八年级数学 轴对称图形 复习练习

合集下载

八年级数学上册画轴对称图形同步练习含解析

八年级数学上册画轴对称图形同步练习含解析

画轴对称图形一、单选题(共10小题)1.点A (2,—1)关于x轴对称的点B的坐标为()A.(2, 1) B.(—2,1)C.(2,-1)D.(-2,— 1)【答案】A【解析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,进而得到答案.【详解】点A(2,—1)关于x轴对称的点B的坐标为:(2,1).故选:A.【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.2.点M(1,4-m)关于直线y=-3对称的点的坐标为(1,7),则m=()A.16 B.27 C.17 D.15【答案】C【解析】与平行于x轴的直线y=-3对称的点的坐标与原坐标的横坐标相等,纵坐标到直线y=-3的距离相等,由此分析所求对称点的坐标即可;【详解】解:当M关于直线y=—3对称的点的坐标为(1,7)时,如图:根据对称的性质,有:—3-(4-m)=10解得:m=17,故选:C.【点睛】本题考查坐标与图形的性质,解题的关键是要掌握坐标系中对称点的坐标变化与对称轴的关系.3.平面直角坐标系内的点A(1,﹣2)与点B(1,2)关于() A.x轴对称B.y轴对称C.原点对称D.直线y=x对称【答案】A【解析】根据关于x轴对称点的特征即可解答.【详解】点A(1,﹣2)与点B(1,2)关于x轴对称.故选A.【点睛】本题考查了关于x轴对称点的性质,熟知关于x轴对称点的性质是解决问题的关键.4.在直角坐标系中,点A(–2,2)与点B关于x轴对称,则点B 的坐标为()A.(–2,2) B.(–2,–2)C.(2,–2)D.(2,2)【答案】B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A(—2,2)与点B关于x轴对称,∴点B的坐标为(—2,-2).故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.5.点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣1【答案】D【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】(2,b+2)与点(a—3,-1)关于x轴对称,得a—3=2,b+2=1.解得a=5,b=—1,故选D.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.如图,△ABC顶点B的坐标是(﹣5,2),先把△ABC向右平移3个单位得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则顶点B2的坐标是()A.(2,﹣2)B.(﹣2,2) C.(2,2)D.(﹣2,﹣2)【答案】C【解析】根据点B1,B之间的关系结合点B的坐标,可得出点B1的坐标,再由顶点B2和顶点B1关于y轴对称,可得出点B2的坐标,此题得解.【详解】∵顶点B的坐标是(﹣5,2),将其向右平移3个单位得到顶点B1,∴顶点B1的坐标为(﹣2,2).又∵顶点B2和顶点B1关于y轴对称,∴顶点B2的坐标为(2,2).故选C.【点睛】本题考查了坐标与图形变化﹣平移以及关于x轴、y轴对称的点的坐标,牢记“关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变”是解题的关键.7.在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3) D.(2,﹣3)【答案】A【解析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.8.(a,-6)关于x轴的对称点的坐标为()A.(-a,6)B.(a,6) C.(a,-6) D.(-a,-6)【答案】B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:(a,-6)关于x轴的对称点的坐标为(a,6).故选:B。

八年级上册数学单元测试卷-第2章 图形的轴对称-青岛版(含答案)

八年级上册数学单元测试卷-第2章 图形的轴对称-青岛版(含答案)

八年级上册数学单元测试卷-第2章图形的轴对称-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,弦CD垂直平分OB,则∠BAC等于()A.15°B.20°C.30°D.45°2、如图,等腰中,垂直平分,交于点,交于点,点是线段上的一动点,若的面积是,,则的周长最小值是()A. B. C. D.3、如图.在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°4、如图,在□ABCD中,AC平分∠DAB,AB = 3,则□ABCD的周长为()A.6B.9C.12D.155、如图,△ABC中,DE是AC的垂直平分线,AE= 5cm,△ABD的周长为16cm,则△ABC的周长为()A.21cmB.26cmC.28cmD.31cm6、某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A.正三角形B.正五边形C.等腰梯形D.菱形7、下列说法:(1)线段的对称轴有两条;(2)角是轴对称图形,对称轴是它的角平分线;(3)两个全等的等边三角形一定成轴对称;(4)两个图形关于某条直线对称,则这两个图形一定分别位于这条直线两侧;(5)到直线L距离相等的点关于L对称.其中说法不正确的有,()A.3个B.2个C.1个D.4个8、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D.CD=3,则BC的长为()A.6B.9C.6D.39、如图,∠MON=30°,点在射线ON上,点在射线OM上,...均为等边三角形,依此类推,若的边长为( )A.2016B.4032C.D.10、已知△ABC的两条高线AD,BE所在的直线交于点H,若BH = AC,则∠ABC的度数为()A.60°B.45°C.60°或120°D.45°或135°11、如图,在△ABC中,∠C=90°,BC=8cm,∠BAC的平分线交BC于D,且BD︰DC=5︰3,则D到AB的距离为()A.3cmB.4cmC. cmD.5cm12、如果矩形的一条对角线长为,两条对角线的一个交角为,则矩形的较短边长为()A. B. C. D.13、如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABC沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是A.0个B.1个C.2个D.3个14、下列图形中,不是轴对称图形的是()A.线段MNB.等边三角形ABCC.钝角∠ADBD.直角三角形15、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是________.17、如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为________度.18、已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.19、如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则弧BF的长为________(结果保留π)20、如图,在正方形ABCD的外侧,作等边,连接BE、CE,的度数是________.21、在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=________.22、如图,AC是正五边形ABCDE的一条对角线,则∠ACB=________.23、如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.24、圆内接正六边形的边长为10cm,则它的边心距等于________cm.25、一个等腰三角形的两边长为2和4,则此三角形的周长为________.三、解答题(共5题,共计25分)26、如图在△ABC中,∠BAC=90°,AB=AC,AE是过点A的直线,CD⊥AE,BE⊥AE,若BE=2,CD=6,求DE的长度.27、求证:两条平行线被第三条直线所截的同位角的平分线平行.28、图1是围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏如图2,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏外框BCD至少需要不锈钢管多少米(焊接部分忽略不计).29、如图,在等边△ABC中,P为BC上一点,D为AC上一点,∠APD=60°,若BP=3,CD=2,求△ABC的边长.30、如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、B6、D7、D8、B9、D11、A12、A13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。

人教版八年级上册数学十三章 轴对称 单元训练题 (9)(含答案解析)

人教版八年级上册数学十三章 轴对称 单元训练题 (9)(含答案解析)

