单稳态触发器工作原理

单稳态触发器工作原理

单稳态触发器是一种具有稳态和非稳态两种工作状态的数字逻辑电路。在非稳态时,输入引发了一次输出。在稳态时,输入不会引发输出,除非在输入发生变化时。单稳态触发器可以用于生成延时脉冲、消除毛刺、处理不稳定的输入信号等应用。

单稳态触发器通常由两个互补的非门(也称为反相器)组成。一个非门的输出连接到另一个非门的输入,并将该输入与一个稳态输入连接在一起。这个稳态输入决定了单稳态触发器的状态,称为置位状态或复位状态。

在置位状态下,第一个非门的输出为高电平,将第二个非门的输入拉低。这将导致第二个非门的输出保持在低电平,触发器处于非稳态。只要输入保持稳定,触发器将保持在非稳态,不产生输出。

当稳态输入发生变化,例如由低电平变为高电平时,第一个非门的输出将变为低电平。这将导致第二个非门的输入变为高电平,从而使第二个非门的输出在一个特定的时间间隔内保持在高电平。这个时间间隔称为单稳态脉冲宽度,可以通过选择适当的电阻和电容值来控制。

一旦单稳态脉冲宽度过去,第二个非门的输出将返回到低电平,触发器重新进入稳态。只有当稳态输入再次变化时,才会重新触发单稳态脉冲。

通过这种方式,单稳态触发器可以在非稳态时对输入信号进行

处理,生成一个确定宽度的输出脉冲,然后返回稳态状态以等待下一次输入变化。这种功能使得单稳态触发器在数字电路中非常有用。

单稳态触发器

单稳态触发器特点: 电路有一个稳态、一个暂稳态。 在外来触发信号作用下,电路由稳态翻转到暂稳态。 暂稳态不能长久保持,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态。暂稳态的持续时间取决于RC电路的参数值。 单稳态触发器的这些特点被广泛地应用于脉冲波形的变换与延时中。 一、门电路组成的微分型单稳态触发器 1. 电路组成及工作原理 微分型单稳态触发器可由与非门或或非门电路构成,如下图。与基本RS触发器不同, (a)由与非门构成的微分型单稳态触发器 (b)由或非门构成的微分型单稳态触发 图6.7微分型单稳态触发器 构成单稳态触发器的两个逻辑门是由RC耦合的,由于RC电路为微分电路的形式,故称为微分型单稳态触发器。下面以CMOS或非门构成的单稳态触发器为例,来说明它的工作原理。 ⑴ 没有触发信号时,电路处于一种稳态 没有触发信号时,为低电平。由于门输入端经电阻R接至,因此 为低电平; 的两个输入均为0,故输出为高电平,电容两端的电压接近0V,这是电路的“稳态”。在触发信号到来之前,电路一直处于这个状态:

, 。 ⑵ 外加触发信号,电路由稳态翻转到暂稳态 当时,的输出由1 0,经电容C耦合,使,于是的输出v02 =1, 的高电平接至门的输入端,从而再次瞬间导致如下反馈过程: 这样导通截至在瞬间完成。此时,即使触发信号撤除(), 由于的作用,仍维持低电平。然而,电路的这种状态是不能长久保持的,故称之为暂稳态。暂稳态时, ,。 ⑶ 电容充电,电路由暂稳态自动返回至稳态 在暂稳态期间,电源经电阻R和门的导通工作管对电容C充电,随着充电时 间的增加增加,升高,使时,电路发生下述正反馈过程(设此时触发器脉冲已消失): 迅速截止,很快导通,电路从暂稳态返回稳态。, 。 暂稳态结束后,电容将通过电阻R放电,使C上的电压恢复到稳定状态时的初始值。在整个过程中,电路各点工作波形如图6.8所示。

可重触发单稳态触发器原理

可重触发单稳态触发器原理 可重触发单稳态触发器是一种常用的数字电路元件,它具有一种特殊的工作方式,能够在输入信号发生变化时产生一个固定的输出脉冲。本文将介绍可重触发单稳态触发器的原理及其在电路设计中的应用。 可重触发单稳态触发器由RS触发器和一个延时触发器组成。RS触发器是一种由两个互补反馈的逻辑门组成的电路,它能够存储一个比特的状态。延时触发器是一种能够延时输入信号的电路,它通常由一个RC电路和一个比较器组成。 可重触发单稳态触发器的工作原理如下:当输入信号发生变化时,RS触发器的状态会发生改变,从而导致输出信号的变化。延时触发器负责延时输入信号,使得输出信号在一定时间后才发生变化。当输入信号再次发生变化时,RS触发器的状态会再次改变,但由于延时触发器的延时作用,输出信号不会立即改变,而是在延时时间后才会发生变化。这样就实现了可重触发的功能。 可重触发单稳态触发器在数字电路设计中有着广泛的应用。它常用于脉冲信号的处理和时序控制电路中。在脉冲信号的处理中,可重触发单稳态触发器可以将输入的短脉冲信号转换为固定宽度的脉冲信号,从而方便后续电路的处理。在时序控制电路中,可重触发单稳态触发器可以实现延时和定时功能,控制电路的执行时间和顺序。

