几何图形的归纳,猜想,证明问题[1]

合集下载

初中数学几何基证明技巧

初中数学几何基证明技巧

初中数学几何基证明技巧黄文杰一.总论:1.研究几何图形要把我们生活中的折叠,平移,旋转等操作运用到几何学习和探究中来,充分运用生活的观察视角去研究问题和解决问题;2.要熟练掌握几何图形够成的基本元素是边和角,运用分类思想对组成图形的各要素进行研究和探索,得出合理的结论;3.充分灵活运用“边清,角清,已知条件清,等量关系清,问题清”和“合情推理”。

4.图形计算问题一般运用公式,等量关系,勾股定理,相似比建立方程解决。

5.辅助线的添加要以基本公理,定理模型图为根据,完善模型;计算题一般是构造直角三角形和相似三角形;面积问题一般是根据面积的和与差建立等量关系。

二.几何证明的分析和书写:(一)几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

(二)掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;例:如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.12AB CDE(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;例、如图,在△ABC 中,AD 平分∠BAC 交BC 于D ,EF 垂直平分AD ,交AC 于E ,交AC 于F.求证:四边形AEDF 是菱形.(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

例;已知:如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD ,AD 2+CD 2=2AB 2.(1)求证:AB =BC ;(2)当BE ⊥AD 于E 时,试证明:BE =AE +CD .(4)分析法与综合法的特点:分析法的特点是从要证明的结论开始一步步地寻求其成立的条件,直至寻求到已知条件上。

鲁教版(五四制)数学九年级上册《几何综合》大单元教学课件

鲁教版(五四制)数学九年级上册《几何综合》大单元教学课件

考点梳理
考点二:相似多边形 (1)定义:对应角相等,对应边成比例的两个多边形叫做相似多边形. (2)相似多边形的性质: ①相似多边形的周长的比等于相似比; ②相似多边形的对应对角线的比等于相似比; ③相似多边形的面积的比等于相似比的平方; ④相似多边形的对应对角线相似,相似比等于相似多边形的相似比.
(3)尝试应用:
在图③中,延长线段 BD 交线段 AC 于点 F ,若 CE 3 , DE 1,求 S△BFC .
变式
跟踪训练 1.(2021·山东东营)已知点 O 是线段 AB 的中点,点 P 是直线 l 上的任意 一点,分别过点 A 和点 B 作直线 l 的垂线,垂足分别为点 C 和点 D.我们定义垂足与中 点之间的距离为“足中距”. (1)[猜想验证]如图 1,当点 P 与点 O 重合时,请你猜想、验证后直接写出“足中 距”OC 和 OD 的数量关系是________. (2)[探究证明]如图 2,当点 P 是线段 AB 上的任意一点时,“足中距”OC 和 OD 的数量 关系是否依然成立,若成立,请给出证明;若不成立,请说明理由. (3)[拓展延伸]如图 3,①当点 P 是线段 BA 延长线上的任意一点时,“足中距”OC 和 OD 的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;
(1)经历由情境引出问题,探索掌握有关数学知识,在 运用实践的过程中,培养学生学数学、用数学的意识 与能力。 (2)感受数学文化的价值和中国传统数学的成就,激发 学生热爱祖国悠久文化的思想情感。
单元教学内容
• 专题一:三角形计算与证明 • 专题二:四边形综合 • 专题三:圆
几何综合课时安排
单元 三角形与计算 四边形综合
考点梳理
考点一:多边形 (1)多边形的定义:在平面内,由若干条不在同一条直线上的线段;首尾顺次相接 组成的封闭图形叫做多边形,在多边形中,组成多边形的各条线段叫做多边形的边, 每相邻两条边的公共点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的 对角线。 (2)多边形的内角和:n边形的内角和=(n-2)180° (3)正多边形:在平面内,内角都相等,边也相等的多边形叫做正多边形. (4)多边形的外角:多边形内角的一边与另一边的反向延长线所组成的角,叫做这 个多边形的外角.在多边形的每个顶点处取这个多边形的一个外角,它们 的和叫做多 边形的外角和,多边形的外角和都等于360° (5)过n边形的一个顶点共有(n-3)条对角线,n边形共有 条对角线. (6)过n边形的一个顶点将n边形分成(n-2)个三角形.

初中数学中考总复习冲刺:代几综合问题--知识讲解(基础)

初中数学中考总复习冲刺:代几综合问题--知识讲解(基础)