人教版八年级上册数学十三章 轴对称 单元训练题 (9)一、单选题1.如图所示,共有等腰三角形( )A .4个B .5个C .3个D .2个2.等腰三角形腰长为13cm,底边长为10cm ,则其面积为 ( )A .302cmB .402cmC .502cmD .602cm3.一个等腰三角形的两边长分别为4,8,则它的周长为( )A .12B .16C .20D .16或204.如图所示,在平面直角坐标系中,()A 00,,()B 20,,1AP B 是等腰直角三角形且1P 90∠=,把1AP B 绕点B 顺时针旋转180,得到2BP C ,把2BP C 绕点C 顺时针旋转180,得到3CP D ,依此类推,得到的等腰直角三角形的直角顶点P 2020的坐标为( )A .(4039,-1)B .(4039,1)C .(2020,-1)D .(2020,1)5.下列命题的逆命题是假命题的是( )A .全等三角形的面积相等;B .等腰三角形两个底角相等;C .直角三角形斜边上的中线等于斜边的一半;D .在角的平分线上任意一点到这个角的两边的距离相等.6.下列说法,正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .到三角形二个顶点距离相等的点是三边垂直平分线的交点C .三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等7.若点A (x ,3)与点B (2,y )关于x 轴对称,则( )A .x=2,y =3B .x=2,y =-3C .x=-2,y =3D .x=-2,y =-38.在平面直角坐标系中,点()3,2A -和点()3,2B --的对称轴是A .x 轴B .y 轴C .直线3x =-D .直线2y =9.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:0110.下列图形中,可以看作是轴对称图形的是( )A .B .C .D .11.如图,DE 是ABC ∆的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且8,5AC BC ==,则BEC ∆的周长是( )A .12B .13C .14D .1512.如图,在ABC ∆中,AB AC =,AC 的垂直平分线交AC 于点N ,交AB 于点M ,12AB cm =,BMC ∆的周长是20cm ,若点P 在直线MN 上,则PA PB -的最大值为( )A .12cmB .8cmC .6cmD .2cm二、填空题13.点A(1,-2)关于x 轴的对称点为B .则点B 的坐标为_____________.14.在直角坐标平面内,点M (﹣2,3)关于y 轴对称的点的坐标是_____.15.如图,在ABC 中,BC 的垂直平分线ED 交AB 于点E ,交BC 于点D ,连接CE ,若AB 8=,AC 5=,则AEC 的周长为______.16.如图,在矩形ABCD 中,AB 8=,BC 4=,将矩形沿对角线AC 折叠,点D 落在D'处,求重叠部分AFC 的面积.17.如图,Rt ABC ∆中,90︒∠=C ,AB 的垂直平分线DE 交AC 于点E ,连接BE . 若40A ︒∠=,则CBE ∠的度数为____________.18.如图,在直角坐标系中,点A ,B 的坐标分别为()1,4和()3,0,点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,当ABC ∆的周长最小时,点C 的坐标是_________.三、解答题19.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//BC MN 交AB 于M ,光AC 于N ,若ABC ∆、AMN ∆周长分别为13cm 和8cm .(1)求证:MN BM CN =+;(2)线段BC 的长.20.已知在等腰△ABC 中,AB=AC=10,BC=16.(1)若将△ABC 的腰不变,底变为 12,甲同学说,这两个等腰三角形面积相等;乙同学说,腰不变,底变化,这两个三角形面积必不相等,请对甲、乙两种说法做出判断,并说明理由;(2)已知△ABC 底边上高增加 x ,腰长增加(x ﹣2)时,底却保持不变,请确定 x 的值.21.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.22.在ABC 中,AB AC =,90BAC ∠=︒,点E 是直线AC 上一动点,点D 是直线BC 上动点,点F 是直线AB 上一动点,且90DEF ∠=︒,ED EF =.(1)如图1,当点D ,E ,F 分别在BC ,AC ,AB 边上时,请你判断线段AE ,AF ,EC 之间有怎样的数量关系?请直接写出你的结论;(2)如图2,当D 在BC 延长线上,E 在CA 延长线上,F 在CB 延长线上时,(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请判断线段AE ,AF ,EC 之间有怎样的数量关系?并证明你的结论;(3)若5AB AC ==,当2AF =时,请直接写出CE 的长.23.已知,如图△ABC 中,AB =AC ,点D 在BC 上,且BD =AD ,DC =AC .并求∠B 的度数.24.问题情境:在等腰直角三角形ABC 中,90BAC AB AC ︒∠==,, 直线MN 过点A 且//BC MN ,过点B 为一锐角顶点作,90Rt BDE BDE ︒∆∠=,且点D 在直线MN 上(不与点A 重合),如图1, DE 与AC 交于点P ,试判断BD 与DP 的数量关系,并说明理由.探究展示:小星同学展示出如下正确的解法:解: BD DP =,证明如下:过点D 作DF MN ⊥,交AB 于点F则ADF ∆为等腰直角三角形.DA DF = 190290FDP FDP ︒︒∠+∠=∠+∠=,,12∠∠∴=(依据1)在BDF ∆与PDA ∆中12135DF DA DFB DAP ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩BDF PDA ∴∆≅∆BD DP ∴=(依据2)(1)反思交流:上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:拓展延伸:(2)在图2中,DE与CA延长线交于点P,试判断BD与DP的数量关系,并写出证明过程(3)在图3中,DE与CA延长线交于点P,试判断BD与DP的数量关系,并写出证明过程.25.如图所示,△ABC和△A′B′C′关于直线MN成轴对称,△A′B′C′和△A″B″C″关于直线EF 成轴对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角α的数量关系.26.尺规作图:如图,要在公路MN旁修建一个货物中转站P,分别向A、B两个开发区运货.(1)若要求货站到A、B两个开发区的距离相等,那么货站应建在那里?(2)若要求货站到A、B两个开发区的距离和最小,那么货站应建在那里?(分别在图上找出点P,并保留作图痕迹.)【答案与解析】一、单选题1.B解析:B由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选B.2.D解析:D试题分析:根据题意可得:AB=13cm,BD=12BC=5cm,根据等腰三角形的性质可知:AD⊥BC,则根据勾股定理可得:AD=12cm,则△ABC的面积=10×12÷2=602cm.点睛:本题主要考查的就是等腰三角形的性质以及直角三角形的勾股定理的应用.在解答等腰三角形的问题时,我们经常会通过作底边上的高线,利用等腰三角形底边上的三线合一定理转化成直角三角形的问题来进行求解.同学们在解答三角形问题时,如果出现角平分线或者中垂线的时候,一定要特别注意中垂线的性质和角平分线的性质的应用.3.C解析:C试题分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.考点:(1)等腰三角形的性质;(2)三角形三边关系4.A解析:A过点P 1作P 1M ⊥x 轴于M ,先分别求出点P 1、P 2、P 3、P 4的坐标并找出横纵坐标的变化规律,然后归纳出点P n 的坐标,即可求出结论.解:过点P 1作P 1M ⊥x 轴于M∵()A 00,,()B 20,,1AP B 是等腰直角三角形且1P 90∠=, ∴AM=P 1M=12AB =1 ∴点P 1的坐标为(1,1)=(2×1-1,(-1)1+1)同理可得点P 2的坐标为(3,-1)=(2×2-1, (-1)2+1)点P 3的坐标为(5,1)=(2×3-1, (-1)3+1)点P 4的坐标为(7,-1)=(2×4-1, (-1)4+1)∴点P n 的坐标为(2n -1, (-1)n+1)∴点P 2020的坐标为(2×2020-1, (-1)2020+1)= (4039,-1)故选A .