除了在数字电路设计中的应用,可重触发单稳态触发器还可以用于模拟电路中。在模拟电路中,可重触发单稳态触发器可以实现信号的延时和重构,从而提高电路的稳定性和可靠性。 总的来说,可重触发单稳态触发器是一种重要的数字电路元件,它具有可重触发的特性,能够在输入信号发生变化时产生一个固定的输出脉冲。它在数字电路设计和模拟电路中有着广泛的应用。通过学习和理解可重触发单稳态触发器的原理和工作方式,我们可以更好地应用它来解决实际问题,提高电路的性能和可靠性。

D 触发器

边沿D 触发器 电平触发的主从触发器工作时,必须在正跳沿前加入输入信号。如果在CP 高电平期间输入端出现干扰信号,那么就有可能使触发器的状态出错。而边沿触发器允许在CP 触发沿来到前一瞬间加入输入信号。这样,输入端受干扰的时间大大缩短,受干扰的可能性就降低了。边沿D触发器也称为维持-阻塞边沿D触发器。 英文全称为data flip-flop或delay flip-flop。 电路结构 该触发器由6个与非门组成,其中G1和G2构成基本RS触发器。 编辑本段工作原理 SD 和RD 接至基本RS 触发器的输入端,它们分别是预置和清零端,低电平有效。当/SD=1且/RD=0时,不论输入端D为何种状态,都会使Q=0,Q非=1,即触发器置0;当/SD=0且/RD=1时,Q=1,Q非=0,触发器置1,SD 和RD通常又称为直接置1和置0端。我们设它们均已加入了高电平,不影响电路的工作。工作过程如下: 1.CP=0时,与非门G3和G4封锁,其输出Q3=Q4=1,触发器的状态不变。同时,由于Q3至Q5和Q4至Q6的反馈信号将这两个门打开,因此可接收输入信号D,Q5=D,Q6=Q5非=D非。

D触发器原理 2.当CP由0变1时触发器翻转。这时G3和G4打开,它们的输入Q3和Q4的状态由G5和G6的输出状态决定。Q3=Q5非=D非,Q4=Q6非=D。由基本RS触发器的逻辑功能可知,Q=Q3非=D。 3.触发器翻转后,在CP=1时输入信号被封锁。这是因为G3和G4打开后,它们的输出Q3和Q4的状态是互补的,即必定有一个是0,若Q3为0,则经G3输出至G5输入的反馈线将G5封锁,即封锁了D通往基本RS 触发器的路径;该反馈线起到了使触发器维持在0状态和阻止触发器变为1状态的作用,故该反馈线称为置0维持线,置1阻塞线。Q4为0时,将G3和G6封锁,D端通往基本RS触发器的路径也被封锁。Q4输出端至G6反馈线起到使触发器维持在1状态的作用,称作置1维持线;Q4输出至G3输入的反馈线起到阻止触发器置0的作用,称为置0阻塞线。因此,该触发器常称为维持-阻塞触发器。总之,该触发器是在CP正跳沿前接受输入信号,正跳沿时触发翻转,正跳沿后输入即被封锁,三步都是在正跳沿后完成,所以有边沿触发器之称。与主从触发器相比,同工艺的边沿触发器有更强的抗干扰能力和更高的工作速度。功能描述 编辑本段特征 1.特征表 2.特征方程 Qn+1=D 3.时序图

单稳态触发器特点及应用

单稳态触发器特点及应用 单稳态触发器是一种基本的数字逻辑电路元件。它有着独特的特点和广泛的应用。 单稳态触发器有两个稳定的状态,分别被称为"稳定1态"和"稳定0态"。当输入信号发生边沿变化时,触发器会产生一次性的输出脉冲,将自己的状态从一个稳定状态转换至另一个稳定状态,然后再次保持在此状态,直到下一个输入信号的到来。 单稳态触发器有以下特点: 1. 基本功能:单稳态触发器可以将一个瞬时的输入信号转换为一个确定的固定时间宽度的输出脉冲。这个输出脉冲的时间宽度由触发器内部的电路元件和外部的电容、电阻等元件决定。 2. 稳定的状态:单稳态触发器有稳定1态和稳定0态两种状态,这两种状态之间可以通过输入信号触发器的边沿变化来转换。 3. 输出脉冲:在输入信号变化时,单稳态触发器会产生一次性的输出脉冲。这个脉冲的宽度是固定的,不受输入信号变化的时间长短影响。 4. 延迟时间:单稳态触发器具有一个延迟时间,即输入信号发生变化到输出脉冲出现的时间间隔。这个延迟时间是固定的,不受输入信号的频率和幅度的影响。