中考冲刺:代几综合问题—知识讲解(基础)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题2.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.【思路点拨】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出满足kx+b≥(x-2)2+m的x的取值范围.【答案与解析】解:(1)将点A(1,0)代入y=(x-2)2+m得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C点坐标为(0,3),由于C和B关于对称轴对称,在设B点坐标为(x,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B点坐标为(4,3).设一次函数解析式为y=kx+b,将A(1,0)、B(4,3)代入y=kx+b中,得,解得,则一次函数解析式为y=x-1;(2)∵A、B坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m时,1≤x≤4.【总结升华】本题考察了待定系数法求二次函数,一次函数函数解析式以及数形结合法解不等式.求出B点坐标是解题的关键.举一反三:【变式】如图,二次函数2(0)=++≠的图象与x轴交于A、B两点,其中A点坐标为(-1,0),y ax bx c a点C(0,5)、D(1,8)在抛物线上,M为抛物线的顶点.(1)求抛物线的解析式. (2)求△MCB 的面积.【答案】解:(1)设抛物线的解析式为2y ax bx c =++,根据题意,得058a b c c a b c -+=⎧⎪=⎨⎪++=⎩, 解之,得145a b c =-⎧⎪=⎨⎪=⎩. ∴所求抛物线的解析式为245y x x =-++.(2)∵C 点的坐标为(0,5).∴OC =5.令0y =,则2450x x -++=,解得121,5x x =-=.∴B 点坐标为(5,0).∴OB =5.∵2245(2)9y x x x =-++=--+,∴顶点M 坐标为(2,9).过点M 作MN ⊥AB 于点N ,则ON =2,MN =9.∴11(59)9(52)551522MCB BNM OBC OCMN S S S S ∆∆∆=+-=+⨯⨯--⨯⨯=梯形. 类型三、动态几何中的函数问题3.如图,在平面直角坐标系中,已知点A (-2,-4),OB=2,抛物线y=ax 2+bx+c 经过点A 、O 、B三点.(1)求抛物线的函数表达式;(2)若点M 是抛物线对称轴上一点,试求AM+OM 的最小值;(3)在此抛物线上,是否存在点P ,使得以点P 与点O 、A 、B 为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【思路点拨】(1)把A、B、O的坐标代入到y=ax2+bx+c得到方程组,求出方程组的解即可;(2)根据对称求出点O关于对称轴的对称点B,连接AB,根据勾股定理求出AB的长,就可得到AM+OM 的最小值.(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可.【答案与解析】解:(1)由OB=2,可知B(2,0),将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得442042a b ca b cc-=-+⎧⎪=++⎨⎪=⎩解得:1,21,0.abc⎧=-⎪⎪=⎨⎪=⎪⎩∴抛物线的函数表达式为y=212x x-+(2)由y=212x x-+=211(1)22x x--+可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB 的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB,作AC⊥x轴,垂足为C,则|AC|=4,|BC|=4,∴AB=42,∴MO+MA的最小值为42.答:MO+MA的最小值为42.(3)①如图1,若OB ∥AP ,此时点A 与点P 关于直线x=1对称,由A (-2,-4),得P (4,-4),则得梯形OAPB .② 如图2,若OA ∥BP ,设直线OA 的表达式为y=kx ,由A (-2,-4)得,y=2x .设直线BP 的表达式为y=2x+m ,由B (2,0)得,0=4+m ,即m=-4, ∴直线BP 的表达式为y=2x-4. 由12⎧⎪⎨⎪⎩2y=2x-4,y=-x+x.解得x 1=-4,x 2=2(不合题意,舍去), 当x=-4时,y=-12,∴点P (-4,-12),则得梯形OAPB .③ 如图3,若AB ∥OP ,设直线AB 的表达式为y=kx+m ,则4202k m k m -=-+⎧⎨=+⎩,. 解得12k m =⎧⎨=-⎩,.∴AB 的表达式为y=x-2. ∵AB ∥OP ,∴直线OP 的表达式为y=x .由2,12y x y x x =⎧⎪⎨=-+⎪⎩得 x 2=0,解得x=0,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P (4,-4)或P (-4,-12),使得以点P 与点O 、A 、B 为顶点的四边形是梯形. 【总结升华】本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.举一反三:【变式】如图,直线434+-=x y 与x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在,请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.【答案】(1)证明:y=443x -+ ∵当x=0时,y=4; 当y=0时,x=3, ∴B (3,0),C (0,4), ∵A (-2,0),由勾股定理得:BC=22345+= ∵AB=3-(-2)=5, ∴AB=BC=5,∴△ABC 是等腰三角形; (2)解:①∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 过N 作NH ⊥x 轴于H .∵点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度, 又∵AB=BC=5,∴当t=5秒时,同时到达终点, ∴△MON 的面积是S=12OM NH ⨯⨯ ∴S=20.4t t-⨯②点M 在线段OB 上运动时,存在S=4的情形.理由如下: ∵C (0,4),B (3,0),BC=5, ∴sin ∠B=40.85OC BC == 根据题意得:∵S=4, ∴|t-2|×0.4t=4,∵点M 在线段OB 上运动,OA=2, ∴t-2>0,即(t-2)×0.4t=4,化为t 2-2t-10=0, 解得:111,111(t t =+=-舍去)∴点M 在线段OB 上运动时,存在S=4的情形,此时对应的t 是(111t =+)秒. ③∵C (0,4)B (3,0)BC=5, ∴cos ∠B=30.65OB BC == 分为三种情况:I 、当∠NOM=90°时,N 在y 轴上,即此时t=5;II 、当∠NMO=90°时,M 、N 的横坐标相等,即t-2=3-0.6t ,解得:t=3.125, III 、∠MNO 不可能是90°,即在运动过程中,当△MON 为直角三角形时,t 的值是5秒或3.125秒. 类型四、直角坐标系中的几何问题4.已知,如图所示,在平面直角坐标系中,四边形ABC0为梯形,BC ∥A0,四个顶点坐标分别为A (4,0),B (1,4),C (0,4),O (0,O ).一动点P 从O 出发以每秒1个单位长度的速度沿OA 的方向向A 运动;同时,动点Q 从A 出发,以每秒2个单位长度的速度沿A→B→C 的方向向C 运动.两个动点若其中一个到达终点,另一个也随之停止.设其运动时间为t 秒. (1)求过A ,B ,C 三点的抛物线的解析式; (2)当t 为何值时,PB 与AQ 互相平分;(3)连接PQ ,设△PAQ 的面积为S ,探索S 与t 的函数关系式.求t 为何值时,S 有最大值?最大值是多少?【思路点拨】(1)设出抛物线的解析式,运用待定系数法可以直接求出抛物线的解析式.(2)根据PB 与AQ 互相平分可以得出四边形BQPA 是平行四边形,得出QB=PA 建立等量关系可以求出t 值.(3)是一道分段函数,分为Q 点在AB 上和在BC 上讨论,根据三角形的面积公式表示出S 与t 的关系式,就可以求出答案. 【答案与解析】解:(1)设抛物线的解析式为y=ax 2+bx+c (a≠0),代入A 、B 、C 三点的坐标,得16a 4044b c a b c c ++=⎧⎪++=⎨⎪=⎩解得:13134a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴y=211433y x x =-++. (2)∵PB 与AQ 互相平分,∴四边形BQPA 是平行四边形, ∴BQ=PA , ∴2t-5=4-t , 解得:t=3.∴当t 为3时,PB 与AQ 互相平分.(3)由已知得AB=5,CB=1. ①当0<t <52时,点Q 在线段AB 上运动, 设P (x P ,0),Q (x Q ,y Q ),∠OAB=θ,sinθ=451(4).2PAQ Q p S y x ∴=-V g g82sin ,5Q p y t t x t θ===Q g2184(4)(4).255PAQ S t t t t ∴=-=-V g g .∴当t=2时,S △PAQ 有最大值为16.5②当532t ≤≤,点Q 在线段BC 上运动,则S △PAQ =14(4)822t t -=-g g ∴当t=52时,S △PAQ 有最大值为3.综上所述,当t=2时,S △PAQ 有最大值为16.5【总结升华】本题是一道二次函数综合题.考察了二次函数的最值,待定系数法求二次函数解析式以及三角形面积的求解等.类型五、几何图形中的探究、归纳、猜想与证明问题5.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______.12 3 xy1 2 3 …【思路点拨】由题目中所给的质点运动的特点找出规律,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,即可得出第35秒时质点所在位置的坐标.【答案与解析】解:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).【总结升华】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.举一反三:【变式】如图,一粒子在区域{(x,y)|x≥0,y≥0}内运动,在第1秒内它从原点运动到点B1(0,1),接着由点B1→C1→A1,然后按图中箭头所示方向在x轴,y轴及其平行线上运动,且每秒移动1个单位长度,求该粒子从原点运动到点P(16,44)时所需要的时间.【答案】解:设粒子从原点到达A n、B n、C n时所用的时间分别为a n、b n、c n,则有:a1=3,a2=a1+1,a3=a1+12=a1+3×4,a4=a3+1,a5=a3+20=a3+5×4,a6=a5+1,a2n-1=a2n-3+(2n-1)×4,a2n=a2n-1+1,∴a2n-1=a1+4[3+5+…+(2n-1)]=4n2-1,a2n=a2n-1+1=4n2,∴b2n-1=a2n-1-2(2n-1)=4n2-4n+1,b2n=a2n+2×2n=4n2+4n,c2n-1=b2n-1+(2n-1)=4n2-2n,c2n=a2n+2n=4n2+2n=(2n)2+2n,∴c n=n2+n,∴粒子到达(16,44)所需时间是到达点c44时所用的时间,再加上44-16=28(s),所以t=442+447+28=2008(s).。