【点睛】此题考查的是探索坐标规律题,掌握等腰直角三角形的性质、找出横纵坐标的变化规律并归纳公式是解决此题的关键.5.A解析:A先确定每个命题的逆命题,再对每个选项依次判定即可解答.A.逆命题为:面积相等的三角形是全等三角形,是假命题,符合题意;B.逆命题为:两个角相等的三角形是等腰三角形,是真命题,不符合题意;C.逆命题为:一条边上的中线等于这条边的一半的三角形是直角三角形,是真命题,不符合题意;D.在角的内部到角的两边距离相等的点在这个角的平分线上,是真命题,不符合题意. 故选:A.【点睛】此题考查命题,正确的命题是真命题,错误的命题是假命题,正确确定每个命题的逆命题是解此题的关键.6.B解析:B由三线合一的条件可知A 不正确,由三角形垂直平分线的性质可知B 正确,由三角形的中线可知C 错误,根据全等三角形的判定判断D 错误,可得出答案.解:A、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B.【点睛】本题主要考查等腰三角形的性质及直角三角形全等的判定,掌握等腰三角形和直角三角形全等的判定是解题的关键.7.B解析:B分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.详解:∵点A(x,3)与点B(2,y)关于x轴对称,∴x=2,y=-3.故选D.点睛:本题主要考查了关于x轴对称点的坐标的特征:横坐标不变,纵坐标互为相反数,熟知这一性质是解题的关键.8.A解析:A根据点A(−3,2)和点B(−3,−2)的横坐标相同,纵坐标互为相反数,即可得到它们关于x轴对称.解:∵点A(−3,2)和点B(−3,−2)的横坐标相同,纵坐标互为相反数,∴它们的对称轴是x轴,故选:A.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,解题时注意:关于x轴对称的点横坐标相同,纵坐标互为相反数.9.C解析:C利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.10.B解析:B根据轴对称图形的概念:如果一个图形关于一条直线对折,左右两边重合,则该图形就是轴对称图形,对每一项一一判断即可.A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】主要考查了轴对称图形的判断方法,最主要的是能否找到使两边对称的直线是本题的关键.11.B解析:B直接利用线段垂直平分线的性质得出AE BE =,进而得出答案.解:∵DE 是ABC ∆的边AB 的垂直平分线,∴AE BE =,∵8,5AC BC ==,∴BEC ∆的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选:B .【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.12.B解析:B根据已知条件MN 垂直平分AC ,可知MA MC =,即可将BMC ∆的周长转换为AB+BC ,即可求出8BC cm =,再通过作辅助线(见详解),可得到PA PB PC PB -=-,则PBC ∆中PC PB BC -<,当P B C 、、共线时(PC PB -)有最大值即可得到PA PB -最大值,得到答案.解:∵MN 垂直平分AC∴MA MC =又∵20BMC C BM MC BC cm ∆=++=∴20BM MA BC cm ++=12BM MA AB cm +==8BC cm =在MN 上取点P 1∵MN 垂直平分AC连接1P A 、1P B 、1PC ∴11P A PC =∴PA PB PC PB -=-在1P BC ∆中11PC PB BC -< 当1P 运动2P 位置时,即P B C 、、共线时(PC PB -)有最大值,此时8PC PB BC cm -==.即PA PB -最大值是8cm,故答案选B.【点睛】本题考查了垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等二、填空题13.(12)解析:(1,2)根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数;∴点A(1,-2)关于x 轴的对称点B 的坐标为(1, 2).故答案为(1, 2).【点睛】本题考查了关于坐标轴对称的点的坐标,解题的关键是熟练的掌握关于坐标轴对称的点的坐标的性质.14.(23)解析:(2,3)根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案. 解:点P (-2,3)关于y 轴对称的点的坐标是(2,3),故答案为(2,3).【点睛】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律. 15.13解析:13根据线段垂直平分线上的点到线段两端点的距离相等,得BE CE =,所以AEC 的周长等于边长AB 与AC 的和.解:DE 垂直平分BC ,BE CE ∴=,AB 8=,AC 5=, AEC ∴的周长AC CE AE AC AB 5813=++=+=+=.故答案为13.【点睛】本题主要考查线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握性质是解题的关键.16.10解析:10矩形翻折后易知AF=FC ,利用直角三角形BFC ,用勾股定理求出CF 长,也就是AF 长,根据S △AFC =1AF?BC 2,即可求解. 设AF x =,依题意可知,矩形沿对角线AC 对折后有:D'B 90∠∠==,AFD'CFB ∠∠=,BC AD'= .AD'F ∴≌CBF .CF AF x ∴==.BF 8x ∴=-.在Rt BCF 中有222BC BF FC += .即2224(8x)x +-= .解得x 5=.AFC 11SAF BC 541022∴=⋅=⨯⨯=. 【点睛】本题主要考查了折叠的性质及其应用问题;灵活运用勾股定理是解本题的关键.17.{解析}根据线段的垂直平分线的性质得到EA =EB 得到∠ABE =∠A =40°根据三角形的外角的性质求出∠CEB 根据三角形内角和定理计算即可∵DE 是AB 的垂直平分线∴EA =EB ∴∠ABE =∠A =40°∴解析:10︒{解析}根据线段的垂直平分线的性质得到EA =EB ,得到∠ABE =∠A =40°,根据三角形的外角的性质求出∠CEB ,根据三角形内角和定理计算即可.∵DE是AB的垂直平分线,∴EA=EB,∴∠ABE=∠A=40°,∴∠CEB=80°,∵∠C=90°,∴∠CBE=10°,故选:A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(03)解析:(0,3)作点B作关于y轴的对称点B′,连接AB′与y轴的交点就是点C的坐标.解: 作点B作关于y轴的对称点B′,连接AB′与y轴的交点是点C,此时△ABC的周长最小,∵A,B的坐标分别是(1,4)(3,0)∴B′的坐标是(-3,0),AE=4则B′E=4,∵C′O∥AE,∴B′O= C′O=3∴此时C′的坐标是(0,3),此时△ABC的周长最小.三、解答题19.(1)见解析;(2)5cm(1)由角平分线的定义,平行线的性质和等腰三角形的判定证明BM=ME,EN=NC则问题可解;(2)由等腰三角形的性质,线段的和差及等量代换,三角形的周长计算出线段BC的长为5cm.解:如图所示:(1)∵BE是∠ABC的角平分线,∴∠MBE=∠CBE,又∵MN∥BC,∴∠CBE=∠MEB,∴∠MEB =∠MBE,∴BM=ME同理BN=NC∴MN BM CN=+(2)∵△MBE为等腰三角形,∴MB=ME,同理可得:NE=NC,又∵AMN∆周长为AM+AN+MN,MN=ME+NE,∴AMN∆周长为AM+AN+ME+NE=AM+BM+AN+CN,∴AMN∆周长为AB+AC=8.又∵ABC∆周长为AB+AC+BC=13,∴BC=13-8=5cm.【点睛】本题综合考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,三角形的周长公式等相关知识点,解答关键是线段的等量代换和线段的和差进行计算.20.(1)甲说法对,乙说法不对,理由见解析;(2)x=9.(1)根据等腰三角形的性质和三角形的面积公式解答即可;(2)根据勾股定理解答即可.