单稳态触发器有广泛的应用: 1. 脉冲生成:单稳态触发器可以将一个瞬态输入信号转换为一个固定宽度的脉冲。这个功能在很多电子设备中都有应用,例如数字逻辑电路中的时序控制、计数器的启动、断电、复位等。 2. 时序控制:单稳态触发器可以用来实现时序控制。通过控制输入信号的变化时间和触发器自身的延迟时间,可以实现对电路的时序控制,例如在特定时间间隔内产生脉冲或者使特定电路模块按照固定的顺序工作。 3. 双稳态触发:单稳态触发器可以用来实现双稳态触发器。通过将两个单稳态触发器串联,可以构建一个双稳态触发器。在数字电路中,双稳态触发器用来存储和传输数字信号。 4. 电路保护:单稳态触发器可以用于电路保护。当输入信号超过设定的阈值电平时,触发器会产生输出脉冲作为保护信号,告知其他电路模块需要停止工作或者采取其他保护措施。 5. 延时电路:单稳态触发器可以用来实现延时电路。通过调整触发器的内部电容和电阻,可以实现不同的延时时间。延时电路在很多领域有应用,例如数字通信、自动控制以及计算机内存等。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用 1.单稳态触发器的原理: 单稳态触发器,也称为单稳多谐振荡器,是一个能够在输入信号发生变化时,产生一个固定时间的输出脉冲的元件。它有两个稳态,一个是触发态,另一个是稳定态。在触发态时,输出保持一个较低的电平;在稳定态时,输出保持一个较高的电平。当输入信号发生变化时,触发器进入触发态并产生一个固定宽度的输出脉冲,然后返回稳定态。 单稳态触发器的原理是通过RC电路的充放电过程实现的。当输入信号变为高电平时,电容开始充电,直到电压达到了触发器的门限电压。这时,触发器进入稳定态。而当输入信号变为低电平时,电容开始放电,直到电压降到触发器的触发电平。这时,触发器进入触发态并产生一个固定宽度的输出脉冲。 2.单稳态触发器的应用: -消抖器:将机械开关产生的抖动信号转换为一个稳定的输出信号。 -一次性多谐振荡器:使用单稳态触发器的稳定脉冲输出来控制多谐振荡器的频率,实现一个稳定的脉冲输出。 -电平传递:将一个短时脉冲信号转换为一个稳定的电平信号输出。 3.施密特触发器的原理: 施密特触发器,又称为滞回比较器,是一种具有正反馈的比较器。它的输入信号必须经过两个不同的阈值电平才能改变输出状态。施密特触发器有两个稳态,一个是高稳态,另一个是低稳态。当输入信号超过上阈值

电平时,触发器从低稳态切换到高稳态;当输入信号低于下阈值电平时,触发器从高稳态切换到低稳态。 施密特触发器的原理是利用正反馈产生滞回特性。当输入信号超过上阈值电平时,正反馈会加强这个变化,使得输出电平更快地从低电平切换到高电平。而当输入信号降低到下阈值电平时,正反馈会加强这个变化,使得输出电平更快地从高电平切换到低电平。 4.施密特触发器的应用: 施密特触发器常用于数字信号处理中的滤波和门控电路等应用。具体应用包括: -模数转换器:将模拟信号转换为数字信号时,需要滤除输入信号中的噪声和抖动。施密特触发器可以用来实现这个滤波功能。 -数字信号选择器:当多个数字信号输入时,施密特触发器可以用来实现对一些信号的优先级选择。 -闪烁消除器:施密特触发器可以用来检测输入信号的边沿,从而实现对输入信号的闪烁消除。 总之,单稳态触发器和施密特触发器是常用的数字电路元件,它们通过具有不同的工作原理来实现不同的功能。单稳态触发器能够产生固定时间的输出脉冲,广泛应用于电子计算机和通信系统中的数字电路设计中。而施密特触发器通过滞回比较器原理,将输入信号转换为两个阈值间的稳定输出,常用于滤波和门控电路等应用中。

555定时器单稳态触发器

先介绍下555定时器的基础知识,然后讲555定时器单稳态触发器 一、555定时电路 555定时电路的应用十分广泛,它由TTL集成定时电路和CMOS集成定时电路,这二者功能完全相同,不同之处是:TTL集成定时电路的驱动能力比CMOS集成定时电路大.. 1、555定时电路的组成 555定时电路是由三个5千欧电阻组成分压器、两个高精度电压比较器、一个基本R-S触发器、一个作为放电通路的管子及输出驱动电路组成。它的逻辑电路图为:如图(1)所示 它的逻辑符号为:如图(2)所示 功能描述:(功能表如表3所示) 当输入端R为低电平时,不管别的输入端为何种情况,输出为低电平,CMOS管工作。 当引脚6的输入电平大于2/3U DD 并且引脚2的输入电平大于1/3U DD ,输出为低电 平,CMOS管工作 当引脚6的电平小于2/3U DD 并且引脚2的输入电平大于1/3U DD, 输出为原状态. 当引脚2的电平小于1/3U DD, 电路输出为高电平,NMOS管关断.