几何探究题

几何探究题

(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的
关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的
中点,BE⊥EG,AD=
AB=3.求AF的长.
类型2
几何变换型探究问题
[方法特点]特征与方法: 几何变换型探究性问题是以几何知识和具体的几何图形为背景,通过图形 的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系、位置关 系看作是在变化的、相互依存的状态之中,要求对变换过程中伴随的数量 关系和图形的位置关系等进行探究.解决这类问题,要善于发现全等三角 形、等边三角形、直角三角形和相似三角形,或添辅助线构造全等三角形 、等边三角形、直角三角形和相似三角形,运用全等三角形来证明,运用 勾股定理、相似三角形和锐角三角函数来计算.
的一类开放性题目.解决这类问题的关键是动中求静,灵活运
用有关数学知识解决问题,在动点的运动过程中观察图形的
变化情况,理解图形在不同位置的情况,做好计算推理的过
程.在变化中找到不变的性质是解决这类问题的基本思路,这
也是动态几何数学问题中最核心的数学本质.
例4 在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点 ,以AP为边向右侧作等边△APE,点E的位置随着点P的位置 变化而变化. (1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP 与CE的数量关系是 BP=CE ,CE与AD的位置关系是 CE⊥AD ;
变式训练
5.【操作发现】 (1)如图1,在边长为1个单位长度的小正方形组成的网格中 ,△ABC的三个顶点均在格点上. ①请按要求画图:将△ABC绕点A按顺时针方向旋转90°, 点B的对应点为B′,点C的对应点为C′,连接BB′; ②在①所画图形中,∠AB′B= 45 °.

