小学奥数牛吃草问题应用题练习50题附详解

合集下载

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

小升初牛吃草问题应用题及答案

小升初牛吃草问题应用题及答案

小升初牛吃草问题应用题及答案小升初牛吃草问题应用题及答案“牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】草总量二原有草量+草每天生长量X天数【解题思路和方法】解这类题的关键是求出草每天的生长量。

例1 一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。

问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量二原有草量+草每天生长量X天数。

求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1X10X20);另一方而,20天内的草总量又等于原有草量加上20 天内的生长量,所以1X10X20=原有草量+20天内生长量同理1 X 15X 10二原有草量+10天内生长量由此可知(20-10)天内草的生长量为1X10X20-1X15X10=50因此,草每天的生长量为50宁(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1X15X10-5X10=100(3)求5天内草总量5天内草总量二原有草量+5天内生长量=100+5X5二125(4)求多少头牛5天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

因此5天吃完草需要牛的.头数125宁5=25(头)答:需要5头牛5天可以把草吃完。

例2—只船有一个漏洞,水以均匀速度进入船内,发现漏洞时己经进了一些水。

如果有12个人淘水,3小时可以淘完;如果只有5 人淘水,要10小时才能淘完。

求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。

与上题不同的是,最后一问给岀了人数(相当于“牛数”),求时间。

设每人每小时淘水量为1, 按以下步骤计算:(1)求每小时进水量因为,3小时内的总水量=1X12X3=原有水量+3小时进水量10小时内的总水量二IX5X10二原有水量+10小时进水量所以,(10-3)小时内的进水量为1X5X10-1X12X3=14因此,每小时的进水量为144-(10-3)=2(2)求淘水前原有水量原有水量=1 X 12X3-3小时进水量二36-2 X 3=30(3)求17人几小时淘完17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是30—(17-2)二2(小时)答:17人2小时可以淘完水。