例1.555集成电路,改变电压控制端(引脚5)的电压可改变( ) A.高触发端,低触发端的电平 B.555定时电路的高低电平 C.开关放电管的开关电平 D.置"0"端R的电平 答案为: A 例2.555定时电路R端的作用是什麽? 答:它的作用是:复"0".不管555定时电路是何种状态,只要R输入为低电平,输出即为低电平;只有它输入为高电平时定时电路才工作。 单稳态触发器具有下列特点:第一,它有一个稳定状态和一个暂稳状态;第二,在外来触发脉冲作用下,能够由稳定状态翻转到暂稳状态;第三,暂稳状态维持一段时间后,将自动返回到稳定状态。暂稳态时间的长短,与触发脉冲无关,仅决定于电路本身的参数。 单稳态触发器在数字系统和装置中,一般用于定时(产生一定宽度的脉冲)、整形(把不规则的波形转换成等宽、等幅的脉冲)以及延时(将输入信号延迟一定的时间之后输出)等。 一.用555定时器单稳态触发器 1. 电路组成及工作原理 (1)无触发信号输入时电路工作在稳定状态 当电路无触发信号时,v I保持高电平,电路工作在稳定状态,即输出端v O保持低电平,555内放电三极管T饱和导通,管脚7“接地”,电容电压v C为0V。(2)v I下降沿触发 当v I下降沿到达时,555触发输入端(2脚)由高电平跳变为低电平,电路被触发,v O由低电平跳变为高电平,电路由稳态转入暂稳态。 (3)暂稳态的维持时间 在暂稳态期间,555内放电三极管T截止,V CC经R向C充电。其充电回路为V →R→C→地,时间常数τ1=RC,电容电压v C由0V开始增大,在电容电压v C CC 上升到阈值电压之前,电路将保持暂稳态不变。

单稳态触发器 双稳态触发器 施密特触发器 张立恒个人理解总结

触发器 在实际的数字系统中往往包含大量的存储单元,而且经常要求他们在同一时刻同步动作,为达到这个目的,在每个存储单元电路上引入一个时钟脉冲(CLK)作为控制信号,只有当CLK到来时电路才被“触发”而动作,并根据输入信号改变输出状态。把这种在时钟信号触发时才能动作的存储单元电路称为触发器,以区别没有时钟信号控制的锁存器。 根据逻辑功能的不同特点,把触发器分为RS、JK、T、D等几种类型。 单稳态电路输出只有一个稳定状态,触发翻转后经过一段时间会回到原来的稳定状态,一般作固定脉冲宽度整形。 但由于这种电路必须具备在外部脉冲作用下,输出能产生一个具有恒定宽度和幅度的矩形脉冲,也就是使输出从原始状态翻转为另一种状态,但这是一个暂态现象,经过一段时间后,有回到初始状态,叫单稳态。 双稳态电路有两个稳定状态,触发翻转后会一直保持,有记忆效用,一般作存储器或计数器。多谐振荡器可以直接产生矩形脉冲信号, 它有两个稳定状态,在没有外来触发信号的作用下。电路始终处于原来的稳定状态。由于它具有两个稳定状态,故称为双稳态电路。在外加输入触发信号作用下,双稳态电路从一个稳定状态翻转到另一个稳定状态。 施密特触发器状态转换过程中的正反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。 多谐振荡器是没有稳定状态的输出,一旦给电就会在输出端得到不停变换的0和1,变换的频率决定于电阻电容的参数。

多谐振荡器是一种自激振荡电路,不需要外加输入信号,就可以自动地产生出矩形脉冲。555定时器可以组成多谐振荡器,用石英晶体也定时器可以组成多谐振荡器。石英晶体振荡器的特点是f o的稳定性极好。 单稳态和施密特可以对波形信号进行变换和整形 施密特触发器和单稳态触发器,虽然不能自动地产生矩形脉冲,但却可以把其它形状的信号变换成为矩形波,为数字系统提供标准的脉冲信号。

单稳态触发器与施密特触发器原理及应用

单稳态触发器与施密特触发器原理及应用单稳态触发器(Monostable Multivibrator)是一种具有两个稳态(稳态1和稳态2)的触发器,但在激励条件改变后,只能保持一种稳态的触发器。单稳态触发器在输入信号由低电平(稳态1)变为高电平时,输出会产生一个固定的时间延迟脉冲,然后返回到低电平(稳态2)。在没有输入信号的情况下,输出稳定在稳态2的低电平状态。 单稳态触发器的原理是基于RC(电阻-电容)延迟时间。输出状态由电容器充电和放电的时间决定。当输入信号由低电平变为高电平时,电容器开始充电。当输入信号保持高电平时,电容器继续充电,直到达到一些阈值电压。到达该阈值电压后,输出状态发生翻转,输出低电平脉冲。然后电容器通过放电电阻放电,直到电容器完全放电,输出回到稳态2单稳态触发器的应用很广泛。其中一个常见的应用是产生固定宽度的脉冲。例如,当需要在输入信号上产生一个固定时间的脉冲来控制其他电路的操作时,可以使用单稳态触发器。另一个应用是作为计时电路中的一部分,例如倒计时器或延时器。 施密特触发器(Schmitt Trigger)是一种具有两个稳态的触发器,反馈电路具有正反馈特性。在输入信号的幅值超过一定阈值电压时,输出发生翻转。施密特触发器可以解决输入信号噪声问题,而单稳态触发器则没有这种功能。 施密特触发器的原理是基于反馈电路,此电路具有两个阈值电压:上阈值电压(Vth)和下阈值电压(Vtl)。当输入信号的幅值大于上阈值电压时,输出状态翻转为高电平;当输入信号的幅值小于下阈值电压时,输