(1)甲说法对,乙说法不对,理由如下:过AD⊥BC于D,∵AB=AC=10,BC=16,∴BD=CD=8,根据勾股定理得:AD=6,∴ABC 1S BC AD482=⨯⨯=;过A′D′⊥B′C′于D′,∵A′B′=A′C′=10,B′C′=12,A′B′C′∴B′D′=C′D′=6,根据勾股定理得:A′D′=8,∴A'B'C'1S B'C'A'D'482=⨯⨯=;∴这个等腰三角形的面积没变化,甲说法对,乙说法不对,(2)依题意得,(10+x ﹣2)2=(6+x )2+82,解得:x=9.【点睛】此题考查勾股定理和等腰三角形的性质,熟练掌握相关知识是解题的关键.21.(1) 65°;(2) 25°.分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°; (2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=65°; (2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF ∥BE ,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.22.(1)AE AF EC +=;(2)结论不成立;AF EC AE =+,证明见解析;(3)1.5CE =或 3.5CE =.(1)如图(见解析),先根据角的和差得出AFE GED ∠=∠,再根据三角形全等的判定定理与性质可得,AF GE AE GD ==,从而可得AE AF GD GE +=+,然后根据等腰三角形的判定与性质可得CG GD =,最后根据等量代换即可得;(2)如图(见解析),先根据角的和差可得EFA DEM ∠=∠,再根据三角形全等的判定定理与性质可得AE MD =,AF ME =,然后根据等腰三角形的性质可得CM MD =,最后根据线段的和差、等量代换即可得;(3)分点F 在线段AB 上和点F 在BA 的延长线上两种情况,先根据线段的和差可得5AE CE +=,再结合(1)和(2)的方法和结论可得AE ,AF ,EC 之间的数量关系等式,然后分别联立求解即可得.(1)AE AF EC +=,证明如下:如图,过点D 作DG AC ⊥于点G90BAC ∠=︒,90DEF ∠=︒90AFE AEF GED AEF ∴∠+∠=∠+∠=︒AFE GED ∴∠=∠在AEF 和GDE △中,90A DGE AFE GED EF DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AEF GDE AAS ∴≅,AF GE AE GD ∴==AE AF GD GE ∴+=+90BAC ∠=︒,AB AC = 1(180)452BA B C C ∴∠=∠=︒-∠=︒Rt CDG ∴是等腰直角三角形,且CG GD =AE AF CG GE EC ∴+=+=即AE AF EC +=;(2)(1)中的结论不成立,AF EC AE =+,证明如下:如图,过点D 作AC 的垂线,交AC 延长线于点M ,则90DME ∠=︒∵90BAC ∠=︒,AB AC =∴90EAF ∠=︒,45ACB ABC ∠=∠=︒∴90EAF DME ∠=∠=︒,90EFA FEA ∠+∠=︒∵90DEF ∠=︒∴90DEM FEA ∠+∠=︒∴EFA DEM ∠=∠在AEF 和MDE 中,EAF DME EFA DEM EF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AEF MDE AAS ≅∴AE MD =,AF ME =∵90DME ∠=︒,45MCD ACB ∠=∠=︒∴45CDM MCD ∠=∠=︒∴CM MD AE ==∴AF ME EC CM EC AE ==+=+即AF EC AE =+;(3)5AB AC ==,2AF =AF AB ∴<因此,分以下两种情况:①如图3-1,点F 在线段AB 上5,2AC AF ==5AE CE AC ∴+==由(1)可知,AE AF EC +=,即2AE CE +=联立52AE CE AE CE +=⎧⎨+=⎩,解得 1.53.5AE CE =⎧⎨=⎩ ②如图3-2,点F 在BA 的延长线上过点D 作DN AC ⊥于点N同(1)和(2)可证:AEF NDE ≅,AE ND AF NE ∴==90,45CND C ∠=︒∠=︒9045CDN C ∴∠=︒-∠=︒CDN C ∴∠=∠ND CN CE NE ∴==+2AE CE AF CE ∴=+=+又5AE CE AC +==联立52AE CE AE CE +=⎧⎨=+⎩,解得 3.51.5AE CE =⎧⎨=⎩ 综上, 1.5CE =或 3.5CE =.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质、线段的和差等知识点,较难的是题(3),依据题意,正确分两种情况是解题关键.23.36°.试题分析:先设∠B=x,由AB=AC可知,∠C=x,由AD=BD可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ABD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.试题解析:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=BD,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.考点:等腰三角形的性质.24.(1)依据1:同角的余角相等,依据2:全等三角形的对应边相等;(2)=,见解析;(3)BD=DP,见解析BD DP(1)根据余角的概念、全等三角形的性质解答;(2)作DF⊥MN交AB的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论;(3)作DF⊥MN交BA的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论.()1依据1:同角的余角相等依据2:全等三角形的对应边相等;故答案为:同角的余角相等;全等三角形的对应边相等;()2BD DP =成立. 如图2,过点D 作DF MN ⊥,交AB 的延长线于点F则ADF ∆为等腰直角三角形,.DA DF ∴=∴90FDB ADB ︒∠+∠=,90ADB ADP ︒∠+∠=∴∠FDB=∠ADP,在BDF ∆与PDA ∆中,∴∠FDB=∠ADP , DF DA =45DFB DAP ︒∠=∠=() BDF PDA ASA ∴∆∆≌.BD DP ∴=()3BD=DP .如答图3,过点D 作DF MN ⊥,交AB 的延长线于点F则ADF ∆为等腰直角三角形,.DA DF ∴=在BDF ∆与PDA ∆中,45F PAD ︒∠=∠=DF DA =BDF PDA∠=∠()≌BDF PDA ASA∴∆∆∴=BD DP.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质、余角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)见解析;(2)∠BO B″=2∠α(1)找到并连接关键点,作出关键点的连线的垂直平分线;(2)根据对称找到相等的角,然后进行推理.(1)如图,连接B'B″,作线段B'B″的垂直平分线EF,则直线EF是△A'B'C'和△A″B″C″的对称轴.(2)连接B'O.因为△ABC和△A'B'C'关于直线MN对称,所以∠BOM=∠B'OM.又因为△A'B'C'和△A″B″C″关于直线EF对称,所以∠B'OE=∠B″OE.所以∠BOB″=∠BOM+∠B'OM+∠B'OE+∠B″OE=2(∠B'OM+∠B'OE)=2∠α,即∠BOB″=2∠α.26.(1)答案见解析;(2)答案见解析.(1)要使货站到A、B两个开发区的距离相等,可连接AB,线段AB中垂线与MN的交点即为货站的位置;(2)由于两点之间线段最短,所以做点A作A’关于MN对称,连接BA’,与MN的交点即为货站的位置.(1)如图所示:(2)如图所示:【点睛】本题考查的是中垂线的性质与两点之间线段最短的知识,掌握中垂线的作图方法是以线段的两个端点为圆心,以大于二分之一线段的长度为半径,分别以线段两个端点为圆心画弧,连接两个交点即可,本题(2)中关键是通过中垂线找到点A的对称点(画图过程同(1),但需要从MN中任选两个点为线段端点,因为MN太长了,不方便作图),从而利用两点之间线段最短的的知识解答.。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