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230

中考数学二轮复习专题二解答重难点题型突破题型五几何图形探究题试题(含答案)230

题型五 几何图形探究题类型一 几何图形静态探究1.(2017·成都)问题背景:如图①,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是BC AB =2BD AB =3; 迁移应用:如图②,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图③,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF.①证明△CEF 是等边三角形;②若AE =5,CE =2,求BF 的长.2.(2017·许昌模拟)在正方形ABCD 中,对角线AC 、BD 交于点O ,动点P 在线段BC 上(不含点B),∠BPE =12∠ACB,PE 交BO 于点E ,过点B 作BF⊥PE,垂足为F ,交AC 于点G.(1)当点P 与点C 重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:BF PE=__________,并结合图②证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图③),若∠ACB=α,求BF PE的值.(用含α的式子表示)3.(2014·河南)(1)问题发现如图①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE.填空:①∠AEB 的度数为__________;②线段AD ,BE 之间的数量关系为__________.(2) 拓展探究如图②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE=90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图③,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.4.(2017·长春改编)【再现】如图①,在△ABC 中,点D ,E 分别是AB ,AC 的中点,可以得到:DE∥BC,且DE =12BC.(不需要证明) 【探究】如图②,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,判断四边形EFGH 的形状,并加以证明;【应用】(1)在【探究】的条件下,四边形ABCD 中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:__________.(只添加一个条件)(2)如图③,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,对角线AC ,BD 相交于点O.若AO =OC ,四边形ABCD 面积为5,求阴影部分图形的面积.5.(2016·新乡模拟)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点,求AC HF的值. (1)初步尝试如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,小王同学发现可以过点D 做DG∥BC,交AC 于点G ,先证GH =AH.再证GF =CF ,从而求得AC HF的值为__________; (2)类比探究如图②,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC=30°,且点D ,E 的运动速度之比是3∶1,求AC HF的值; (3)延伸拓展如图③,若在△ABC 中,AB =AC ,∠ADH =∠BAC=36°,记BC AC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示AC HF的值(直接写出结果,不必写解答过程) .类型二 几何图形动态探究1.(2015·河南)如图①,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D 、E 分别是边BC 、AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD =__________;②当α=180°时,AE BD=__________;(2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图②的情形给出证明.(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.2.已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC.(1)如图①,已知∠AOB=150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC.①∠DAO 的度数是__________;②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图②中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.3.(2013· 河南)如图①,将两个完全相同的三角形纸片和重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图②,固定△ABC,使△DCE绕点C旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是__________;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是__________;(2) 猜想论证当△DEC绕点C旋转到图③所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想;(3) 拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图④),若在射线BA上存在点F,使S△DCF=S△BF的长.BDC,请直接写出相应的4.(2017·郑州模拟)【问题情境】数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB =α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.【问题解决】(1)如图①,当α=60°时,判断BD与AE之间的数量关系;解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:__________.【类比探究】(2)如图②,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;(3)如图③,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:__________.(用含α的式子表示,其中0°<α<90°)5.(2017·烟台)【操作发现】(1)如图①,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;【类比探究】(2)如图②,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:①求∠EAF的度数;②线段AE,ED,DB之间的数量关系.题型五 第22题几何图形探究题类型一 几何图形静态探究1.迁移应用:①证明:∵∠BAC =∠DAE =120°,∴∠DAB =∠CAE ,在△DAB 和△EAC 中,⎩⎪⎨⎪⎧DA =EA ∠DAB =∠EAC AB =AC,∴△DAB ≌△EAC;,图②)②解:结论:CD =3AD +BD.理由:如解图①,作AH ⊥CD 于H.∵△DAB ≌△EAC ,∴BD =CE , 在Rt △ADH 中,DH =AD·cos 30°=32AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∵CD =DE +EC =2DH +BD =3AD +BD ;拓展延伸:①证明:如解图②,作BH ⊥AE 于H ,连接BE.∵四边形ABCD 是菱形,∠ABC =120°,∴△ABD ,△BDC 是等边三角形,∴BA =BD =BC ,∵E 、C 关于BM 对称,∴BC =BE =BD =BA ,FE =FC ,∴A 、D 、E 、C 四点共圆, ∴∠ADC =∠AEC =120°,∴∠FEC =60°,∴△EFC 是等边三角形,②解:∵AE =5,EC =EF =2,∴AH =HE =2.5,FH =4.5,在Rt △BHF 中,∵∠BFH =30°,∴HF BF =cos 30°,∴BF =4.532=3 3. 