解三角形常见题型
解三角形周长面积范围类题型

解三角形周长面积范围类题型解三角形与不等式一、解答题(共10小题)1.△ABC的内角A,B,C的对边分别为a,b,c,已知:Ⅰ)求角A的大小;Ⅱ)若a+b+c=3,求△ABC的面积的最大值。
2.在△ABC中,角A,B,C所对的边分别为a,b,c,且cos2B+sin2B=1,<B<π/2。
1)求B;2)若a+b=3,c=2,求△ABC面积的最大值。
3.设△ABC的内角A,B,C所对的边分别是a,b,c,且b^2=a(c-a)。
1)求角B的大小;2)设b=x,求△ABC周长的最大值。
4.△ABC的内角A,B,C的对边分别为a,b,c,已知:1)求A;2)若a=1,求△ABC面积的最大值。
5.△ABC的内角A,B,C的对边分别是a,b,c,且c^2=a^2+b^2-2abcosC。
Ⅰ)求∠C的值;Ⅱ)若a+b+c=6,求△ABC面积的最大值。
6.在△ABC中,角A,B,C的对边分别为a,b,c,且a^2=b(c-a)。
1)求角A的大小;2)若a+b+c=6,求b+c的最大值。
7.△ABC的内角A、B、C的对边分别为a、b、c,设(sinB-sinC)^2=sin^2A-sinBsinC。
1)求A;2)当a=6时,求其面积的最大值,并判断此时△ABC的形状。
8.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且c^2=a^2+b^2-2abcosC。
1)求角C的大小;2)若c=3,求a+b的取值范围。
9.在△ABC中,内角A,B,C对应的边分别为a,b,c,且满足sin^2A=(b+c-a)(a+b-c)。
1)求sin2A;2)若a=1,△ABC的面积为2,求b+c的值。
10.已知锐角△ABC面积为S,∠A,∠B,∠C所对边分别是a,b,c,∠A,∠C平分线相交于点O,且AO=OC。
1)求∠B的大小;2)△AOC周长的最大值。
1.根据三角形面积公式,可以得出△ABC 的面积最大值为 acsinB,其中 B 为∠ABC 的角度。
解三角形常见题型归纳

解三角形常见题型归纳正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。
题型之一:求解斜三角形中的基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.1. 在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32-C .32D .23 【答案】D2.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
3.(1)在∆ABC 中,已知=a c 060=B ,求b 及A ;(2)在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πBC .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值.分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221==AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去) 故BC =2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B ,故2sin A =1470sin =A 在△ABC 中,已知a =2,b =22,C =15°,求A 。
专题 三角形六大重难题型(期末真题精选)(解析版)

专题01 三角形六大重难题型一.中线分周长(分类讨论)1.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为12,则△BCD的周长是10.试题分析:先根据三角形的中线、线段中点的定义可得AD=CD,再根据三角形的周长公式即可求出结果.答案详解:解:∵BD是△ABC的中线,即点D是线段AC的中点,∴AD=CD.∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.所以答案是:10.2.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC的周长是22,则AD的长为5.试题分析:根据三角形的周长公式列式计算即可得解.答案详解:解:∵△ABD与△ACD的周长分别是17和15,∴AB+BC+AC+2AD=17+15=32,∵△ABC的周长是22,∴AB+BC+AC=22,∴2AD=32﹣22=10,∴AD=5.所以答案是:5.3.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为2 cm.试题分析:根据三角形中线的定义得到BD=CD,求得△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,于是得到结论.答案详解:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.二.中线之等分面积4.如图,已知△ABC中,点D、E分别是边BC、AB的中点.若△ABC的面积等于8,则△BDE的面积等于()A.2B.3C.4D.5试题分析:根据三角形的面积公式即可得到结论.答案详解:解:∵点D是边BC的中点,△ABC的面积等于8,∴S△ABD=12S△ABC=4,∵E是AB的中点,∴S△BDE=12S△ABD=12×4=2,所以选:A.5.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为1cm2.试题分析:易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.答案详解:解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACD=12S△ABC=12×4=2(cm2),同理S△BDE=S△CDE=12S△BCE=12×2=1(cm2),∴S△BCE=2(cm2),∵F为EC中点,∴S△BEF=12S△BCE=12×2=1(cm2).所以答案是1.三.三角形的高的辨别6.如图,△ABC中,AD⊥BC于D,点E在CD上,则图中以AD为高的三角形有6个.试题分析:由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.答案详解:解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.所以答案是:6.7.如图,△ABC中,BC边所在直线上的高是线段AD.试题分析:根据三角形的高的概念解答即可.答案详解:解:△ABC中,BC边所在直线上的高是线段AD,所以答案是:AD四.