2023-2024学年八年级上学期数学:画轴对称图形(附答案解析)

2023-2024学年八年级上学期数学:画轴对称图形(附答案解析)

第 5页(共 19页)
B(2,1) , C(4,3) .
(1) ABC 的面积是

(2)把 ABC 向下平移 4 个单位长度,再以 y 轴为对称轴对称,得到△ ABC ,
请你画出△ ABC ; (3)分别写出 A , B , C 三点的对应点 A , B , C 的坐标.
11.(2022 春•辽阳期末)如图,方格纸中每个小方格都是边长为 1 的正方形, 我们把以格点的连线为边的多边形称为“格点多边形”,如图中四边形 ABCD 就 是一个“格点四边形”. (1)在图中的方格纸中画一个格点四边形,使该四边形与原四边形 ABCD 关于 直线 l 成轴对称; (2)求图中四边形 ABCD 的面积.
6.(2021 秋•盐田区校级期末)欣欣和佳佳下棋,欣欣持圆形棋子,佳佳持方形 棋子.若棋盘正中方形棋子的位置用 (2, 2) 表示,右上角方形棋子的位置用 (3,3) 表 示,要使棋盘上所有棋子组成轴对称图形,则欣欣下一枚圆形棋子的位置 是.
7.(2021 秋•砚山县期末)在平面直角坐标系中,点 P(1,5) 关于 y 轴对称点的坐
直线 AP 的对称点 B 恰好落在 x 轴上,则点 P 的坐标是 ( )
A. (8 ,0)
3
B. (4 ,0)
3
C. (2,0)
D. (3,0)
5.点 P 关于 x 轴对称点 M 的坐标为 (4, 5) ,那么点 P 关于 y 轴对称点 N 的坐标为
第 1页(共 19页)
(
)
A. (4,5)
B. (4,5)
标为 .
8.(2022•皇姑区二模)若点 A(a 2,3) 和点 B(1,b 5) 关于 y 轴对称,则点 C(a,b) 在
第 象限.

人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)

一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°D 解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 6.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.7.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.如图所示的网格是正方形网格,点A,B,C,D,O是网格线交点,那么∠___________CODAOB∠(填“>”,“<”或“=”).>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO解析:>【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.18.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N 为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC 从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE ;③由②得:△ADE 的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.解析:(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED=EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE =EC ,∴∠D =∠ECD ,∴∠BED =∠ECF ,∴△DEB ≌△ECF (AAS ),∴BD =EF ,∴AE =BD ;(3)CD 的长为3或1如图2,作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,∴AF =AE =EF =2,∠BEF =60°,∴∠CEF =60°+∠BEC .∵∠EDC =∠ECD =∠B +∠BEC =60°+∠BEC ,∴∠CEF =∠EDB .又∵EB =CF =3,∠F =∠B =60°,∴△CEF ≌△EDB (AAS ),∴BD =EF =2,∴CD =BD -BC =1,如图3,同理可得CD =3,综上所述,CD 的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.解析:(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =. ()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.解析:(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,。

苏科版八年级数学上册新阶段性复习练习二 轴对称图形

苏科版八年级数学上册新阶段性复习练习二一、期中压轴题怎么考如何仿例建立数学模型例1.【经典回顾】(教材P25)如图,PC=PD,QC=QD,PQ,CD相交于点E.求证:PQ⊥C D.【数学思考】已知三个点A,B和C,只允许用圆规作点D,使得C,D两点关于AB所在的直线对称.例2【引例】如图1,点A、B、D在同一条直线上,在直线同侧作两个等腰直角三角形△ABC和△BDE,BA=BC,BE=BD,连接AE、C D.则AE与CD的关系是.【模型建立】如图2,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=α,连接AE、CD相交于点H.求证:①AE=CD;②∠AHC=α.【拓展应用】如图3,在四边形ABCD中,对角线AC与BD交于点O,∠BDC=90°,BD=CD,∠BAD=45°.若AB=3,AD=4,求AC2的值.A BCPDCQE例3.探索研究:已知:△ABC和△CDE都是等边三角形.(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:,线段AD与BE所成的锐角度数为°;(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;灵活运用:如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA =60°,试求水池两旁B、D两点之间的距离.二、中档题是这样考1.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为 .等腰三角形的两边长分别是2和5,则这个等腰三角形的周长为 .2下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形是填写序号3.已知锐角△ABC 中,∠A =65°,点O 是AB 、AC 垂直平分线交点,则∠BCO 的度数是=° 4.在△ABC 中,∠ABC =60°,∠ACB =70°,若点O 到三边的距离相等,则∠BOC = °.5.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )第5题第6题第7题6.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是 .7.如图,∠MON =90°,已知△ABC 中,AC =BC =AB =6,△ABC 的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,A 随之在OM 上运动,△ABC 的形状始终保持不变,在运动的过程中,点C 到点O 的距离为整数的点有个.8.如图,把长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处,已知∠MPN =90°,且PM =6,MN =10,那么矩形纸片ABCD 的面积为 .第8题第9题第10题9.如图,O 是△ABC 内一点,OA =OB =OC ,∠OAB =20°,∠OBC =30°,则∠OCA=°. 10.如图,O 是△ABC 外一点,OA =OB =OC ,∠OAB =20°,∠OBC =30°,则∠OCA =°.11.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其正确的是(填写序号) 针对本题,你还有哪些发现?12.已知OP 平分∠BOC ,点A 在OP 上,点E 在OB 上,∠A EO=58°,点D 在OC 上,且AD=AE , 则∠ADO=°OBCAB COACO13.如图,4×5的方格纸中,请你用三种不同的方法在除阴影之外的方格中任意选择一个涂黑,使得图中阴影部分构成的图形是轴对称图形.14.如图,在△ABC 中,AB =AC ,∠A =48°,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE ,求∠EDF 的度数.15.如图,已知△ABC ,请用直尺和圆规以C 为一个公共顶点作△CDE ,使△CDE 与△ABC 全等,则全等的依据是.(不写作法,保留作图痕迹)16.如图,在△ABC 中,∠ACB =90°,用直尺和圆规在斜边AB 上作一点P ,使得点P 到点B 的距离与点P 到边AC 的距离相等.(保留作图痕迹,不写作法) 17.已知:如图,AB =AC ,AD =AE ,BE 与CD 相交于点P . (1)求证:PC =PB ;(2)求证:∠CAP =∠BAP ;(3)利用(2)的结论,用直尺和圆规作∠MON 的平分线.A B C DE POM N18.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.19.在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠B=28°,∠C=18°,则∠BAC=°;(2)如图②,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H,若AB=4,CB=10,求AH的长.。

八年级数学《第二章 轴对称图形--轴对称与轴对称图形》专项复习汇总

OBAP八年级数学《第二章 轴对称图形------轴对称与轴对称图形》专项复习汇总一、知识回顾【知识点1】轴对称和轴对称图形1、在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是【 】2、下列说法中:①成轴对称的2个图形全等;②2个全等的图形一定关于某条直线成轴对称;③如果点A 、B 关于直线l 成轴对称,那么线段AB 被直线l 垂直平分;④如果线段AB 与A ′B ′关于直线l 成轴对称,那么AB=A ′B ′且AB ∥A ′B ′;⑤如果线段AB 与A ′B ′关于直线l 成轴对称,那么AA ′=BB ′且AA ′∥BB ′;正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个3.已知:如图所示:(1)画出△ABC 关于y 轴对称的△A′B′C′, 并写出△A′B′C′三个顶点的坐标.(2)在x 轴上画出点P ,使PA+PB 最小(保留画图痕迹)4、如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形 【知识归纳1】1、如果把一个图形沿着某一条直线折叠后,能够与 重合,那么这两个图形关于这条直线成轴对称,这条直线叫做 ,两个图形中的对应点叫做对称点。