2.(1)证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°-∠BGO ,∠EPO =90°-∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,⎩⎪⎨⎪⎧∠GBO =∠EPO OB =OP ∠BOG =∠POE,∴△BOG ≌△POE(ASA );(2)解:猜想BF PE =12. 证明:如解图①,过P 作PM ∥AC 交BG 于M ,交BO 于N , ∴∠PNE =∠BOC =90°,∠BPN =∠OCB.∵∠OBC =∠OCB =45°,∴∠NBP =∠NPB ,∴NB =NP.∵∠MBN =90°-∠BMN ,∠NPE =90°-∠BMN ,∴∠MBN =∠NPE ,在△BMN 和△PEN 中,⎩⎪⎨⎪⎧∠MBN =∠NPE NB =NP ∠MNB =∠PNE,∴△BMN ≌△PEN(ASA ),∴BM =PE.∵∠BPE =12∠ACB ,∠BPN =∠ACB ,∴∠BPF =∠MPF. ∵PF ⊥BM ,∴∠BFP =∠MFP =90°.在△BPF 和△MPF 中,⎩⎪⎨⎪⎧∠BPF =∠MPE PF =PF∠PFB =∠PFM,∴△BPF ≌△MPF(ASA ). ∴BF =MF. 即BF =12BM.∴BF =12PE.即BF PE =12;(3)解:如解图②,过P 作PM ∥AC 交BG 于点M ,交BO 于点N , ∴∠BPN =∠ACB =α,∠PNE =∠BOC =90°. 由(2)同理可得BF =12BM ,∠MBN =∠EPN ,∴△BMN ∽△PEN ,∴BM PE =BN PN. 在Rt △BNP 中,tan α=BNPN ,∴BM PE =tan α,即2BF PE =tan α,∴BF PE =tan α2. 3.解:(1)∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧AC =BC ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴∠ADC =∠BEC. ∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°,∴∠AEB =∠BEC -∠CED =60°;②∴AD =BE ;(2)∠AEB =90°,AE =BE +2CM.理由:∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE. 在△ACD 和△BCE 中, ⎩⎪⎨⎪⎧CA =CB ∠ACD =∠BCE CD =CE, ∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°,∴∠AEB =∠BEC -∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME. ∵∠DCE =90°,∴DM =ME =CM , ∴AE =AD +DE =BE +2CM ;(3)点A 到BP 的距离为3-12或3+12.理由如下:∵PD =1,∴点P 在以点D 为圆心,1为半径的圆上. ∵∠BPD =90°,∴点P 在以BD 为直径的圆上.∴点P 是这两圆的交点.①当点P 在如解图①所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交BP 于点E ,∵四边形ABCD 是正方形,∴∠ADB =45°.AB=AD =DC =BC =2,∠BAD =90°.∴BD =2. ∵DP =1,∴BP = 3.∵∠BPD =∠BAD =90°,∴A 、P 、D 、B 在以BD 为直径的圆上, ∴∠APB =∠ADB =45°.∴△PAE 是等腰直角三角形. 又∵△BAD 是等腰直角三角形,点B 、E 、P 共线,AH ⊥BP , ∴由(2)中的结论可得:BP =2AH +PD. ∴3=2AH +1.∴AH =3-12;②当点P 在如解图②所示位置时, 连接PD 、PB 、PA ,作AH ⊥BP ,垂足为H , 过点A 作AE ⊥AP ,交PB 的延长线于点E ,同理可得:BP =2AH -PD.∴3=2AH -1.∴AH =3+12.综上所述:点A 到BP 的距离为3-12或3+12.4.解:【探究】平行四边形. 理由:如解图①,连接AC ,∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC ,EF =12AC ,同理HG ∥AC ,HG =12AC ,综上可得:EF ∥HG ,EF =HG ,故四边形EFGH 是平行四边形. 【应用】(1)添加AC =BD ,理由:连接AC ,BD ,同(1)知,EF =12AC ,同【探究】的方法得,FG =12BD ,∵AC =BD ,∴EF =FG ,∵四边形EFGH 是平行四边形,∴▱EFGH 是菱形;(2)如解图②,由【探究】得,四边形EFGH 是平行四边形, ∵F ,G 是BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴△CFG ∽△CBD ,∴S △CFG S △BCD =14,∴S △BCD =4S△CFG,同理:S △ABD =4S △AEH ,∵四边形ABCD 面积为5,∴S △BCD +S △ABD =5,∴S △CFG +S △AEH =54,同理:S △DHG +S △BEF =54,∴S 四边形EFGH =S 四边形ABCD -(S △CFG +S △AEH +S △DHG +S △BEF )=5-52=52,设AC 与FG ,EH 相交于M ,N ,EF 与BD 相交于P ,∵FG ∥BD ,FG =12BD ,∴CM =OM =12OC ,同理:AN =ON =12OA ,∵OA =OC ,∴OM =ON ,易知,四边形ENOP ,FMOP 是平行四边形,S ▱EPON =S ▱FMOP , ∴S 阴影=12S 四边形EFGH =54.5.解:(1)∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知:CE =AD ,∴CE =GD , ∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC ,GD =CE∴△GDF ≌△CEF(AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF)=2HF , ∴ACHF=2; (2)如解图①,过点D 作DG ∥BC 交AC 于点G , 则∠ADG =∠ABC =90°.∵∠BAC =∠ADH =30°,∴AH =DH ,∠GHD =∠BAC +∠ADH =60°,∠HDG =∠ADG -∠ADH =60°,∴△DGH 为等边三角形. ∴GD =GH =DH =AH ,AD =GD·tan 60°=3GD. 由题意可知,AD =3CE.∴GD =CE. ∵DG ∥BC ,∴∠GDF =∠CEF.在△GDF 与△CEF 中,⎩⎪⎨⎪⎧∠GDF =∠CEF ∠GFD =∠EFC CE =GD ,∴△GDF ≌△CEF(AAS ),∴GF =CF.GH +GF =AH +CF ,即HF =AH +CF ,∴HF =12AC ,即ACHF =2;(3)AC HF =m +1m.理由如下: 如解图②,过点D 作DG ∥BC 交AC 于点G , 易得AD =AG ,AD =EC ,∠AGD =∠ACB. 在△ABC 中,∵∠BAC =∠ADH =36°,AB =AC ,∴AH =DH ,∠ACB =∠B =72°,∠GHD =∠HAD +∠ADH =72°. ∴∠AGD =∠GHD =72°,∵∠GHD =∠B =∠HGD =∠ACB ,∴△ABC ∽△DGH.∴GH DH =BCAC =m ,∴GH =mDH =mAH.由△ADG ∽△ABC 可得DG AD =BC AB =BCAC =m.∵DG ∥BC ,∴FG FC =GDEC=m.∴FG =mFC.∴GH +FG =m(AH +FC)=m(AC -HF),即HF =m(AC -HF).∴ACHF =m +1m.类型二 几何图形动态探究 1.解:(1)①当α=0°时, ∵Rt △ABC 中,∠B =90°,∴AC =AB 2+BC 2=(8÷2)2+82=45,∵点D 、E 分别是边BC 、AC 的中点,∴AE =45÷2=25,BD =8÷2=4,∴AE BD =254=52.