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

第十七讲牛吃草问题什么是“牛吃草问题”呢?同学们先来看看一个简单的例子:仓库里有一堆草,给4头牛吃,6天可以吃完,如果给3头牛吃,几天能吃完? 这道题该怎么处理呢?我们可以借助下面这个关系式来进行求解:由于每头牛每天的吃草量是不变的,因此可以把它设为单位“1”.这样4头牛6天吃掉的草量就等于4624⨯=个单位,而3头牛每天吃掉“3”个单位的草,因此3头牛需要2438÷=天才能吃完.大家看,牛吃草问题是不是很简单?但是,这道题还不是真正的“牛吃草问题”呢.真正的“牛吃草问题”不是让一群牛去仓库里吃草,而是去一片草地上吃草.大家能看出这其中的区别吗?地方更宽敞?草更新鲜?当然不是这些,最大的区别在于,仓库里草的总量是固定不变的,而草地上的草还在不停地生长,这样一来问题一下子就变复杂了.不过大家不用害怕,有了上面设单位“1”的方法后,这类题目的解法是很容易的,大家可以从下面的例子中学到这种方法.首先我们来看一下例题1,当草地原草量和生长量都告诉我们的时候,我们该如何解决“牛吃草问题”.-例题1一块草地有草180份,每天长5份.如果每头牛每天吃1份草,那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)6头牛,吃_______天;(3)10头牛,吃_______天;(4)_______头牛,吃18天;(5)_______头牛,吃15天.「分析」原有草量已知,要计算多少天可以把草吃完,关键是找出每天减少多少草量.练习1一块草地有草60份,每天长2份.那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)5头牛,吃_______天;(3)7头牛,吃_______天;(4)_______头牛,吃10天;(5)_______头牛,吃15天.当原草量和生长量都未知时,我们该怎么办呢?例题2有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天就把草吃完了;如果放养24头牛,那么7天就把草吃完了.(1)要放养多少头牛,才能恰好14天把草吃完?(2)如果放养32头牛,多少天可以把草吃完?「分析」这是最常见的牛吃草问题,这类问题的难点在于牛吃草的同时,草还在生长.假设1头牛1天吃1份草,会发现两种放养方法吃的总草量不同.为什么会这样呢?因为两次草生长的天数不同,于是就可以算出草生长的速度了.练习2有一片牧场,草每天都在均匀地生长.如果放养24头牛,那么6天就把草吃完了;如果放养21头牛,那么8天就把草吃完了.(1)放养多少头牛,12天才能把草吃完?(2)要使得草永远吃不完,那么最多放养多少头牛?我们可以把例2的方法总结一下,得出牛吃草问题的基本解题步骤:1.将每头牛每天的吃草量设为单位“1”;2.比较已知条件中的牛的吃草总量,算出草每天的生长量;3.计算草地原有草的总量;4.根据所问问题求解.前面的两道题都是草在生长,草的总量在增加.而实际生活中,草量有时也会随着时间不断减少,那么碰到这样的问题我们该怎么办呢?下面就来看一道这样的问题.例题3进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)放养多少只羊,12天才能把草吃完?(2)如果放20只羊,这片牧场可以吃多少天?「分析」本题在羊吃草的同时,草也在不断的减少,这也是牛吃草问题的一种.同前面的问题一样,我们还是要对比一下两个已知条件,算出草的减少速度和原有草总量.练习3进入冬季,有一片牧场上的草开始枯萎,因此均匀地减少.若在这儿放牛,可以供32头牛吃24天,或者供27头牛吃28天.(1)放养多少头牛,12天才能把草吃完?(2)如果在这片牧场上养21头牛,那么草可以供吃多少天?例题4有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?「分析」这道题既有牛又有羊,只需将牛羊统一,然后按照基本的牛吃草问题求解即可.练习4一片草场,草每天都在均匀生长.如果在这片草场上放20头牛和24头羊,那么18天可以吃完;如果在这片草场上放15头牛和54头羊,那么15天就把草吃完.已知,一头牛每天吃的草量相当于3只羊每天吃的草量,请问如果在这片草地上放12头牛和18头羊可以吃几天?在前面的例题中,牛总是听话地呆在某一块草地上吃草,因此在吃的过程中,牛的数量不会发生改变.而实际上,牛有时不会老老实实呆在一块草地上的,它们会四处走动,而牛一走动就会改变草地上牛的数量.那么在吃草的过程中,牛的数量发生变化又该如何处理呢?请大家来看下面的问题.例题5一片草地,草每天都在均匀生长.有15头牛吃草,8天可以把草全部吃完.如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,则总共需要多少天可以把草吃完?假定草生长的速度不变,每头牛每天吃的草量相同.「分析」这道题牛的数量在变化,但同其他牛吃草问题一样,还是需要通过比较草量的变化求出每天生长的草量和原有草量.有很多的问题看上去和“牛吃草”毫无联系,但仔细观察就会发现,它们都只是换了个形式的“牛吃草”而已.这样的问题通常都可以看成牛吃草问题来求解,下面我们来看一个这样的例子.例题6有一个蓄水池装有8根排水管,某天天降大雨,雨水以均匀的速度不停地向这个蓄水池注入.后来有人想打开排水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根排水管全部打开,需3小时把池内的水全部排光;如果打开5根水管,需6小时把池内的水全部排光.想要4.5小时把池内的水全部排光,需同时打开多少根排水管?「分析」雨水注入蓄水池,排水管往外排水,这和牛吃草问题有什么类似呢?什么量相当于牛、什么量相当于草呢?课堂内外牛顿的故事牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的.牛顿Newton(1642~1727,英国人)是大科学家,是近代科学的象征.他在世时作为科学界的主宰几乎被当作偶像崇拜.他作为英国皇家学会连任24年的终身会长,法国科学院至尊的外国院士,还兼任英国造币局局长和国会议员,并前所未有地被封为贵族,获得爵士称号.他死后作为自然科学家又第一个获得国葬,长眠于威斯敏斯特教堂,这是历代帝王和一流名人的墓地.牛顿去世之后,他的声望有增无减.他不仅有不朽的著作《自然哲学的数学原理》《光学》等流传于世,而且由于后继大师们的发展,他的思想观念长期统率着科学战线上的士卒.他在物理、数学研究上的主要成果,至今仍是各国大中学生必修的功课.牛顿名言:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就像是一个再海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现.”“如果说我比别人看得更远些,那是因为我站在了巨人的肩上.”“无知识的热心,犹如在黑暗中远征.”“你该将名誉作为你最高人格的标志.”“我能算出天体运行的轨道,却算不出人性的贪婪.”作业1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.那么要使得草永远吃不完,最多可以放养多少头牛?2.有一片牧场,草每天都在均匀地生长.如果放养8头牛,8天就把草吃完了;如果放养10头牛,6天就把草吃完了.如果放养14头牛,多少天就能把草吃完?3.