出状态翻转为低电平。输入信号的变化必须超过上阈值电压或下阈值电压的差值才能引起输出状态的改变。 施密特触发器的应用也很广泛。一个常见的应用是用于数字信号处理中的信号整形。施密特触发器可以将不稳定的输入信号转换为稳态的输出信号。另一个应用是在电路中消除噪声,例如用于消除开关接点引起的抖动。 综上所述,单稳态触发器和施密特触发器都是常见的触发器类型。单稳态触发器用于产生固定宽度的脉冲和计时电路,而施密特触发器用于信号整形和消除噪声。了解它们的原理和应用有助于在电子设计中选择适当的触发器。

单稳态触发器工作过程

单稳态触发器工作过程 单稳态触发器是数字电路中常见的一种触发器,也被称为单稳态多谐振荡器。它在应用中具有重要的作用,可以用于信号的延时、脉冲的整形、频率的分频等。本文将详细介绍单稳态触发器的工作过程及其应用。 一、单稳态触发器的基本概念 单稳态触发器是一种具有两个稳定状态的触发器,其中一个稳定状态为触发状态(也称为非稳态),另一个稳定状态为稳态。在触发状态下,当输入信号满足特定条件时,触发器会自动切换到稳态,并在一定时间后恢复到触发状态。这种触发器的工作过程可以用一个简单的模型来描述。 二、单稳态触发器的工作原理 单稳态触发器通常由两个互补的非门和一个RC电路组成。当输入信号触发器为高电平时,称为触发状态;当输入信号为低电平时,称为稳态。在触发状态下,输出信号为高电平;在稳态下,输出信号为低电平。当触发状态下输入信号发生改变时,触发器会进入稳态,并在一定时间后返回触发状态。 三、单稳态触发器的工作过程 单稳态触发器的工作过程可以分为触发过程和稳态过程两个阶段。 1. 触发过程

当输入信号从低电平变为高电平时,触发器进入触发状态。在这个阶段,输出信号保持高电平,RC电路开始充电。触发器的稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。 2. 稳态过程 当RC电路充电到一定程度后,触发器会自动从触发状态切换到稳态。在稳态下,输出信号保持低电平,RC电路继续充电直到充满。稳态过程的持续时间由RC电路的参数决定,可以通过改变RC电路的电阻和电容值来控制。 四、单稳态触发器的应用 单稳态触发器在数字电路中有广泛的应用。以下是一些常见的应用场景: 1. 脉冲整形:单稳态触发器可以将输入信号的突变部分整形为规整的脉冲信号,用于数字电路的输入或输出。 2. 信号延时:通过调整RC电路的参数,可以实现对输入信号的延时。这在某些特定的应用中非常有用,例如在数据传输中,可以利用单稳态触发器对信号进行同步。 3. 频率分频:通过将单稳态触发器与计数器等组合使用,可以实现对输入信号频率的分频,用于时钟信号的处理。

555单稳态触发原理

1.单稳态触发器的工作原理 单稳态触发器的特点是电路有一个稳定状态和一个暂稳状态。在触发信号作用下,电路将由稳态翻转到暂稳态,暂稳态是一个不能长久保持的状态,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态,并在输出端获得一个脉冲宽度为tw的矩形波。在单稳态触发器中,输出的脉冲宽度tw,就是暂稳态的维持时间,其长短取决于电路的参数值。 由555构成的单稳态触发器电路及工作波形如图1所示。图中R,C为外接定时元件,输人的触发信号ui接在低电平触发端(2脚)。 稳态时,输出uo为低电平,即无触发器信号(ui为高电平)时,电路处于稳定状态——输出低电平。在ui负脉冲作用下,低电平触发端得到低于(1/3)Vcc,触发信号,输出uo为高电平,放电管VT截止,电路进入暂稳态,定时开始。 在暂稳态期间,电源+Vcc→R→C→地,对电容充电,充电时间常数T=RC,uc按指数规律上升。当电容两端电压uc上升到(2/3)Vcc后,6端为高电平,输出uo变为低电平,放电管VT导通,定时电容C充电结束,即暂稳态结束。电路恢复到稳态uo为低电平的状态。当第二个触发脉冲到来时,又重复上述过程。工作波形图如图1(b)所示。 图1 单稳态触发器电路及工作波形 可见,输人一个负脉冲,就可以得到一个宽度一定的正脉冲输出,其脉冲宽度tw取决于电容器由0充电到(2/3)Vcc,所需要的时间。可得 这种电路产生的脉冲宽度莎w与定时元件R,C大小有关,通常R的取值为几百欧至几兆欧,电容取值为几百皮法到几百微法。 2.简易触摸开关电路 如图2所示为一简易触摸开关电路,图中IC是集成555定时器,它构成单稳态触发器,当用手触摸一金属片,低电平触发端得到低于(1/3)Vcc触发信号,输出uo为高电平,发光二极管亮,放电管VT截止,电路进入暂稳态,定时开始。经过一定时间tw=1.1RC,发光二极管熄灭.该原理电路可用于床头灯、卫生间等场所。