多边形的内角和与外角和8.若一个多边形的内角和是540°,则这个多边形是五边形.试题分析:根据多边形的内角和公式求出边数即可.答案详解:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,所以答案是:五.9.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是()A.240°B.360°C.540°D.720°试题分析:根据四边形的内角和及三角形的外角定理即可求解.答案详解:解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,所以选:B.10.一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是()A.4B.6C.7D.9试题分析:设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.答案详解:解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).所以选:B.五.三角形的内角和11.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°试题分析:由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.答案详解:解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,所以选:A.12.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD 分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°试题分析:分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.答案详解:解:由折叠的性质知:∠BPD=∠APD=12∠BP A,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=12(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠P AC=∠C=70°,则∠APC=40°.∵∠BPD=12(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠P AC,则∠APC=55°.∵∠BPD=12(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.所以选:D.13.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数为()A.19°B.20°C.22°D.25°试题分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=12(∠A﹣∠D),然后代入数据计算即可得解.答案详解:解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=12(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=12(48°﹣10°)=19°.所以选:A.14.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°试题分析:根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF =∠2+∠D,求出∠1=∠B+∠2+∠D即可.答案详解:解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,所以选:D.15.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°试题分析:先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.答案详解:解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,所以选:A.16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC交AD于E,求∠4的度数.试题分析:首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.答案详解:解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.17.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.试题分析:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.由“直角三角形的两个锐角互余”的性质知,x+3x=90°.通过解方程即可求得x的值.答案详解:解:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.则x+3x=90°,即4x=90°,解得,x=22.5°,即这个直角三角形中最小的一个角等于22.5°.所以答案是:22.5.六.新定义类18.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“2倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.试题分析:(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.答案详解:解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,所以答案是:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.19.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为2倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为22.5°<α<30°.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.试题分析:(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.答案详解:解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,所以答案是:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.