有一片均匀生长的草地,可以供1头牛吃40天,或者供5只羊吃20天,如果1头牛每天吃草量相当于3只羊每天吃的草.那么这片草地每天生长的草可供多少只羊吃1天?这片草地的原草量可供多少只羊吃1天?如果让1头牛与6只羊一起吃可以吃多少天?4.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,如果没有放养牛,牧场上的草全部枯萎需要多少天?5.一片草地,可供8头牛吃30天或者供10头牛吃25天.那么这片草地可供4头牛吃多少天?第十七讲牛吃草问题1.例题1答案:5;180;36;15;17详解:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养5头牛;(2)方法一:6头牛每天吃6份,而草每天长5份,实际相当于每天消耗1份草,一共能吃1801180÷=天;方法二:6头牛派5头牛去吃每天新生长的草,而1头牛吃原草,仍然是180天;(3)方法同第二问,()÷-=天;18010536(4)方法一:18天,原草与新草一共是180518270+⨯=份,吃了18天,所以每天要吃2701015÷=份,所以需要15头牛;方法二:原草180份,吃18天,需要10头牛,但是还要有5头牛吃每天新长的草,一共要15头牛;(5)方法同第四问,18015517÷+=头.2.例题2答案:14;5详解:(1)设每头牛每天吃1份草,18头牛10天吃180份,24头牛7天吃168份.相差了18016812-=天的草,所以草每天的生长量是-=份,是因为多长了10731234-=÷=份.10天后是180份,10天长了40份新草,所以原草量是18040140份.140份草要14天吃完,需要10头牛,其中还需要4头牛吃每天的新草,一共需要10414+=头牛;(2)32头牛中有4头牛吃新草,剩下28头牛吃原有的140份草,所以需要吃÷=天.1402853.例题3答案:90;40详解:(1)设每只羊每天吃1份草,38只羊25天吃950份,30只羊30天吃900份.相差了95090050-=天的草,所以草每天的枯萎量-=份,是因为多枯萎了30255是50510⨯=份草,所以原草量是÷=份.30天后是900份,30天枯萎了3010300+=份.1200份草要12天吃完,即每天减少100份,其中每天枯萎900300120010份草,所以每天羊吃90份草,所以放养90只羊;(2)每天枯萎10份,放养20只羊,则每天一共减少30份,把1200份草吃光,需要12003040÷=天.答案:10详解:设每只羊每天吃1份草.14头牛可换为56只羊,所以56只羊30天吃⨯=份.每天的生长量是56301680⨯=份;70只羊16天吃70161120()()-⨯=份.17头牛和20 16801120301640-÷-=份,原草量是16803040480只羊相当于88只羊,其中有40只羊吃新草,剩下48只羊吃480份原草,需要10天.5.例题5答案:6天详解:设每头牛每天吃1份草,15头牛8天吃120份;15头牛7天,2头牛5天吃⨯+⨯=份.每天草的生长量是()()15725115-÷-=份.原草量是120115875-⨯=份.如果15头牛吃了2天,有5头牛吃原草,相当于还有10头牛1205880在吃原草,原草还剩下8010260-⨯=份.20头牛中5头牛吃每天新长的草,剩下的15头牛吃原有草,需要60154+=天.÷=天.一共用了2466.例题6答案:6根详解:设每根水管每小时排1份水,8根3小时排24份水,5根6小时排30份水,雨水每小时注入()()-⨯=份水.2根水-÷-=份水,池内原有2423183024632管用来排新注入的雨水,原水需要18 4.54÷=根水管,一共需要同时打开6根水管.7.练习1答案:2;20;12;8;6简答:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养2头牛;(2)方法一:5头牛每天吃5份,而草每天长2份,实际相当于每天消耗3份草,一共能吃60320÷=天;方法二:5头牛派2头牛去吃每天新生长的草,而3头牛吃原草,仍然是20天;(3)方法同第二问,()÷-=天;607212(4)方法一:10天,原草与新草一共是6021080+⨯=份,吃了10天,所以每天要吃80108÷=份,所以需要8头牛;方法二:原草60份,吃10天,需要6头牛,但是还要有2头牛吃每天新长的草,一共要8头牛;(5)方法同第四问,601526÷+=头.答案:18;12简答:(1)设每头牛每天吃1份草,24头牛6天吃144份,21头牛8天吃168份.相差了16814424-=份,是因为多长了862-=天的草,所以草每天的生长量是24212÷=份.6天后是144份,6天长了72份新草,所以原草量是1447272-=份.72份草要12天吃完,需要6头牛,其中还需要12头牛吃每天的新草,一共需要61218+=头牛;(2)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养12头牛.9. 练习3答案:67;35简答:(1)设每头牛每天吃1份草,32头牛24天吃768份,27头牛28天吃756份.相差了76875612-=份,是因为多枯萎了28244-=天的草,所以草每天的枯萎量是1243÷=份.24天后是768份,24天枯萎了24372⨯=份草,所以原草量是76872840+=份.840份草要12天吃完,即每天减少70份,其中每天枯萎3份草,所以每天牛吃67份草,所以放养67头牛;(2)每天枯萎3份,放养21头牛,则每天一共减少24份,把840份草吃光,需要8402435÷=天.10. 练习4答案:30天简答:设每只羊每天吃1份草.20头牛可换为60只羊,所以84只羊18天吃84181512⨯=份;15头牛可换为45只羊,所以99只羊15天吃99151485⨯=份.每天的生长量是()()1512148518159-÷-=份,原草量是151********-⨯=份.12头牛和18只羊相当于54只羊,其中有9只羊吃新草,剩下45只羊吃1350份原草,需要30天.11. 作业1答案:12头简答:设每头牛每天吃草“1”,246144⨯=,218168⨯=,所以草每天生长量为 ()()1681448612-÷-=.要想草永远吃不完,牛每天吃掉的草不能超过草每天长的量,最多可放养12头牛,原草量不变.12. 作业2答案:4天简答:8864⨯=,10660⨯=,草每天生长量为()()6460862-÷-=,原草量是606248-⨯=.放养14头牛,草每天减少14212-=,经过48124÷=天草就吃完了.13. 作业3答案:1只;80只;10天简答:设每只羊每天吃草“1”,把牛转换为羊,340120⨯=,520100⨯=,草每天长()()12010040201-÷-=,可供1只羊吃一天.原有草量是12040180-⨯=,可供80只羊吃一天.1头牛和6只羊相当于是9只羊,可以吃()809110÷-=天.14. 作业4答案:30天简答:205100⨯=,16696⨯=,比较发现草每天枯萎()()10096654-÷-=.所以5天草共枯萎4520⨯=,原草量是10020120+=,没有牛的话,一共需要120430÷=天草全部枯萎.15. 作业5答案:50天简答:830240⨯=,1025250⨯=,比较30天吃的总草量240,和25天吃的总草量250,能判断出草在枯萎.草每天枯萎()()25024030252-÷-=,原草量是240302300+⨯=.有4头牛时,每天草的减少量是426+=,所以经过300650÷=天草吃完了.。

