(1) P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=C 01⎝⎛⎭⎫1-12C 02(1-a)2=12(1-a)2; P(ξ=1)=C 11·12C 02(1-a)2+C 01⎝⎛⎭⎫1-12C 12a(1-a) =12(1-a 2); P(ξ=2)=C 11·12C 12a(1-a)+C 01⎝⎛⎭⎫1-12C 22a 2 =12(2a -a 2);1222所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×a 22=4a +12.(2) P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=1-2a 2;P(ξ=1)-P(ξ=3)=12[(1-a 2)-a2]=1-2a 22.由2(1)0,120,21202a a a a ìïïï- ïïïï-ï³íïïïï-ï³ïïïî和0<a <1,得0<a ≤12, 即a 的取值范围是⎝⎛⎦⎤0,12.1. (2013·福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品. 若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率.解:由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”的事件为A ,则A 事件的对立事件为“X =5”,∵ P(X =5)=23×25=415,∴ P(A)=1-P(X =5)=1115.∴ 这两人的累计得分X ≤3的概率为1115.2. (2013·山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1) 分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2) 若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列.解:(1) 记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意,各局比赛结果相互独立,故P(A 1)=⎝⎛⎭⎫233=827,P(A 2)=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827,P(A 3)=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. 所以,甲队以3∶0、3∶1、3∶2胜利的概率分别是827、827、427;(2) 设“乙队以3∶2胜利”为事件A 4,由题意,各局比赛结果相互独立,所以P(A 4)=C 24⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427.由题意,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得 P(X =0)=P(A 1+A 2)=P(A 1)+P(A 2)=1627,P(X =1)=P(A 3)=427,P(X =2)=P(A 4)=427,P(X =3)=1-P(X =0)-P(X =1)-P(X =2)=327.故X 的分布列为3. (2013·陕西理)名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,求X 的分布列. 解:(1) 设事件A 表示:观众甲选中3号歌手且观众乙未选中3号歌手.观众甲选中3号歌手的概率为23,观众乙未选中3号歌手的概率为1-35.所以P(A)=23·⎝⎛⎭⎫1-35=415.因此,观众甲选中3号歌手且观众乙未选中3号歌手的概率为415.(2) X 表示3号歌手得到观众甲、乙、丙的票数之和,则X 可取0,1,2,3. 观众甲选中3号歌手的概率为23,观众乙选中3号歌手的概率为35.当观众甲、乙、丙均未选中3号歌手时,这时X =0,P(X =0)=⎝⎛⎭⎫1-23·⎝⎛⎭⎫1-352=475. 当观众甲、乙、丙中只有1人选中3号歌手时,这时X =1,P(X =1)=23·⎝⎛⎭⎫1-352+⎝⎛⎭⎫1-23·35·⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-23·⎝⎛⎭⎫1-35·35=8+6+675=2075.当观众甲、乙、丙中只有2人选中3号歌手时,这时X =2,P(X =2)=23·35·⎝⎛⎭⎫1-35+⎝⎛⎭⎫1-23·35·35+23·⎝⎛⎭⎫1-35·35=12+9+1275=3375.当观众甲、乙、丙均选中3号歌手时,这时X =3,P(X =3)=23·⎝⎛⎭⎫352=1875.X 的分布列如下表:4. (2013·南京市、盐城市一模)某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1) 若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率;(2) 计划在2013年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E(ξ)≥5,求P 2的取值范围.解:(1) 可得P =⎝⎛⎭⎫C 12×23×13(C 12×12×12)+⎝⎛⎭⎫23×23⎝⎛⎭⎫12×12=13. (2) 该小组在一次检测中荣获“先进和谐组”的概率为P =⎝⎛⎭⎫C 12×23×13[C 12×P 2×(1-P 2)]+⎝⎛⎭⎫23×23P 22=89P 2-49P 22,而ξ~B(12,P),所以E(ξ)=12P ,由E(ξ)≥5,知(89P 2-49P 22)×12≥5,解得34≤P 2≤1.1. 为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.(1) 求4人恰好选择了同一家公园的概率;(2) 设选择甲公园的志愿者的人数为X ,试求X 的分布列. 解:(1) 设“4人恰好选择了同一家公园”为事件A.每名志愿者都有3种选择,4名志愿者的选择共有34种等可能的情况. 事件A 所包含的等可能事件的个数为3,∴ P(A)=334=127.即4人恰好选择了同一家公园的概率为127.