所以答案是22.5°<α<30°.(3)∵AE 平分∠BAO ,AF 平分∠AOG ,∴∠EAB =∠EAO ,∠OAF =∠F AG ,∴∠EAF =∠EAO +∠OAF =12(∠BAO +∠OAG )=90°,∵△EAF 是4倍角三角形,∠F 显然大于∠E ,∴∠E =14×90°或15×90°, ∵AE 平分∠BAO ,OE 平分∠BOQ ,∴∠E =12∠ABO ,∴∠ABO =2∠E ,∴∠ABO =45°或36°.20.在△ABC 中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称△ABC 为n 倍角三角形.例如,在△ABC 中,∠A =80°,∠B =75°,∠C =25°,可知∠B =3∠C ,所以△ABC 为3倍角三角形.(1)在△ABC 中,∠A =55°,∠B =25°,则△ABC 为 4 倍角三角形;(2)若△DEF 是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求△DEF 的最小内角;(3)若△MNP 是2倍角三角形,且∠M <∠N <∠P <90°,请直接写出△MNP 的最小内角的取值范围.试题分析:(1)由∠A =55°,∠B =25°,可求∠C 的度数,发现内角之间的倍数关系,得出答案,(2)△DEF 是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围. 答案详解:解:(1)∵∠A =55°,∠B =25°,∴∠C =180°﹣∠A ﹣∠B =100°,∴∠C =4∠B ,所以答案是:4(2)设最小的内角为x °,则3倍角为3x °①当最小的内角的度数是3倍内角的余角的度数的13时, 即:x =13(90°﹣3x ),解得:x =15°②3倍内角的度数是最小内角的余角的度数的13时, 即:3x =13(90°﹣x ),解得:x =9°,因此,△DEF 的最小内角是9°或15°.(3)设∠M 的度数为x ,则其它的两个角分别为2x ,(180°﹣3x ),由∠M <∠N <∠P <90°可得:2x <90°且180°﹣3x <90°且2x ≠180°﹣3x∴30°<x <45°且x ≠36°.答:△MNP 的最小内角的取值范围是30°<x <45°且x ≠36°.21.若△ABC 中刚好有∠B =2∠C ,则称此三角形为“可爱三角形”,并且∠A 称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( )A .45°或36°B .72°或36°C .45°或72°D .45°或36°或72° 试题分析:分设三角形底角为α,顶角为2α或设三角形的底角为2α,顶角为α,根据三角形的内角和为180°,得出答案.答案详解:解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,所以选:C.22.若三角形满足一个角α是另一个角β的3倍,则称这个三角形为“智慧三角形”,其中α称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是60或90度.试题分析:根据“智慧三角形”及“智慧角”的意义,列方程求解即可.答案详解:解:在有一个角为60°的三角形中,①当另两个角分别是100°、20°时,“智慧角”是60°;②α+β=120°且α=3β,∴α=90°.,即“智慧角”是90°.所以答案是:60或90.。
解三角形的知识点和题型汇总及练习

解三角形的知识点和题型汇总及练习一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
高中数学经典题型--解三角形(含详细答案)

高中数学经典题型解三角形【编著】黄勇权【第1题】在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c , 且sinC bsinBasinA = 3a32 sinB + c求:角C 的大小【第1题】答案:已知:sinCbsinB asinA += 3a 32 sinB + c等号左边:因为分子、分母每一项含有sin ,故用正弦定理,将sin 替换成边即:cb *b a *a += 3a 32 sinB +c 特别提示: 等号右边的sinB 不能换成边b , 这是因为sinB=R 2b ,这样就会多出R 21,等号两边同时乘以ca 2+b 2 = 3ac 32 sinB +c 2将c 2移到等号左边,a 2+b 2- c 2 = 3ac 32 sinB由于等号左边是a 2+b 2-c 2,只能构建cosC ,故等号两边同时除以2ab ,这一步非常重要。
2a b c b a 222-+ = b 3c 3 sinBc osC = b 3c 3 sinB等号右边,左边分子含c ,分母含b ,故用正弦定理把c 、b 换成sinC ,sinB 这一步非常重要,很多同学想不到,因此就解不出来。
c osC = B sin 3sinC 3 sinBc osC =33 sinCtanC= 3 即C=60°经典技巧:对于正弦定理,很多同学都不知道什么时候能用,什么时候不能用,其实,在运用正弦定理将sin与对应边换时,一定要遵循能够消除2R为原则。
例如1:acosB+bcosA=2c 【能用】由正弦定理:a=2RsinA,b=2RsinB,c=2RsinC代入上式,2RsinA*cosB+2RsinB*cosA=2*2RsinC因为每一项都有2R,故能消除2R,化简:sinA*cosB+sinB*cosA=2sinC所以能用正弦定理。
例如2:bcosA+sinB=3c 【不能用】由正弦定理:b=2RsinB,c=2RsinC代入上式,得:2RsinB*cosA+sinB=2RsinC*3因为第二项不含2R,无法消除2R, 所以不能用正弦定理例如3:sin2A+sin2B=2sinBsinC 【能用】a b c(R 2a )2 + (R 2b )2 = 2 *R 2b *R 2c因为每一项都有(R 21)2,故能消除2R ,化简得:a 2 +b 2=2bc 所以能用正弦定理 例如4:acosB+bcosA=4bc 【能用】由正弦定理:a=2RsinA ,b=2RsinB ,c=2RsinC 代入上式,2RsinA*cosB+2RsinB*cosA=4b*2RsinC因为要消除2R ,所以只能代入一项,要么是b 或c 而等号右边化简后sinA*cosB+sinB*cosA=sin (A+B )=sinC所以我们只把c 换为sinC ,而b 不动。
解三角形(角平分线问题问题)(典型例题+题型归类练)(原卷版)