2、如果把一个图形沿着一条直线折叠,直线 能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3、成轴对称的两个图形 。

如果两个图形成轴对称,那么对称轴是对称点连线的 ________4、学过的图形中,轴对称图形有 它们有几条对称轴? 【知识点2】线段、角的对称性1、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E,AE=3cm, △ADC 的周长为9cm,则△ABC 的周长是( )A.10cmB.12cmC.15cmD.17cm2、如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B . 下列结论中不一定成立的是( )A.PA PB =B.PO 平分APB ∠C.OA OB =D.AB 垂直平分OPPM Qllll P QP QPQPQAB CDl 3、到三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点 变式:到△ABC 的三条边距离相等的点是△ABC 的( ) 【知识归纳2】1、线段是轴对称图形,线段的 是它的对称轴。

人教版八年级数学上册13.2 画轴对称图形练习题(无答案)

13.2画轴对称图形1.在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A 的坐标是()A.(4,1) B.(-1,4) C.(-4,-1) D.(-1,-4)2.在平面直角坐标系中,点P(-2,3)关于y轴的对称点的坐标为()A.(-2,-3) B.(2,-3) C.(-2,3) D.(2,3)3.在平面直角坐标系中,点A(-1,2)与点B(-1,-2)关于()A.y轴对称B.x轴对称C.原点对称D.直线y=x对称4.将点A(3,2)向左平移4个单位长度得到点A′,则点A′关于y轴对称的点的坐标是() A.(-3,2) B.(-1,2) C.(1,-2) D.(1,2)5.若点A和点B(2,-3)关于y轴对称,则A,B两点间的距离为()A.4 B.5 C.6 D.106.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是()A.-5 B.-3 C.3 D.17.如图是小明画的正方形风筝图案,他以图中的对角线AB所在的直线为对称轴,在对角线的下方再画一个三角形,使得到的新风筝图案成为轴对称图形.若图中有一图形为此轴对称图形,则此图形为()8.将一张正方形纸片按图所示步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是图13-2-9中的()9.在平面直角坐标系中,若点P(m-1,m+1)在x轴上,则它关于y轴的对称点的坐标是________.10.如图,在平面直角坐标系xOy 中,已知A (-1,4),B (4,2),C (-1,0)三点. (1)点A 关于y 轴的对称点A ′的坐标为________,点B 关于x 轴的对称点B ′的坐标为________,线段AC 的垂直平分线与y 轴的交点D 的坐标为________;(2)以(1)中的点A ′,B ′,D 为顶点的△A ′B ′D 的面积为________.11.在平面直角坐标系中,点A 的坐标是(-1,2),作点A 关于y 轴的对称点,得到点A ′,再将点A ′向下平移4个单位长度,得到点A ″,则点A ″的坐标是(________,________).12.平面直角坐标系中的点P (2-m ,12m )关于x 轴的对称点在第四象限,则m 的取值范围为__________.13.如图在正三角形网格中,已有两个小正三角形被涂黑,再将图中的一个空白小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形的方法有________种.14.如图,以长方形ABCD 的两条对称轴为x 轴和y 轴建立直角坐标系,若点A 的坐标为(4,3).(1)写出长方形的另外三个顶点B ,C ,D 的坐标; (2)求该长方形的面积.15.如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).分别写出点D,C,B关于y轴对称的点F,G,H的坐标,并画出点F,G,H.顺次连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说说它具有怎样的性质,它像我们熟知的什么图形?16.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(1,2),B(3,4),C(2,9).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向右平移8个单位长度后得到的△A2B2C2,并写出点C2的坐标.17.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形.18.如图,已知四边形ABCD和直线l,在图中作出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称(不要求写作法,保留作图痕迹).19.图①②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上,在图①、图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形;(2)所画的两个四边形不全等.20.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.21.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标(点A,B,C的对应点分别为A1,B1,C1);(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标(点A,B,C的对应点分别为A2,B2,C2);(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图中画出这条对称轴;(4)求△ABC的面积.。

人教版八年级数学上册《第十三章轴对称》单元练习题(含答案)