物理学实验讲义——单稳态触发器与施密特触发器

实验七单稳态触发器与施密特触发器 一、实验目的 1、掌握使用集成门电路构成单稳态触发器的基本方法 2、熟悉集成单稳态触发器的逻辑功能及其使用方法 3、熟悉集成施密特触发器的性能及其应用 二、实验原理 在数字电路中常使用矩形脉冲作为信号,进行信息传递,或作为时钟信号用来控制和驱动电路,使各部分协调动作 集成六施密特触发器CC40106 如图7-1为其逻辑符号及引脚功能, 它可用于波形的整形,也可作反相器 或构成单稳态触发器和多谐振荡器。 图7-1 CD40106引脚排列(1)将正弦波转换为方波,如图7-2所示。 v i v o v i v O (a)(b) 图7-2 正弦波转换为方波 (2)构成多谐振荡器,如图7-3所示。

v o 图7-3 多谐振荡器 (3)构成单稳态触发器 图7-4(a)为下降沿触发;图7-4(b)为上升沿触发。 v i v O V DD v i v O V SS (a)(b) 图7-4 单稳态触发器 三、实验设备与器件 1、数字实验箱 2、信号发生器 3、示波器 4、万用表 5、CD40106 2CK15电位器、电阻、电容若干 四、实验内容 1、按图7-2接线,构成整形电路,输入信号可由信号发生器提供,图中串联的2K电阻起限流保护作用。信号发生器输出信号:正弦信号、频率1KHZ,调节信号电压4V(Vpp)和7V(Vpp)。用示波器CH1、CH2分别观察Vi和Vo 的波形,表在下表画出但输入信号为7V(Vpp)时Vi和Vo的波形。 (设置CH1:垂直灵敏度:2V 时间灵敏度:200us) (设置CH2:垂直灵敏度:2V 时间灵敏度:200us) 2、为避免实验接线影响,先将信号发生器、示波器、芯片CD40106和实验箱所有接线去掉。按图7-3接线,用示波器观测输出波形,测定振荡频率。 五、实验报告:总结单稳态触发器及施密特触发器的特点及其应用。

单稳态触发器脉宽计算公式

单稳态触发器脉宽计算公式 单稳态触发器脉宽计算公式是电子学的基础公式之一,它被广泛应用于各种电子电路中,特别是数字电子电路和计时电路中。本文将简要介绍单稳态触发器及其脉宽计算公式的基本知识。 一、单稳态触发器简介 单稳态触发器是一种基本的数字电子电路元件,用于处理数字信号的稳态和脉冲信号。它有一个输入和两个输出,分别为Q和Q'(Q和Q‘互补)。单稳态触发器有两种类型,一种是正沿触发型(也称为T型触发器,它在T型脉冲信号到来时对输入进行稳态转换),另一种是负沿触发型(也称为D型触发器,它在D型脉冲信号到来时对输入进行稳态转换)。 单稳态触发器的工作原理是利用一个电容器和一个电阻器构成的RC电路来实现稳态和脉冲信号的处理功能。当输入信号发生变化时,电容器会接收到新的电荷,并在一段时间内保持电荷状态,从而控制输出信号状态的稳定和变化。 二、单稳态触发器脉宽计算公式 单稳态触发器的脉宽计算公式是由RC电路的电荷放电时间和电容器电量计算得到的。当单稳态触发器接收到输

入信号后,它会在一定时间内自动从稳态转换为脉冲信号,这个时间就是脉宽。 单稳态触发器脉宽计算公式如下: t = 1.1 x R x C 其中,t是脉宽,单位为秒;R是电阻器的阻值,单位为欧姆;C是电容器的电容值,单位为法拉。 在实际应用中,我们需要根据具体的电路参数来优化单稳态触发器的设计和脉宽计算。一般来说,电阻器的阻值和电容器的电容值越大,脉宽就越长,反之亦然。因此,在进行单稳态触发器脉宽计算时,我们需要仔细考虑电路参数的选择和调整,以保证电路的稳定性和性能。 三、单稳态触发器的应用 单稳态触发器的应用非常广泛,特别是在数字电子电路和计时电路中。例如,它可以用于计数器、时序逻辑电路、稳定振荡器、触发器、计时器等电路中。此外,在模拟电子电路中,单稳态触发器也可以用于各种信号处理和控制任务中,例如滤波器、振荡器、放大器等。 总之,单稳态触发器是一种非常重要的电子电路元件,它的脉宽计算公式是电路设计和优化的基础。在实际应用中,我们需要根据具体的电路参数来选择和调整单稳态触发器的设计和脉宽计算,以满足要求的电路性能和稳定性。