专题05 解三角形(角平分线问题问题)(典型例题+题型归类练) 一、必备秘籍角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c 核心技巧1:内角平分线定理:AB AC BD DC =或AB BDAC DC= 核心技巧2:等面积法(使用频率最高)ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A A AB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯ 核心技巧3:边与面积的比值:ABD ADCSAB AC S=核心技巧4:角互补:ADB ADC π∠+∠=⇒cos cos 0ADB ADC ∠+∠=在ADB ∆中有:222cos 2DA DB AB ADB DA DB +-∠=⨯;在ADC ∆中有:222cos 2DA DC AC ADC DA DC+-∠=⨯二、典型例题例题1.如图,已知AD 是ABC ∆中BAC ∠的角平分线,交BC 边于点D .(1)用正弦定理证明:AB BDAC DC=; (2)若120BAC ∠=︒,2AB =,1AC =,求AD 的长.第(2)问思路点拨:本小题已知,,,求的长.可利用第(1)问结论解答过程:根据余弦定理,,即,解得利用第(1)问结论由(1)知∴,得,;在与中,根据余弦定理得,且解得,即的长为.例题2.在ABC 中,内角,,A B C 所对的边分别为,,a b c 且πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭.(1)求角A 的大小;(2)若3AB =,1AC =,BAC ∠的内角平分线交BC 于点D ,求AD .第(2)问思路点拨:由(1)知,求角平分线长,,可优先考虑面积公式解答过程:由(1)知,由角平分线面积公式∴,∴.代入数据计算例题3.在ABC 中,3,AB =4,BC =线段BD 是B ∠的角平分线,且 6.ABDS =求BCD S △.思路点拨:已知在中,线段是的角平分线,且涉及角平分线问题,但是不知的大小,不适合直接用面积公式,但知,可考虑面积和边长的关系解答过程:平分由,代入代入例题4.在ABC中,D是BC的中点,1AB=,2AC=,32 AD=.(1)ABC的面积为________.(2)若AE为BAC∠的角平分线,E在线段BC上,则AE的长度为________.第(2)问思路点拨:由(1)知,可优先考虑面积公式解答过程:由可得即,从而.代入,计算例题5.在△ABC 中, AM 是BAC ∠的角平分线, 且交BC 于M . 已知23,2,3AM BM MC ===, 则AC = __________;思路点拨:在中,是的角平分线, 且交于. 已知,涉及到角平分线,又,可利用,得到的关系解答过程:由是的角平分线,又,得,设,则因为,则,利用余弦定理代入得:,整理得,解得或(舍).所以.利用角互补关系(不适合面积公式)三、题型归类练1.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.请你认真思考,用三角形内角平分线定理解决问题:已知ABC 中,AD 为角平分线,3AB =,4AC =,5BC =,则AD =( )A .127B .157C .7D .72.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,()(sin sin )(sin sin )a b A B c C B +-=+,若角A 的内角平分线AD 的长为2,则4b c +的最小值为( ) A .10B .12C .16D .183.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin a A c C b c B =+-,角A 的角平分线交BC 于点D ,且3AD c b ==,则a 的值为( )A .72BC .3D4.在ABC 中,CD 是ACB ∠的角平分线且4,||AB AD AD ==若||3CD =,则CDA ∠=__________,ABC的面积为__________.5.在ABC 中,60A ∠=,∠A 的角平分线与BC 边相交于D .AD =BC =AB 边的长度为___.6.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C +=. (1)求角A 的大小;(2)若2BD DC =,AD =2,且AD 平分∠BAC ,求△ABC 的面积.注:三角形的内角平分线定理:在△PQR 中,点M 在边QR 上,且PM 为∠QPR 的内角平分线,有PQ QMPR MR=.7.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos cos (sin sin )sin 0C A A B B +-+=. (1)求C ;(2)若a ,b 为方程210200x x -+=的两个实数根,且C 的角平分线交AB 于点D ,求CD .8.已知△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,BD 为∠ABC 的角平分线.(1)求证:::AD AB CD CB =;(2)若2BD =且26c a ==,求△ABC 的面积.9.已知△ABC 中,,,a b c 分别为内角,,A B C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++. (1)求角A 的大小;(2)设点D 为BC 上一点,AD 是ABC 的角平分线,且2AD =,3b =,求ABC 的面积.10.已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,点D 在BC 边上,AD 是角平分线,222sin sin sin sin sin C B C B A ++⋅=,且ABC 的面积为(1)求A 的大小及AB AC ⋅的值; (2)若4c =,求BD 的长.11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,AD 为∠BAC 的角平分线,已知2c =且222223a c b cosA bc AD ⎛⎫+-=-= ⎪⎝⎭,(1)求△ABC 的面积;12.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,a =1b =,c =M 是BC 上的点. (1)若AM 是BAC ∠的角平分线,求BMCM的值; (2)若AM 是BC 边上的中线,求AM 的长.13.已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 在AC 边上,BD 为ABC ∠的角平分线.32ABC ABD S S =△△.(1)求sin sin CA∠∠; (2)若BD b =,求cos ABC ∠的大小.。
解三角形常用知识点归纳与题型总结-解三角形题型归纳总结