②如解图①,当α=180°时,可得AB ∥DE , ∵AC AE =BC BD ,∴AE BD =AC BC =458=52;(2)当0°≤α<360°时,AEBD 的大小没有变化,∵∠ECD =∠ACB ,∴∠ECA =∠DCB , 又∵EC DC =AC BC =52,∴△ECA ∽△DCB ,∴AE BD =EC DC =52;(3)①当D 在AE 上时,如解图②,∵AC =45,CD =4,CD ⊥AD , ∴AD =AC 2-CD 2=(45)2-42=80-16=8, ∵AD =BC ,AB =DC ,∠B =90°, ∴四边形ABCD 是矩形,∴BD =AC =45;②当D 在AE 延长线上时,如解图③,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P ,∵AC =45,CD =4,CD ⊥AD ,∴AD =AC 2-CD 2=(45)2-42=80-16=8,∵原图中点D 、E 分别是边BC 、AC 的中点,∴DE =12AB =12×(8÷2)=12×4=2,∴AE =AD -DE =8-2=6,由(2)可得AE BD =52,∴BD =652=1255.综上所述,BD 的长为45或1255.2.解:(1)①∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, 由旋转的性质可知,∠OCD =60°,∠ADC =∠BOC =120°, ∴∠DAO =360°-60°-90°-120°=90°; ②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2.如解图①,连接OD.∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD =OC ,∴△OCD 是等边三角形,∴OC =OD =CD ,∠COD =∠CDO =60°,∵∠AOB =150°,∠BOC =120°,∴∠AOC =90°, ∴∠AOD =30°,∠ADO =60°.∴∠DAO =90°. 在Rt △ADO 中,∠DAO =90°,∴OA 2+AD 2=OD 2, ∴OA 2+OB 2=OC 2;(2)①当α=β=120°时,OA +OB +OC 有最小值.作图如解图②,将△AOC 绕点C 按顺时针方向旋转60°得△A′O′C,连接OO′. ∴△A ′O ′C ≌△AOC ,∠OCO ′=∠ACA′=60°.∴O′C=OC ,O ′A ′=OA ,A ′C =AC ,∠A ′O ′C =∠AOC.∴△OCO′是等边三角形.∴OC =O′C=OO′,∠COO ′=∠CO′O=60°. ∵∠AOB =∠BOC =120°,∴∠AOC =∠A′O′C=120°. ∴∠BOO ′=∠OO′A′=180°.∴B ,O ,O ′,A ′四点共线. ∴OA +OB +OC =O′A′+OB +OO′=BA′时值最小;②当等边△ABC 的边长为1时,OA +OB +OC 的最小值为A′B=3.3.解:(1)①∵△DEC 绕点C 旋转使点D 恰好落在AB 边上,∴AC =CD ,∵∠BAC =90°-∠B =90°-30°=60°, ∴△ACD 是等边三角形,∴∠ACD =60°, 又∵∠CDE =∠BAC =60°,∴∠ACD =∠CDE , ∴DE ∥AC ;②∵∠B =30°,∠C =90°,∴CD =AC =12AB ,∴BD =AD =AC ,根据等边三角形的性质,△ACD 的边AC 、AD 上的高相等, ∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(2)∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD , ∵∠ACN +∠BCN =90°,∠DCM +∠BCN =180°-90°=90°, ∴∠ACN =∠DCM ,∵在△ACN 和△DCM 中,⎩⎪⎨⎪⎧∠ACN =∠DCM ∠CMD =∠N =90°AC =DC ,∴△ACN ≌△DCM(AAS ),∴AN =DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 2;(3)如解图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, ∴BE =DF 1,且BE 、DF 1上的高相等,此时S △DCF 1=S △BDE ; 过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°, ∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°,∴∠F 1DF 2=∠ABC =60°,∴△DF 1F 2是等边三角形,∴DF 1=DF 2,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点, ∴∠DBC =∠DCB =12×60°=30°,∴∠CDF 1=180°-∠BCD =180°-30°=150°, ∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,∵在△CDF 1和△CDF 2中,⎩⎪⎨⎪⎧DF 1=DF 2∠CDF 1=∠CDF 2CD =CD ,∴△CDF 1≌△CDF 2(SAS ),∴点F 2也是所求的点,∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,∴∠DBC =∠BDE =∠ABD =12×60°=30°, 又∵BD =4,∴BE =ED =12×4÷cos 30°=2÷32=433, ∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833, 故BF 的长为433或833. 4.解:(1)当α=60°时,△ABC 、△DCE 是等边三角形, ∴EC =DC ,AC =BC ,∠ACB =∠DCE =60°,∴∠ACB -∠ACD =∠DCE -∠ACD ,即∠BCD =∠ACE ,在△BDC 和△AEC 中,⎩⎪⎨⎪⎧EC =DC ∠BCD =∠ACE AC =BC,∴△BDC ≌△AEC(SAS ),∴BD =AE ;(2)BD =2AE ;理由如下:如解图①,过点D 作DF ∥AC ,交BC 于F. ∵DF ∥AC ,∴∠ACB =∠DFB.∵∠ABC =∠ACB =α,α=45°,∴∠ABC =∠ACB =∠DFB =45°.∴△DFB 是等腰直角三角形∴BD =DF =22BF. ∵AE ∥BC ,∴∠ABC +∠BAE =180°.∵∠DFB +∠DFC =180°,∴∠BAE =∠DFC.∵∠ABC +∠BCD =∠ADC ,∠ABC =∠CDE =α,∴∠ADE =∠BCD.∴△ADE ∽△FCD.∴AE FD =AD FC. ∵DF ∥AC ,∴BD BF =AD CF .∴AE BD =BD BF =22.∴BD =2AE. (3)补全图形如解图②,∵AE ∥BC ,∠EAC =∠ACB =α,∴∠EAC =∠EDC =α,∴A 、D 、C 、E 四点共圆,∴∠ADE =∠ACE ,∵∠ADE +∠EDC =∠ADC =∠ABC +∠BCD ,∠ABC =∠EDC =α, ∴∠ADE =∠BCD ,∴∠ACE =∠BCD ,∵∠ABC =∠EAC =α,∴△BDC ∽△AEC ,∴BD AE =BC AC, 又∵BC AC=2cos α,∴BD =2cosα·AE.5.解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°,∵∠DCF =60°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°; ②相等;理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°-30°=30°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF ∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°,∵∠DCF =90°,∴∠ACF =∠BCD ,在△ACF 和△BCD 中,⎩⎪⎨⎪⎧AC =BC∠ACF =∠BCD CF =CD,∴△ACF ≌△BCD(SAS ),∴∠CAF =∠B =45°,AF =BD , ∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2;理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°-45°=45°,∴∠DCE =∠FCE ,在△DCE 和△FCE 中,⎩⎪⎨⎪⎧CD =CF∠DCE =∠FCE CE =CE,∴△DCE ≌△FCE(SAS ),∴DE =EF ,在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.。