555单稳态触发器暂稳态和稳态的工作时间

555单稳态触发器暂稳态和稳态的工作时间 1.引言 1.1 概述 概述 单稳态触发器是一种重要的数字电路元件,在现代电子器件和通信系统中被广泛应用。它可以在时序控制、频率分频、脉冲变换等方面发挥重要作用。单稳态触发器具有两个稳态状态,即暂稳态和稳态。暂稳态是指在输入触发脉冲作用下,触发器输出从一个稳态状态转变到另一个稳态状态的过程,而稳态是指触发器输出保持在某个稳定的状态。 本文将重点探讨555单稳态触发器的暂稳态和稳态的工作时间。首先,我们将介绍单稳态触发器的基本原理和结构。然后,我们将详细讨论暂稳态的工作时间要点,包括输入触发脉冲的宽度和对称性对暂稳态时间的影响。接着,我们将讨论稳态的工作时间要点,其中包括稳定状态的保持时间和复位时间。 通过深入研究555单稳态触发器的暂稳态和稳态的工作时间,我们可以更好地理解该器件的性能和特性,为电子设计和应用提供有效的参考和指导。同时,我们也可以进一步优化触发器的工作性能,提高电路的稳定性和可靠性。 在接下来的章节中,我们将逐一介绍单稳态触发器的相关内容,并详细分析暂稳态和稳态的工作时间要点。通过阅读本文,读者将有机会深入了解555单稳态触发器,并在实际应用中灵活运用,从而为电子技术领域的发展贡献自己的力量。

1.2文章结构 文章结构部分应该包含以下内容: 文章结构部分旨在介绍整篇文章的组织结构,以便读者了解文章内容的脉络。本文共分为引言、正文和结论三个主要部分。 引言部分将简要概述文章的主题和目的,引领读者对文章的整体背景有所了解。同时,还将介绍文章结构的安排,让读者对整个文章的脉络和逻辑有所把握。 正文部分是文章的核心部分,将详细介绍如何理解和应用555单稳态触发器的暂稳态和稳态的工作时间。其中,2.1节将对单稳态触发器进行介绍,包括原理、结构和工作方式等内容;2.2节将重点讨论暂稳态的工作时间要点,包括暂稳态的产生、持续时间的计算方法等;2.3节将重点讨论稳态的工作时间要点,包括稳态的维持时间、重复周期等。 结论部分将对暂稳态和稳态的工作时间进行总结和归纳,强调其重要性和应用价值。其中,3.1节将总结暂稳态的工作时间的关键要点,并提出进一步的研究方向和应用前景;3.2节将总结稳态的工作时间的关键要点,并探讨其在实际应用中的意义和优势。 通过以上的组织结构,读者可以清晰了解文章的整体框架和内容安排,方便查阅和理解。同时,文章结构的合理安排还能够使文章的逻辑性和连贯性更加突出,增强读者的阅读体验和理解效果。 1.3 目的 本文的目的是对555单稳态触发器在暂稳态和稳态下的工作时间进行深入的研究和探讨。通过对单稳态触发器的介绍,以及对暂稳态和稳态工

555单稳态触发器的设计仿真实例

555单稳态触发器的设计仿真实例 先来看一下555单稳态触发器的原理。555单稳态触发器是一种基于555定时器的电路,它可以根据输入信号的变化在输出端产生一个稳定时间的脉冲。当输入信号发生变化时,555单稳态触发器的输出端会短暂地产生一个高电平或低电平脉冲,持续时间由外部元件控制。 在设计555单稳态触发器的电路时,我们需要确定以下几个参数: 1.输入信号的稳定时间; 2.输入信号的触发电平; 3.输出脉冲的持续时间。 下面是一个555单稳态触发器的设计仿真实例。 首先,我们需要准备以下元件: 1.555定时器芯片; 2.电容; 3.电阻; 4.输入信号源。 接下来,我们按照以下步骤进行设计仿真: 1.连接电路。将555芯片插入插座,并将其他元件按照电路图连接到合适的脚位上。确保连接正确,避免短路或接错的情况。

2.设置电路参数。根据设计要求,确定输入信号的触发电平和触发时间,并根据实际需要选择合适的电容和电阻数值。将这些参数输入到仿真 软件中。 3.运行仿真。在仿真软件中运行电路仿真程序,观察输入信号和输出 脉冲的变化。可以使用示波器或者其他合适的工具进行监测。 4.调试和优化。根据仿真结果,进行必要的调试和优化。可以调整电 容和电阻的数值,改变电路的结构,直到达到设计要求。 5.评估电路性能。根据仿真结果,评估电路的性能是否满足设计要求。如果需要更高的精度或者更长的稳定时间,可以进一步优化电路。 通过以上步骤,我们可以设计出满足要求的555单稳态触发器电路, 并在仿真软件中进行测试和验证。需要注意的是,电路仿真只是一个初步 的设计阶段,实际制作时也要根据实际情况进行调整和优化。 总结起来,设计555单稳态触发器的关键是确定输入信号的稳定时间、触发电平和输出脉冲的持续时间,并根据这些参数选择合适的电容和电阻 数值。通过仿真软件的辅助,可以方便地进行设计和测试,提高设计的准 确性和效率。在实际制作时,还需要结合实际情况进行调试和优化,以保 证电路的性能和可靠性。