解三角形常用知识点归纳与题型总结1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质定理:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒. 2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.(2) 二倍角公式 sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+==(3)辅助角公式(化一公式))sin(cos sin 22ϕ±+=±=x b a x b x a y 其中ab =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B =2R 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---(海伦公式)8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.注明:余弦定理的作用是进行三角形中的边角互化,当题中含有二次项时,常使用余弦定理。
(完整版)解三角形题型汇总

《解三角形》知识点归纳及题型汇总1、①三角形三角关系:A+B+C=180°;C=180°—(A+B);②.角平分线性质:角平分线分对边所得两段线段的比等于角两边之比. ③.锐角三角形性质:若A>B>C 则6090,060A C ︒≤<︒︒<≤︒.2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin .2222A B C A B C ++== (1)和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ; tan tan tan()1tan tan αβαβαβ±±=m . (2) 二倍角公式sin2α = 2cosαsinα.2222cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan αα-=+. 221cos 21cos 2sin ,cos 22αααα-+== (3)辅助角公式(化一公式) )sin(cos sin 22ϕ±+=±=x b a x b x a y 其中a b =ϕtan 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B =2R6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4 =2)(c b a r ++=))()((c p b p a p p ---(海伦公式) 8、余弦定理:在C ∆AB 中,2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-. 9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量.②已知三边求角11、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =o ;②若222a b c +>,则90C <o ;③若222a b c +<,则90C >o .12、三角形的五心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点外心——三角形三边垂直平分线相交于一点内心——三角形三内角的平分线相交于一点旁心——三角形的一内角平分线与其他两个角的外角平分线交于一点题型之一:求解基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.1.在中,,,,则.2.在ΔABC 中,已知66cos ,364==B AB ,AC 边上中线BD =5,求sin A .题型之二:判断形状:1.在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形2.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形题型之三:解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.1. 在∆ABC 中sin cos A A +=22,AC =2,AB =3,求A tan 和∆ABC 的面积.2.已知ABC △1,且sin sin A B C +=.(1)求边AB 的长.(2)若ABC △的面积为1sin 6C ,求角C 的度数.题型之四:求值问题ABC △4a =5b =6c =sin 2sin A C =1. 在ABC ∆中, 222a bc c b =-+,321+=b c ,求A ∠和B tan2.在锐角ABC △中,角A B C ,,所对的边分别为a b c ,,,已知sin 3A =,(1)求22tan sin 22B C A++的值. (2)若2a =,ABC S =△b 的值.题型之五:求最值问题1.在△ABC 中,已知 cos (cos )cos 0C A A B +-=.(1)求角B 的大小.(2)若1a c +=,求b 的取值范围2.△在内角的对边分别为,已知.(1)求.(2)若,求△面积的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形常见题型正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。
题型之一:求解斜三角形中的基本元素指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题.1. 在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( ) A .23-B .32- C .32 D .23【答案】D2.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
3.(1)在∆ABC中,已知=ac 060=B ,求b 及A ;(2)在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求sin A 的值.分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221==AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 2222⋅-+=,x x 6636223852⨯⨯++=,解得1=x ,37-=x (舍去)故BC =2,从而328cos 2222=⋅-+=B BC AB BC AB AC ,即3212=AC 又630sin =B,故2sin A =1470sin =A在△ABC 中,已知a =2,b =22,C =15°,求A 。