(2) 设“一名志愿者选择甲公园”为事件C ,则P(C)=13.4人中选择甲公园的人数X 可看作4次独立重复试验中事件C 发生的次数, 因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4. P(X =i)=C i 4⎝⎛⎭⎫13i ⎝⎛⎭⎫234-i, i =0,1,2,3,4. X 的分布列为:2. 甲、现决定各派5名队员,每人射一点球决定胜负,设甲、乙两队每个队员的点球命中率均为0.5.(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率; (2) 求甲、乙两队各射完5个点球后,再次出现平局的概率.解:(1) 甲队3名队员射中,恰有2名队员连续命中的情形有A 23种,故所求的概率为P 1=A 23×0.53×(1-0.5)2=316. (2) 再次出现平局包括0∶0,1∶1,…,5∶5等6种可能性,故其概率为P 2=[C 05×0.50×(1-0.5)5]2+[C 15×0.51×(1-0.5)4]2+…+[C 55×0.55×(1-0.5)0]2=36256. 3. 有一批数量很大的环形灯管,其次品率为20%,对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查中止,否则继续抽查,直到抽出次品,但抽查次数最多不超过5次.求抽查次数ξ的分布列.解:抽查次数ξ取1~5的整数,从这批数量很大的产品中每次抽取一件检查的试验可以认为是彼此独立的,取出次品的概率为0.2,取出正品的概率为0.8,前(k -1)次取出正品而第k 次(k =1,2,3,4)取出次品的概率:P(ξ=k)=0.8k -1×0.2,k =1,2,3,4. P(ξ=5)=0.84×0.2+0.85=0.4096. 所以ξ的概率分布列为:4. 电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为12、13、14,记该参加者闯三关所得总分为ξ.(1) 求该参加者有资格闯第三关的概率; (2) 求ξ的分布列和数学期望.解:(1) 设该参加者单独闯第一关、第二关、第三关成功的概率分别为 p 1=12,p 2=13,p 3=14,该参加者有资格闯第三关为事件A.则P(A)=p 1(1-p 2)+(1-p 1)p 2+p 1p 2=23.(2) 由题意可知,ξ的可能取值为0,3,6,7,10, P(ξ=0)=(1-p 1)(1-p 2)=13,P(ξ=3)=p 1(1-p 2)(1-p 3)+(1-p 1)p 2(1-p 3)=14+18=38,P(ξ=6)=p 1p 2(1-p 3)=18,P(ξ=7)=p 1(1-p 2)p 3+(1-p 1)p 2p 3=112+124=18,P(ξ=10)=p 1p 2p 3=124,∴ ξ的分布列为事件的独立性中的注意问题:(1) 事件A 与B 独立是相互的,表明事件A(事件B)的发生对事件B(事件A)的发生没有产生影响.(2) 若事件A 、B 相互独立,则A 与B -,A -与B ,A -与B -也是相互独立的.(3) 两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1、A 2、…、A n相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )=P(A 1)P(A 2)…P(A n ).(4) 注意辨别两个事件互斥与两个事件独立的区别.请使用课时训练(A )第5课时(见活页).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计教学设计 课程名称 概率论与数理统计 课时 100分钟 任课教师 刘涛 专业与班级 财务管理B1601---B1606 课型 新授课 课题 二维随机变量及其分布
教材分析 “二维随机变量及其分布” 属于教材第三章内容,位于教材的第75页至第93页.是在前一章“一维随机变量及其分布”的概念提出的基础上,对两个及两个以上的随机变量进行描述。可以说,二维随机变量及其分布是对前一章一维随机变量内容的总结以及综合应用。
学 习 目 标
知识与技能 了解二维随机变量的背景来源; 了解二维随机变量的基本思想; 掌握二维随机变量的适用范围、基本步骤及其具体运用。
过程与方法 通过日常生活中常常出现的实例的引入,引导学生分析、解决问题,培养学生将实际问题转化为数学问题的能力,培养学生提出、分析、理解问题的能力,进而发展整合所学知识解决实际问题的能力。
情感态度与价值观
通过介绍概率论与数理统计在实际生活中的运用,激发
学生自主学习的兴趣,也培养了学生的创新意识和探索精神。
教学分析 教学内容 1.二维随机变量及联合分布函数定义 2.二维离散型随机变量及联合概率函数 3.二维连续型随机变量及联合概率密度 4.二维随机变量的边缘分布 5.随机变量的相互独立性 教学重点 二维离散型、连续随机变量及其分布,相互独立性
教学难点 二维连续型随机变量及其分布
教学方法与策略
板书设计 前50分: 1.引例 3.二维离散变量 2.联合分布函数定义 4.二维连续变量 后50分: 5.边缘分布 6.相互独立性
教学时间设计 1.引导课题 …………2分钟 2.学生活动 …………3分钟 3.二维随机变量及联合分布函数定义……15分钟 4.二维离散型随机变量及联合概率函数……10分钟 5.二维连续型随机变量及联合概率密度……20分钟 6.二维随机变量的边缘分布……20分钟 7.随机变量的相互独立性……25分钟 8.课堂小结 …………5分钟
教学手段 多媒体播放教学视频、PPT演示与板书演练书写相结合。 教学进程 教学意图 教学内容 教学理念 引出课题 (2分钟)
某地区气候状况需要考虑温度、湿度、风力等多个随机变量;研究股票的投资价值,要考虑股票的市盈率、市净率、资本报酬率等多个指标。 激发学生的
兴趣,让学生体会数学来源于生活。
学生活动 (3分钟) 问题细化,让学生们具体考虑:日常生活中还有哪些实例符合以上特征。并总结其特点。 从日常生活
的经验和常识入手,调动学生的积极性。
二维随机变量及联合分布函数定义(15分钟)
1、二维随机变量 若对于试验的样本空间8/中的每个试验结果e,有序变量(,)XY都有确定的一对实数值与e相对应,即()XXe, ()YYe,则称(,)XY为二维随机变量
或二维随机向量.