单稳态触发器

单稳态触发器 我们知道,由于触发器有两个稳定的状态,即0和1,所以触发器也被称为双稳态电路。与双稳态电路不同,单稳态触发器惟独一个稳定的状态。这个稳定状态要么是0,要么是1。单稳态触发器的工作特点是: (1)在没有受到外界触发脉冲作用的状况下,单稳态触发器保持在稳态; (2)在受到外界触发脉冲作用的状况下,单稳态触发器翻转,进入“暂稳态”。假设稳态为0,则暂稳态为1。(3)经过一段时光,单稳态触发器从暂稳态返回稳态。单稳态触发器在暂稳态停歇的时光仅仅取决于电路本身的参数。微分型单稳态触发器[图6.3.1]包含阻容元件构成的微分电路。由于CMOS门电路的输入电阻很高,所以其输入端可以认为开路。电容和电阻构成一个时光常数很小的微分电路,它能将较宽的矩形触发脉冲变成较窄的尖触发脉冲。稳态时,等于0,等于0,等于,等于0,等于,电容两端的电压等于0。触发脉冲到达时,大于,大于,等于0,等于0,等于,电容开头充电,电路进入暂稳态。当电容两端的电压升高到时,即升高到时,等于0,电路退出暂稳态,电路的输出复原到稳态。明显,输出脉冲宽度等于暂稳态持续时光。电路退出暂稳态时,已经回到0(这是电容和电阻构成的微分电路打算的),所以等于,等于,电容通过输入端的庇护电路快速放电。当下降到时,内部也复原到稳态。 图6.3.1 微分型单稳态触发器 图6.3.5 积分型单稳态触发器 积分型单稳态触发器[图6.3.5]包含阻容元件构成的积分电路。稳态时,等于0,、和等于。触发脉冲到达时,等于,等于,仍等于,等于,电容开头通过电阻放电,电路进入暂稳态。当电容两端的电压下降到时,即下降到时,等于,电路退出暂稳态,电容的放电过程要持续到触发脉冲消逝。回到后,又变成,电容转为充电。当升高到后,电路内部也复原到稳态。 图6.3.8 集成单稳态触发器74121的规律图 第1页共2页

555单稳态触发器脉冲宽度计算

555单稳态触发器脉冲宽度计算 555单稳态触发器是一种常用的数字电路元件,用于产生固定宽度的脉冲。本文将详细介绍555单稳态触发器的原理和脉冲宽度计算方法。 555单稳态触发器是由三个电路组成:比较器、RS触发器和放大器。其中比较器用于比较输入电压和参考电压,RS触发器用于存储输入信号的状态,放大器用于放大输出信号。 在555单稳态触发器中,当输入电压发生变化时,比较器会将比较结果传递给RS触发器。如果输入电压高于参考电压,RS触发器的Q 输出变为高电平;如果输入电压低于参考电压,RS触发器的Q输出变为低电平。当RS触发器的Q输出发生变化时,放大器会放大输出信号。 脉冲宽度是指脉冲信号的持续时间,可以通过改变电路元件的参数来调节脉冲宽度。在555单稳态触发器中,脉冲宽度的计算公式为:T = 1.1 * R * C 其中T为脉冲宽度,R为电阻的阻值,C为电容的电容值。根据这个公式,我们可以根据所需的脉冲宽度来选择合适的电阻和电容值。 例如,如果希望得到一个1秒钟的脉冲宽度,可以选择一个100kΩ的电阻和一个10μF的电容。代入公式计算,得到:

T = 1.1 * 100000 * 0.00001 = 1秒 通过这种方式,我们可以根据需要来计算出所需的脉冲宽度,并选择合适的电阻和电容值。 除了通过改变电阻和电容值来调节脉冲宽度外,还可以通过改变输入电压的幅度来调节脉冲宽度。当输入电压的幅度增大时,脉冲宽度会变长;当输入电压的幅度减小时,脉冲宽度会变短。 还可以通过改变555单稳态触发器的工作模式来调节脉冲宽度。555单稳态触发器有两种工作模式:稳态模式和触发模式。在稳态模式下,脉冲宽度是固定的;在触发模式下,脉冲宽度可以根据输入信号的变化而变化。 总结起来,555单稳态触发器是一种常用的数字电路元件,用于产生固定宽度的脉冲。脉冲宽度可以通过改变电阻和电容值、改变输入电压的幅度以及改变工作模式来调节。

相关主题
相关文档
最新文档