答案:0018030B A A A ><<=∴,且,∴题型之二:判断三角形的形状:给出三角形中的三角关系式,判断此三角形的形状.1. (2005年北京春季高考题)在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 解法1:由C B A sin cos sin 2==sin(A +B )=sin A cos B +cos A sin B ,即sin A cos B -cos A sin B =0,得sin(A -B )=0,得A =B .故选(B).解法2:由题意,得cos B =sin 2sin 2C c A a =,再由余弦定理,得cos B =2222a c b ac+-.∴ 2222a c b ac+-=2c a ,即a 2=b 2,得a =b ,故选(B).评注:判断三角形形状,通常用两种典型方法:⑴统一化为角,再判断(如解法1),⑵统一化为边,再判断(如解法2).2.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 答案:C解析:2sin A cos B =sin (A +B )+sin (A -B )又∵2sin A cos B =sin C , ∴sin (A -B )=0,∴A =B3.在△ABC 中,若a bAB 22=tan tan ,试判断△ABC 的形状。
答案:故△ABC 为等腰三角形或直角三角形。
4. 在△ABC 中,αβcos cos A b =,判断△ABC 的形状。
答案:△ABC 为等腰三角形或直角三角形。
题型之三:解决与面积有关问题主要是利用正、余弦定理,并结合三角形的面积公式来解题.1. (2005年全国高考上海卷) 在ABC ∆中,若120A ∠=,5AB =,7BC =,则ABC ∆的面积S =_________2.在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求A tan 的值和∆ABC 的面积。
答案:S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()3. (07浙江理18)已知ABC △1,且sin sin A B C +. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=,BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =, 由余弦定理,得222cos 2AC BC AB C AC BC +-=22()2122AC BC AC BC AB AC BC +--==, 所以60C =.题型之四:三角形中求值问题1. (2005年全国高考天津卷) 在ABC ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+和321+=b c ,求A ∠和B tan 的值.分析:本题给出一些条件式的求值问题,关键还是运用正、余弦定理.解:由余弦定理212cos 222=-+=bc a c b A ,因此,︒=∠60A 在△ABC 中,∠C=180°-∠A -∠B=120°-∠B.由已知条件,应用正弦定理BB BC b c sin )120sin(sin sin 321-︒===+ ,21cot 23sin sin 120cos cos 120sin +=︒-︒=B B B B 解得,2cot =B 从而.21tan =B2.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。
解析:由A+B+C=π,得B+C 2=π2 -A 2,所以有cos B+C 2 =sin A2。
cosA+2cos B+C 2 =cosA+2sin A 2 =1-2sin 2A2 + 2sin A 2=-2(sin A 2 - 12)2+ 32;当sin A 2 = 12,即A=π3 时, cosA+2cos B+C 2取得最大值为32。
3.在锐角ABC △中,角AB C ,,所对的边分别为a bc ,,,已知sin A =,(1)求22tan sin 22B C A++的值;(2)若2a =,ABC S △b 的值。
解析:(1)因为锐角△ABC 中,A +B +C =π,sin A =,所以cosA =13,则22222B Csin B C A A 1cos B C 11cos A 172tan sin sin 1cos A B C 2221cos B C 21cosA 33cos 2++-(+)++=+=+(-)=+=++(+)-(2)ABC ABC11S2Sbcsin A bc 223∙因为=,又==bc =3。
将a =2,cosA =13,c =3b代入余弦定理:222a b c 2bccos A =+-中, 得42b 6b 90-+=解得b点评:知道三角形边外的元素如中线长、面积、周长等时,灵活逆用公式求得结果即可。
4.在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224ab ab +-=,又因为ABC △1sin 2ab C =4ab =. ······· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ··············· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ······················· 8分 当cos 0A =时,2A π=,6B π=,a =b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab ba ⎧+-=⎨=⎩,,解得3a =3b =.所以ABC △的面积1sin 23S ab C ==. ················· 12分 题型之五:正余弦定理解三角形的实际应用利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识,例析如下: (一.)测量问题 1. 如图1所示,为了测河的宽度,在一岸边选定A 、B 两点,望对岸标记物C ,测得∠CAB=30°,∠CBA=75°,AB=120cm ,求河的宽度。
分析:求河的宽度,就是求△ABC 在AB 边上的高,而在河的一边,已测出AB 长、∠CAB 、∠CBA ,这个三角形可确定。
图1AB C D解析:由正弦定理得sin sin AC ABCBA ACB=∠∠,∴AC=AB=120m ,又∵11sin 22ABCSAB AC CAB AB CD =⋅∠=⋅,解得CD=60m 。
点评:虽然此题计算简单,但是意义重大,属于“不过河求河宽问题”。
(二.)遇险问题2 某舰艇测得灯塔在它的东15°北的方向,此舰艇以30海里/小时的速度向正东前进,30分钟后又测得灯塔在它的东30°北。