平面直角坐标系与几何图形的综合(解析版)

平面直角坐标系与几何图形的综合(解析版)

【期末复习】浙教版八年级上册提分专题:平面直角坐标系与几何图形的综合各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3; 问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,;若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -;若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|;问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样) 注意横纵坐标的规律可能不同。

【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B 可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC 经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M 的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC 面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).。

八年级几何证明题集锦及解答值得收藏

八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB= 45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF= AB+AF.证明:在线段CF上截取CH= BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB= 90°,∠DFC+∠DCF= 90°,∵∠EFB= ∠DFC,∴∠EBF= ∠DCF,∵DB= CD,BA= CH,∴△ABD≌△HCD,∴AD= DH,∠ADB= ∠HDC,∵AD∥BC,∴∠ADB= ∠DBC= 45°,∴∠HDC= 45°,∴∠HDB= ∠BDC—∠HDC= 45°,∴∠ADB= ∠HDB,∵AD= HD,DF= DF,∴△ADF≌△HDF,∴AF= HF,∴CF= CH+HF= AB+AF,∴CF= AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE= DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD= ∠CBD,AB= BC,∵BF= BF,∴△ABF≌△CBF,∴∠BAF= ∠BCF,∵在RT△ABE和△DCE中,AE= DE,AB= DC,∴RT△ABE≌△DCE,∴∠BAE= ∠CDE,∴∠BCF= ∠CDE,∵∠CDE+∠DEC= 90°,∴∠BCF+∠DEC= 90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证DA明:CF=EF解:EB F C过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG= 90°= ∠GDC+∠EDG,∴∠ADE= ∠GDC.又∵∠A= ∠DGC且AD= GD,∴△ADE≌△GDC,∴DE= DC且AE= GC.在△EDF和△CDF中∠EDF= ∠CDF,DE= DC,DF为公共边,∴△EDF ≌△CDF,∴EF= CF4.已知:在⊿ABC中,∠A= 900,AB= AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB= ∠FDC。

解析几何题型及解题方法

解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。

以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。

解题方法包括直接法、参数法、代入法等。

2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。

解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。

3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。

解题方法包括公式法、参数法、极坐标法等。

4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。

解题方法包括导数法、不等式法、极坐标法等。

5. 证明不等式:通过几何图形证明不等式。

解题方法包括构造法、极坐标法、数形结合法等。

6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。

解题方法包括归纳法、反证法、构造法等。

以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。

同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。

中考数学初二几何问题[1]

中考数学初二几何问题1(08黑龙江鸡西26题)26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.2(08辽宁沈阳)25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.B B M BC N C NMC N M 图1 图2图3 A A A D D D C E N D A BM图① C A EM B D N图② 第25题图C A BEF M N 图①CABE MN 图②3(08辽宁大连)25.点A 、B 分别是两条平行线m 、n 上任意两点,在直线n 上找一点C ,使BC = kAB ,连结AC ,在直线AC 上任取一点E ,作∠BEF =∠A BC ,EF 交直线m 于点F . ⑴如图15,当k = 1时,探究线段EF 与EB 的关系,并中以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC 为特殊角),在图16中补全图形,完成证明(选择添加条件比原题少得3分).⑵如图17,若∠ABC = 90°,k ≠1,探究线段EF 与EB 的关系,并说明理由.4(08天津市卷)25.(本小题10分)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N . (Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由. 图 17图 16图 15A E BC F n m m n n mF EABC5(08河北省卷24题)24.(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系; (2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.6(08山西太原)28.(本小题满分10分)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片ABC △和DEF △.将这两张三角形胶片的顶点B 与顶点E 重合,把DEF △绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .(1)当DEF △旋转至如图②位置,点()B E ,C D ,在同一直线上时,AFD ∠与DCA ∠的数量关系是 . 2分(2)当DEF △继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由. (3)在图③中,连接BO AD ,,探索BO 与AD 之间有怎样的位置关系,并证明. A (E )BC (F ) PlllB FC 图14-1图14-2图14-3C A E F BD OA FB (E ) A DO F CB (E ) 图① 图② 图③7(08山东临沂)25.(本小题满分11分)已知∠MAN ,AC 平分∠MAN 。