小学奥数牛吃草

小学奥数牛吃草
解:假设1人1小时舀1份水
12×3=36份……原水量+3小时进水量
5×10=50份……原水量+10小时的进水量
每小时的进水量:
(50-36)÷(10-3)=2份
原水量:
36-3×2=30份 或50-10×2=30份
30份
2份
+
(30+12)份水需要几个人6小时舀完?
(30+12)÷6=7小时
25×9=225份……原草量-9天的减少量
草每天的减少量:
(240-225)÷(9-8)=15份
原草量:
240+8×15=360份 或220+9×15=360份
400份
15份
-
360份草可供21头牛吃几天?
360÷(21+15)=10天
15头牛在吃
例3 一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入了一些水,如果用12人舀水,3小时舀完,如果只有5个人舀水,要10小时才能舀完,现在想在6小时舀完,需要多少人?
解:假设1头牛1天吃的草的数量是1份
20×5=100份……原草量-5天的减少量
15×6=90份……原草量-6天的减少量
草每天的减少量:
(100-90)÷(6-5)=10份
原草量:
100+5×10=150份 或90+6×10=150份
剩下150-100=50份
150份
10份
-
50份草可供多少头牛吃10天?
[自主训练] 牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?
解:假设1头牛1天吃的草的数量是1份

小学五年级奥数题牛吃草的问题习题

小学五年级奥数题牛吃草的问题习题

小学五年级奥数题牛吃草的问题习题小学五年级奥数题牛吃草的问题习题【第一篇】有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

一般方法:先假设1头牛1天所吃的牧草为1,那么就有:(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。

)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽公式解法:(1)草的生长速度=(207-162)÷(9-6)=15(2)牧场上原有草=(27-15)×6=72再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。

方程解答:设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有27×6-6x =23×9-9x解出x=15份再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程:27×6-6×15 =23×9-9×15=(21-15)x解出x=12(天)所以养21头牛。

12天可以吃完所有的草。

【第二篇】一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?分析与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。

牛吃草问题的奥数题及答案

牛吃草问题的奥数题及答案

牛吃草问题的奥数题及答案
牛吃草问题的奥数题及答案
“奥数”是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。