第十三章《轴对称》单元练习题一、选择题1.如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是()A.锐角三角形B.等腰三角形C.等边三角形D.等腰直角三角形2.如图,在△ABC中,AB=AC,∠ABC=70°,顶点B在直线DE上,且DE∥AC,则∠CBE等于()A. 40°B. 50°C. 70°D. 80°3.若A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),则P(a,b)关于x轴对称点P1的坐标是()A.(﹣2,﹣1)B.(2,﹣1)C.(﹣2,1)D.(2,1)4.如图,在△ABC中,AB=AC=8,BC=5,AB的垂直平分线交AC于D,则△BCD的周长为()A. 13B. 15C. 18D. 215.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是()A.PD=DQB.DE=ACC.AE=CQD.PQ⊥AB6.已知a,b,c是三角形的三边长,如果满足(a﹣b)2++|c2﹣64|=0,则三角形的形状是()A.底和腰不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形7.以下列各组数据为边长,可以构成等腰三角形的是()A. 2,3,4B. 5,5,10C. 2,2,1D. 1,2,38.要使得△ABC是等腰三角形,则需要满足下列条件中的()A.∠A=50°,∠B=60°B.∠A=50°,∠B=100°C.∠A+∠B=90°D.∠A+∠B=90°二、填空题(9.如图,等边△ABC周长是12,AD是∠BAC的平分线,则BD=.10.如图的4×4的正方形网格中,有A、B、C、D四点,直线a上求一点P,使PA+PB最短,则点P应选点(C或D).11.在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若三角形ABC的边长为1,AE=2,则CD的长为.12.如图,△ABC与△A′B′C′关于直线l对称,则∠C′的度数为.13.如图,在△ABC中,D为AB上的一点,且DE垂直平分AC,∠B=115°,且∠ACD:∠BCD=5:3,则∠ACB=__________度.14.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=____________.15.如图,△ABC是等边三角形,则∠ABD=度.16.如图将边长为5cm的等边△ABC,沿BC向右平移3cm,得到△DEF,DE交AC于M,则△MEC 是三角形,DM=cm.三、解答题17.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.18.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)画出点B关于直线AC的对称点D.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(2,3),B(3,1),C(-2,-2).(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.(2)求△A′B′C′的面积.20.如图,已知五边形ABCDE是轴对称图形,点B,E是一对对称点,请用无刻度的直尺画出该图形的对称轴.(保留作图痕迹,不要求写作法)21.在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.第十三章《轴对称》单元练习题答案解析1.【答案】B【解析】可依据题意线作出简单的图形,结合图形可得∠B=∠A,进而可得其为等腰三角形.解:如图,DC平分∠ACE,且AB∥CD,∴∠ACD=∠DCE,∠A=∠ACD,∠B=∠DCE∴∠B=∠A,∴△ABC为等腰三角形.故选B2.【答案】C【解析】由已知AB=AC,∠ABC=70°,根据等腰三角形的性质,得出∠C的度数,再利用DE∥AC,可得∠CBE=70°,答案可得.解:∵AB=AC(已知),∴∠C=∠ABC=70°(等边对等角),又∵DE∥AC(已知),∴∠CBE=∠C=70°(两直线平行,内错角相等)故选C.3.【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得方程组,根据解方程组,可得P点坐标,根据关于关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.解:由A(2a﹣b,a+b)关于y轴对称点是A1(3,﹣3),得2a-b=-3,a+b=-3,所以a=-2,b=-1,∴P(﹣2,﹣1).P(a,b)关于x轴对称点P1的坐标是(﹣2,1),故选:C.4.【答案】A【解析】根据线段垂直平分线的性质得出AD=BD,进而得出△BCD的周长为:CD+BD+BC=AC+BC求出即可.解:∵AB=AC=8,BC=5,AB的垂直平分线交AC于D,∴AD=BD,∴△BCD的周长为:CD+BD+BC=AC+BC=8+5=13.故选A.5.【答案】D【解析】过P作PF∥CQ交AC于F,∴∠FPD=∠Q,∵△ABC是等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴AP=PF,∵PA=CQ,∴PF=CQ,在△PFD与△DCQ中,∠FPD=∠Q,∠FDE=∠CDQ,PF=CQ∴△PFD≌△QCD,∴PD=DQ,DF=CE,∴A选项正确,∵AE=EF,∴DE=AC,∴B选项正确,∵PE⊥AC,∠A=60°,∴AE=AP=CQ,∴C选项正确,故选D.6.【答案】B【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.解:由(a﹣b)2++|c2﹣64|=0得:a﹣b=0,b﹣8=0,c2﹣64=0,又a,b,c是三角形的三边长,∴a=8,b=8,c=8,所以三角形的形状是等边三角形,故选:B.7.【答案】C【解析】根据三角形的三边关系对以下选项进行一一分析、判断.解:A.∵2≠3≠4,∴本组数据不可以构成等腰三角形;故本选项错误;B.∵5+5=10,∴本组数据不可以构成三角形;故本选项错误;C.∵1+2>2,∴本组数据可以构成等腰三角形;故本选项正确;D.∵1+2=3,∴本组数据不可以构成三角形;故本选项错误.故选C.8.【答案】D【解析】等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解:A、若∠A是顶角时,则50°+120°<180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在50°+50°+160°<180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;B、若∠A是顶角时,则50°+200°>180°,所以此种情况组不成等腰三角形;若∠B是顶角时,在100°+100°>180°,所以此种情况组不成等腰三角形;总之,本组数据不能使得△ABC是等腰三角形;故本选项错误;C、当∠A+∠B=90°时,∠C=90°;但∠A=10°,∠B=80°时,三角形ABC的三个内角没有那两个相等,所以构不成等腰三角形;故本选项错误;D、当∠B是顶角时,则2∠A+∠B=180°,∴∠A+∠B=90°;故本选项正确;故选D.9.【答案】2【解析】根据等边三角形的性质求得BD=CD,并且求得边BC的长度,进而即可求得BD的长.解:∵△ABC是等边三角形,AD是∠BAC的平分线,∴AB=BC=CA,BD=CD,∵等边△ABC周长是12,∴BC=4,∴BD=2.故答案为2.10.【答案】C【解析】首先求得点A关于直线a的对称点A′,连接A′B,即可求得答案.解:如图,点A′是点A关于直线a的对称点,连接A′B,则A′B与直线a的交点,即为点P,此时PA+PB最短,∵A′B与直线a交于点C,∴点P应选C点.故答案为:C.11.【答案】1或3【解析】当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF﹣BC求出CF的长,即可得到CD的长;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,由EC=ED,利用三线合一得到F为CD的中点,再由三角形ABC为等边三角形,利用等边三角形的性质得到∠ABC=∠EBF=60°,可得出∠BEF=30°,利用30°所对的直角边等于斜边的一半,根据EB的长求出BF的长,由BF+BC求出CF的长,即可得到CD的长.解:当E在线段BA的延长线上,D在线段BC的延长线上时,如图1所示,过E作EF⊥BD,垂足为F点,可得∠EFB=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=60°,∴∠BEF=30°,∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB﹣BC=12,则CD=2CF=1;当E在线段AB的延长线上,D在线段CB的延长线上时,如图2所示,过E作EF⊥BD,垂足为F点,可得∠EFC=90°,∵EC=ED,∴F为CD的中点,即CF=DF=12CD,∵△ABC为等边三角形,∴∠ABC=∠EBF=60°,∴∠BEF=30°,∵BE=AE﹣AB=2﹣1=1,∴FB=12BE=12,∴CF=BC+FB=32,则CD=2CF=3,综上,CD的值为1或3.故答案为:1或3.12.【答案】20°【解析】根据轴对称的性质求出∠A′,再利用三角形的内角和等于180°列式计算即可得解.解:∵△ABC与△A′B′C′关于直线l对称,∴∠A′=∠A=50°,在△A′B′C′中,∠C′=180°﹣∠A′﹣∠B′=180°﹣50°﹣110°=20°.故答案为:20°.13.【答案】40【解析】根据垂直平分线的性质与三角形的全等可以得出∠A=∠ACD,再根据三角形的内角和和角的比计算.解:∵DE垂直平分AC,∴EA=EC,AD=CD,∠ADE=∠CDE=90°∴Rt△ADE≌Rt△CDE∴∠A=∠ACD又∵∠ACD:∠BCD=5:3,∴∠ACD:∠ACB=5:8∴∠A:∠ACB=5:8又∵∠B=115°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学 轴对称图形 复习练习 (满分:120分 时间:90分钟) 一、选择题 (每题3分,共24分) 1.下列图案是轴对称图形的是 ( )

2.在△ABC中,若∠B,∠C平分线的交点P恰好在BC边的高AD上,则△ABC一定是 ( ) A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形 3.如图所示的是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 ( ) A.① B.② C.⑤ D.⑥

4.如图,已知点P到AE,AD,BC的距离相等,有下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是 ( ) A.①②③④ B.①②③ C.④ D.②③ 5.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA,则∠BPC的度数等于 ( ) A.100° B.115° C.130° D.140° 6.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC。AF⊥BC,则下列结论错误的是 ( ) A.BF=EF B.DE=EF C.∠EFC=45° D.∠BEF=∠CBE 7.如图,D为△ABC内一点,CD平分∠ACB,AE⊥CD,垂足为点D,交BC于点E,∠B=∠BAE,若BC=5,AC=3,则AD的长为 ( )

A 1 B.1.5 C.2 D.2.5 8.张萌和小平两人打算各用一张正方形纸片ABCD折出一个等边三角形.两人的作法如下,张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求.对于两人的作法,下列判断正确的是 ( ) A.小平的作法正确,张萌的作法不正确 B.两人的作法都不正确 C.张萌的作法正确,小平的作法不正确 D.两人的作法都正确 二、填空题 (每题2分,共20分) 9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有 个. 10.已知等腰三角形的周长为16,若一边长为6,则另外两边的长分别为 . 11.若等腰三角形有一个外角是100°,则这个等腰三角形的底角是 . 12.如图,△ABC是等边三角形,D,E,F分别是AB,BC,CA边上的一点.若AD=BE=CF,则△DEF的形状是 . 13.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC= .