专题复习 归纳与猜想(含答案)-

①1×12=1-12 ②2×23=2-23 ③3×34=3-34④4×45=4-45 ……专题复习 归纳与猜想归纳与猜想问题指的是给出一定条件(可以是有规律的算式、图形或图表),让学生认真分析,仔细观察,综合归纳,大胆猜想,得出结论,进而加以验证的数学探索题。

其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论,这类问题有利于培养学生思维的深刻性和创造性。

一、知识网络图二、基础知识整理猜想规律型的问题难度相对较小,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。

其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。

相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的又一热点。

★ 范例精讲【归纳与猜想】例1【河北实验区05】观察右面的图形(每个正方形的边长均为1)和相应等式,探究其中的规律:⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。

解:⑴5×56=5-56⑵11+-=+⨯n nn n n n 。

例2〖归纳猜想型〗将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么? ⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系.解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形;⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形的归纳,猜想,证明问题
例题评析
【例1】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211
B D
C ∆的
面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n
S ,则2S = ;
n S =____ (用含n 的式子表示)

D 4
D 3
D 2
D 1C 5
C 4
C 3
C 2
C 1
B 5
B 4B 3B 2B 1A
……
-8
-448
O
D
C B
A y
x
【例2】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为,(0),n ,(20),n ,(0)-,n (20)-,n (n 为正整数),则菱形n n n n A B C D 能覆盖的单位格点正方形的个数为_________(用含有n 的式子表示).(两种方法)
B
A
...
1311975310S 4
S 3S 2S 1
y
x
O
D 1D 2
D 3
C 1
C 2C 3
B 1B 2
B 3
A 3
A 2
A 1
1
23-1-2-3-3
-2-1321
例3题图 例4题图 例5题图 【例3】如图,45AOB ∠=︒,过OA 上到点O 的距离分别为1357911...,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1
2
3
4
S S S S ,,,,.则第
一个黑色梯形的面积1S = ;观察图中的规律,第n (n 为正整数)个黑色梯形
的面积n
S =

【例4】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3……每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.
【例5】如图,△ABC 中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画
出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC 的BC 边重叠为止,此时这个三角形的斜边长为_____.
B 2
B 1
A 1
B
O
A
例6题图 例7题图
【例6】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1
ABA ,再
以等腰直角三角形1
ABA 的斜边为直角边向外作第3个等腰直角三角形1
1
A B
B ,……,如此作
下去,若1OA OB ==,则第n 个等腰直角三角形的面积n
S = ________(n 为正整数).
【例7】在数学活动中,小明为了求的值(结果用n 表示),
设计如图a 所示的图形。

(1)请你利用这个几何图形求的值
为 。

(2)请你利用图b ,再设计一个能求值的几何图形。

【例8】“请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形
内一点到三边距离的数学事实: 。


1、如图,在平面直角坐标系xOy 中,1B (0,1),2B (0,3),3
B (0,6),
4B (0,10),…,以12B B 为对角线作第一个正方形1112A B C B ,以
23B B 为对角线作第二个正方形2223A B C B ,以34B B 为对角线作第三个正方
形3334A B C B ,…,如果所作正方形的对角线1n n B B +都在y 轴上,且1n n B B +的长度依次增加1个单位,顶点n
A 都在第一象限内(n ≥1,且n 为整数).那
么1
A 的纵坐标为 ;用n 的代数式表示n
A 的纵坐标: .
2、如图,在平面直角坐标系中,一颗棋子从点P 处开始跳动,第一次跳到点P 关于x 轴的对称点1P 处,接着跳到点1P 关于y 轴的对称点 2P 处,第三次再跳到点2P 关于原点的对称
点处,…,如此循环下去.当跳动第2009次时,棋子落点处的坐标是 . 3、右图是一回形图,其回形通道的宽与OB 的长均为1,回形线与射线OA 交于点A 1,A 2,A 3,…。

若从O 点到A1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,……,
依此类推。

则第10圈的长为 。

4题图 3题图
4、如图,将边长为)
,,,( 3212
1=+n n 的正方形纸片从左到右顺次摆放,其对应的正
方形的中心依次为A 1, A 2, A 3, ….①若摆放前6个正方形纸片,则图中被遮盖的线段(虚线部分)之和为 ;②若摆放前n (n 为大于1的正整数)个正方形纸片,则图中被遮盖的线段(虚线部分)之和为 .
5、观察下面的图形(每一个正方形的边长均为1
)和相应的等式,探究其中的规律:
2题图
A 4
A 2
A 3A 1
(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;
(2)猜想并写出与第n个图形相对应的等式。

7、.如图,P为△ABC的边BC上的任意一点,设BC=a,
当B1、C1分别为AB、AC的中点时,B1C1=,当B2、C2分别为BB1、CC1的中点时,B2C2=,当B3、C3分别为BB2、CC2的中点时,B3C3=,当B4、C4分别为BB3、CC3的中点时,B4C4=,
当B5、C5分别为BB4、CC4的中点时,B5C5=______ ,

当Bn、Cn分别为BBn-1、CCn-1的中点时,则BnCn=_______ ;
设△ABC中BC边上的高为h,则△PBnCn的面积为_______ (用含a、h的式子表示).
8、右图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_____________;当字母C第201次出现时,恰好数到的数是
____________;当字母C第1
n次出现时(n为正整数),恰好数到的数是______________.
2
9、如图,矩形纸片ABCD中,.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点
O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点On,则BO1= __________,
BOn=__________ .。

相关文档
最新文档