以下是店铺帮大家整理的牛吃草问题的奥数题及答案,仅供参考,欢迎大家阅读。

有三块草地,面积分别为5,6和8公顷.草地上的`草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?
分析:根据题意先把将三块草地的面积统一起来,变为典型的牛吃草的基本类型的题目,只要求出每天新长出的草以及草地原有草,就可以求出答案。

解:因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天,因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.又因为120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?”设1头牛1天吃的草为1份,每天新长出的草有:(240×14—264×10)÷(14—10)=180(份),草地原有草(264—180)×10=840(份),可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天。

答:第三块草地可供19头牛吃8天。

小学奥数:牛吃草问题(二).专项练习

6-1-10.牛吃草问题(二)教学目标1.理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2.初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系知识精讲英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变;②每头牛每天的食草量不变;③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.例题精讲模块一、“牛”吃草问题的变例【例 1】在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有级台阶.6-1-10.牛吃草问题.题库学生版【巩固】两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

问:该扶梯共有多少级梯级?【巩固】自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走1梯级,女孩每3秒钟走2梯级。

小学奥数牛吃草习题 有答案

小学奥数牛吃草习题5、牧场上一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛?6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入一些水,如果用12个人舀水,3小时可以舀完,如果只有5个人舀水,要10小时才能舀完,现在要2小时舀完,需要多少人?7、一水井原有水量一定,河水每天均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若要求6天抽干,需要多少台同样的抽水机?8一个水池安装有排水量相等的排水管若干根,一根进水管不断往池里放水,平均每分钟进水量相等,如果开放三根排水管,45分钟可把池中水放完。

如果开放5根排水管,25分钟可把池中水放完。

如果开放8根排水管,几分钟排完水池中的水?9、有一酒槽,每天泄漏等量的酒,如让6人饮,则4天喝完;如让4人饮,则5天喝完,若每人的饮酒量相同,问每天的漏酒量为多少?10、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票。

一个检票口每分钟能让25人检票进站。

如果只有一个检票口,检票开始8分钟后就没有人排队。

如果两个检票口,那么检票开始后多少分钟就没有人排队?11、某游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进10个游客。

如果开放4个入口,20分钟就没有人排队。

现在开放6个入口,那么开门后多少分钟就没有人排队?12、一个大水坑,每分钟从四周流掉(四壁渗透)一定数量的水。

如果用5台水泵,5小时就能抽干水坑的水;如果用10台水泵,3小时就能抽干水坑的水。

现在要1小时抽干水坑的水,问要用多少台水泵?13、画展9点开门,但早有人排队等候入场。

从第一个观众来到时起,每分钟来的观众人数一样多,如果开了3个入场口,9点9分就不再有人排队。

如果开5个入场口,9点5分就没人排队,问第一个观众到达的时间是几点几分?14、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。

小学生奥数牛吃草问题、比和比例问题练习题

小学生奥数牛吃草问题、比和比例问题练习题1.小学生奥数牛吃草问题练习题篇一某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。

如果同时打开7个检票口,那么需多少分钟?解:1、本题考查的是牛吃草的问题,“旅客”相当于“草”,检票口相当于“牛”。

2、由题目可知,旅客总数由两部分组成:一部分是开始检票前已经排队的原有旅客,另一部分是开始检票后新来的旅客。

设1个检票口1分钟检票的人数为1份。

那么4个检票口30分钟检票4×30=120(份),5个检票口20分钟检票5×20= 100(份),多花了10分钟多检了120-100=20(份),那么每分钟新增顾客数量为20÷10=2(份)。

那么原有顾客总量为:120-30×2=60(份)。

同时打开7个检票口,我们可以让2个检票口专门通过新来的顾客,其余的5个检票口通过原来的顾客,需要60÷5=12(分钟)。

2.小学生奥数牛吃草问题练习题篇二一片新鲜的牧场,现有400份草,每天都均匀地生长6份草。

若一开始放26头奶牛,每头奶牛每天吃1份草。

这片牧场的草够奶牛吃多少天?解:1、本题考查的是牛吃草的问题,解决本题的关键是要求出每天新增加的草量,在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草。

2、由题目可知:原有的草量+新长的草量=总的草量。

奶牛除了要吃掉原有的草,也要吃掉新长的草。

原有的草量是不变的。

每天新长的草量是匀速的,每天都长6份,每头奶牛每天吃1份,新长的草刚好够6头奶牛吃的量,那么剩下的20头奶牛吃的就是原有的草,每天吃20份,400÷20=20(天),够吃20天。

3.小学生奥数牛吃草问题练习题篇三1、12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草。

假设每公顷原有草量相等,草的生长速度不变。

牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。

相关文档
最新文档