2、联合分布函数
二维随机变量(,)XY的联合分布函数规定为随机变量X取值不大于实数x的概率,同时随机变量Y取值不大于实数y的概率,并把联合分布函数记为(,)Fxy,即
(,)(,),,FxyPXxYyxy.
3.联合分布函数的性质 教师给予引导,回归到刚提出的问题上。 (1) 0(,)1Fxy; (2 ) (,)Fxy是变量x(固定y)或y(固定x)的非减函数;
(3) (,)0,(,)0limlimxyFxyFxy, (,)0,(,)1limlimxxyyFxyFxy;
(4) (,)Fxy是变量x(固定y)或y(固定x)的右连续函数;
(5) 121222211211(,)(,)(,)(,)(,)PxXxyYyFxyFxyFxyFxy.
例题:设二维随机变量(,)XY的联合分布函数为
(,)(arctan)(arctan)FxyABxCy 求:常数,,(,)ABCxy 解:由分布函数(,)Fxy的性质得:
lim(arctan)(arctan)()()122lim(arctan)(arctan)()(arctan)02lim(arctan)(arctan)(arctan)()02xyxyABxCyABCABxCyABCyABxCyABxC
由以上三式可解得:21,,22ABC
二维离散型随机变量及联合概率函数(10分)
4.二维离散型随机变量及联合概率函数 如果二维随机变量(,)XY仅可能取有限个或可列无限个值,那么,称(,)XY为二维离散型随机变量. 通过引导及
具体的例题 二维离散型随机变量(,)XY的分布可用下列联合分布率来表示:
(,),,1,2,,ijijPXaYbpij
其中,0,,1,2,,1ijijijpijp. 也可用下边的概率分布表表示: X Y 1
y
jy ()iPXx
1x 11p 1jp
1j
j
p
ix 1ip ijp
ij
j
p
()jPYy 1i
i
p iji
p 1
展现二维离散型随机变量。 二维连续型随机变量及联合概率密度(20分)
5.二维连续型随机变量及联合概率密度 (1)对于二维随机变量(X,Y)的分布函数(,)Fxy,如果存在一个二元非负函数(,)fxy,使得对于任意一对实数(,)xy有
(,)(,)xyFxyfstdtds
成立,则(,)XY为二维连续型随机变量,(,)fxy为二维连续型随机变量的联合概率密度.
(2)二维连续型随机变量及联合概率密度的性质
① (,)0,,fxyxy;
② (,)1fxydxdy; ③设(,)XY为二维连续型随机变量,则对任意一
通过引导及具体的例题展现二维连续型随机变量。 条平面曲线L,有((,))0PXYL; ’ ④ 在(,)fxy的连续点处有 2(,)(,)Fxyfxyxy
;
⑤ 设(,)XY为二维连续型随机变量,则对平面上任一区域D有
((,))(,)DPXYDfxydxdy
例.求在D上服从均匀分布的随机变量(X,Y)的密度函数和分布函数,其中D为x轴、y轴及直线y=2x+1围城的三角形区域。
解:如图,区域D为直角三角形RT△OAB ,其面积为:
1111224OABS
所以由均匀分布的定义可得,(X,Y)的联合密度函数为:
4,(,)(,)0,xyDfxy
其他
下面来求(X,Y)的分布函数, (,)(,),(,)xyFxyfstdtdsxy
(1)当102xy或时,(,)=0Fxy (2)当10,0212xyx时 2102(,)=442yxyFxydtdsxyyy
(3)当10,212xyx时 212102(,)4441xxFxydsdyxx (4)当0,01xy时 02102(,)=42yyFxydtdsyy
(5)当0,1xy时 021102(,)=41xFxydsdt 综上所述, 222
042(,)=44121xyyyFxyxxyy
10210,021210,2120,010,1xyxyxxyxxyxy或
6.二维随机变量的边缘分布 设(,)Fxy为二维随机变量(,)XY的联合分布函数,称
()(,),()PXxPXxYx 为X的边缘分布函数,并记为()XFx 直观可以看到
(,)lim(,)lim(,)(,)yyPXxYPXxYyFxyFx 因此,边缘分布函数()XFx也可表示为()(,)XFxFx
类似地,关于Y的边缘分布函数为
()()(,)lim(,)lim(,)(,)YxxFyPYyPXYyPXxYyFxyFy7、二维离散型随机变量的边缘分布律
设(,)XY为二维离散型随机变量,ijp为其联合概率函数(,1,2,)ij,称概率()(1,2,)iPXai为随机变量X的边缘概率函数,记为iP•并有
12()(,)=,(1,2,)iiiiiijijjPPXxPXxYppppi•称概率(),(1,2,)jPYbj为随机变量Y的边缘概率函数,记为jP•,并有