14.如图,在△ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为点P,交AB于点F.若AF=2,BF=3,则CE的长度为 . 15.如图,在△ABC中,AB=AC,∠A=90°,∠1=∠2,DE⊥BC,垂足为点E.若BC=a,则△DEC的周长是 . 16.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上的一点.若BE=BP,CP=CF,则∠EPF= . 17.如图,在△ABC 中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF (E在BC上,F在AC上) 折叠,若点C与点O恰好重合,则∠OEC= . 18.如图,等边三角形ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作.EF∥BC,分别交AB,AC于点E,F,则EF的长度为 . 三、解答题 (共76分) 19.(本题6分) 以直线为对称轴,画出下列图形的另一部分,使它们成为轴对称图形.

20.(本题8分) 如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA,垂足为点D,PE⊥OB.垂足为点E,点M,N分别在线段OD和射线EB上,PM=PN,∠AOB=68°,求∠MPN的度数.

21.(本题8分) 如图,已知点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,FE=FD.求证:AD=CE.

22.(本题10分) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为边BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F,连接DF.求证:AB垂直平分DF. 23.(本题10分) 如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证: (1) △AEF≌△CEB;(2) AF=2CD.

24.(本题12分) 如图,已知△ABC为等边三角形,延长BC到点D,延长BA到点E,并且使AE=BD.连接CE,DE.求证:EC=ED.

25.(本题10分) 如图,∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD,OB于点M,N,探究线段OD,ON,DM之间的数量关系,并证明你的结论.

26.(本题12分) (1) 如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边三角形ACM和等边三角形CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由. (2) 若将 (1) 中的“以AC,BC为边在AB的同侧作等边三角形ACM和等边三角形CBN”改为“以AC,BC为腰在AB的同侧作等腰三角形ACM和等腰三角形CBN,且∠ACM=∠BCN≠60°”,其他条件不变,如图2所示,那么 (1) 中的结论还成立吗?若成立,请加以证明;若不成立,请说明坪南.

参 考 答 案 一、选择题 1.D 2.C 3.A 4.A 5.B 6.B 7.A 8.D 二、填空题 9.8 10.5,5或6,4 11.80°或50° 12.等边三角形 13.72° 14.7 15.a 16.50° 17.108°(提示:连接OB,OC,可求得∠OCE=∠COE=36°,进而求得∠OEC=108°) 18.4 (提示:根据BD和CD分别平分∠ABC 和∠ACB,EF∥BC,可求

出BE=DE,DF=FC,进一步证明△AEF是等边三角形,则EF=2BE=AC,即EF△23AB=4) 三、解答题 19.如图所示的图形即为所求作的图形

20.∵ OC平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为点D,E,∴ PD=PE.在Rt△MPD与Rt△NPE中,∵ PM=PN,PD=PE.∴ Rt△MPD≌Rt△NPE,∴ ∠MPD=∠NPE.∵ ∠MPN=∠MPE+∠EPN,∴ ∠MPN=∠MPE+∠DPM=∠DPE.在四边形OEPD中,

∠AOB=68°,∠ODP=90°.∠OEP=90°,∴ ∠DPE=112°,即∠MPN=112°

21.过点D作DG∥BC,∴ ∠ADG=∠B,又∵ FE=FD,∴ DG=CE.∵ △ABC为等边三角形,∴ ∠A=∠B=60°,∴ ∠A=∠ADG=60°,即△ADG为等边三角形,∴ AD=DG,∴ AD=CE 22.∵ ∠BCE+∠ACE=90°,∠ACE+∠CAD=90°,∴ ∠BCE=∠CAD.∵ BF∥AC,∴ BF⊥BC,∴ ∠ACD=∠CBF=90°.又∵ AC=CB,∴ △ACD≌△CBF,∴

CD=BF.∵ CD=BD=12BC,∴ BF=BD,∴ △BFD为等腰直角三角形.∵ ∠ACB=90°,CA=CB,∴ ∠ABC=45°.∵ ∠FBD=90°,∴ ∠ABF=45°,∴ ∠ABC=∠ABF,即BA是∠FBD的平分线.又∵ BF=BD,∴ BA⊥DF,∴ AB垂直平分DF

23.(1) ∵ AD⊥BC,∴ ∠B+∠BAD=90°.∵ CE⊥AB,∴ ∠B+∠BCE=90°,∴ ∠

EAF=∠ECB.在△AEF和△CEB中,,,,AEFBECAECEEAFBCE∴ △AEF≌△CEB, (2) ∵ △AEF≌△CEB,∴ AF=BC.∵ AB=AC,AD⊥BC,∴ CD=BD,BC= 2CD, ∴ AF=2CD 24.延长BD至点F,使DF=BC,连接EF.∵ AE=BD,△ABC为等边三角形,∴ BE=BF,∠B=60°,∴ △BEF为等边三角形,∴ ∠F=60°.在△ECB和△EDF中,BE=EF,∠B=∠F=60°,BC=DF.∴ △ECB≌△EDF,∴ EC=ED

25.画图如下.OD,ON,DM之间的数量关系为:OD=ON+DM或ON=OD+DM.分三种情况,①如图1,线段OD,ON,DM之间的数量关系为:OD=ON+DM,理由如下:∵ OC是角平分线,∴ ∠AOC=∠BOC.∵ CD∥OB,∴ ∠CME=∠ONE,∠C=∠BOC=∠AOC,∴ OD=CD.在△CEM和△OEN中,∠C=∠BOC,∠CME=∠ONE,CE=OE,∴ △CEM≌△OEN,∴ ON=CM,∴OD=CD=CM+DM=ON+DM.②如图2,由①易得OD=ON+DM.③如图3,类似①可证得OD=CD,△CEM≌△OEN,得ON=CM=CD+DM=OD+DM

26.(1) △CEF是等边三角形.理由:∵ △ACM与△BCN是等边三角形,∴ CA=CM,CN=CB,∠ACM=∠BCN=60°,∴ ∠ACN=∠BCM=120°,∴ △CAN≌△CMB,∴ AN=BM,∠CAN=∠CMB.∵ E,F分别为BM,AN的中点,∴ AF=ME,∴ △ACF≌△MCE,∴ CE=CF,∠ACF=∠MCE.∵ ∠ACF=∠ACM+∠MCF,∴ ∠MCE=∠MCF+∠FCE,即∠ECF=∠ACM=60°,∴ △CEF是等边三角形 (2) 不成立,理由如下:方法同(1)可得△CAN≌△CMB,△ACF≌△MCE,∴CE=CF,∠ACF=∠MCE.∵ ∠ACF=∠ACM+∠MCF,∴ ∠MCE=∠MCF+∠FCE,即∠ECF=∠ACM≠60°,∴ △CEF是等腰三角形

相关文档
最新文档