2018年北京市中考数学试卷包含答案

合集下载

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

2018年北京市中考数学试卷(含答案解析)(2020年整理).pptx

2018年北京市中考数学试卷(含答案解析)(2020年整理).pptx

16.5 ). 上述结论中,所有正确结论的序号是
A.①②③
B.②③④
C.①④
D.①②③④
二、填空题(本题共 16 分,每小题 2 分) 9. 下图所示的网格是正方形网格, BAC
DAE .(填“ ”,“ ”或“ ”)
2
10. 若 x 在实数范围内有意义,则实数 x 的取值范围是

11. 用一组a ,b ,c 的值说明命题“若 a b ,则 ac bc ”是错误的,这组值可以是a
C.xy
2 1
D.xy
2 1
【答案】D
【解析】将 4 组解分别代入原方程组,只有D 选项同时满足两个方程,故选D.
【考点】二元一次方程组的解
4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜 FAST 的反射面总面积相当于
6
24.如图,Q 是 AB 与弦 AB 所围成的图形的内部的一定点,P 是弦 AB 上一动点,连接 PQ 并延长交 AB 于点C ,连接 AC .已知 AB 6 cm ,设 A ,P 两点间的距离为 x cm ,P , C 两点间的距离为 y1 cm , A , C 两点间的距离为 y2 cm .
弧,交 BC 的延长线于点Q ;
③作直线 PQ . 所以直线 PQ 就是所求作的直线. 根据小东设计的尺规作图过程,
1 使用直尺和圆规,补全图形;(保留作图痕迹)
2 完成下面的证明.
证明:∵ AB , CB ,
∴ PQ ∥ l (
)(填推理的依据).
18.计算: 4sin 45 (π 2)0 18 | 1| .
1
A.10m
B.15m
C. 20m
D. 22.5m
8. 下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 x 轴、 y 轴

2018年中考数学试卷及答案

2018年中考数学试卷及答案

选择题1、若一个数的相反数是-5,则这个数为A、-10B、-5C、0D、5(答案:D。

解析:一个数的相反数是与该数和为零的数,-5的相反数是5。

)2、下列哪个数不是有理数?A、1/2B、-3C、πD、0.777...(0.7循环)(答案:C。

解析:有理数是可以表示为两个整数之比的数,π是一个无理数,不能表示为两个整数的比。

)3、一个等腰三角形的顶角是底角的2倍,则它的顶角是A、60°B、90°C、120°D、150°(答案:C。

解析:等腰三角形的两个底角相等,设底角为x,则顶角为2x,三角形内角和为180°,所以x+x+2x=180°,解得x=45°,顶角为2x=90°的2倍,即120°。

)4、若一个圆的半径是r,则它的周长与直径的比值是A、πB、2πC、1/πD、1/(2π)(答案:A。

解析:圆的周长是2πr,直径是2r,所以周长与直径的比值是2πr/(2r)=π。

)5、下列哪个选项不是一元二次方程的根?A、x=1(对于方程x²-2x+1=0)B、x=2(对于方程x²-4x+4=0)C、x=3(对于方程x²-5x+6=0)D、x=4(对于方程x²-4x+3=0)(答案:D。

解析:将x=4代入方程x²-4x+3=0,不满足等式,所以x=4不是该方程的根。

)6、若一组数据的方差是16,且每个数据都乘以2,则新数据的方差是A、4B、8C、16D、64(答案:C。

解析:当一组数据中的各个数据都乘以k时,新的方差会变为k²倍的原方差,所以新数据的方差是16*2²=64,但题目问的是新方差与原方差的关系,即仍为16。

)7、下列哪个图形不是轴对称图形?A、正方形B、等腰三角形C、平行四边形D、圆(答案:C。

解析:正方形、等腰三角形和圆都可以找到一条直线,使得图形关于这条直线对称,而平行四边形不一定能找到这样的直线。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。

北京市2018届中考数学试卷及答案解析

北京市2018届中考数学试卷及答案解析

学霸推荐学习七法一、听视并用法上课听和看注意力集中一、听思并用法上课听老师讲并思考问题三、符号助记法在笔记本上课本上做记号标记四、要点记取法重点要点要在课堂上认真听讲记下五、主动参与法课堂上积极主动的参与老师的讲题互动六、听懂新知识法听懂老师讲的新知识并做好标记七、目标听课法课前预习不懂得标记下,在课堂上不会的标记点认真听讲做笔记带着求知的好奇心听课,听不明白的地方就标记下来,并且课后积极的询问并弄懂这些知识,听明白的知识点也要思考其背后的知识点,打牢基础。

北京市2018年中考数学试卷考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟. 2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回. 第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是c b a 1032 14234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m),故选C.【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【解析】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.【考点】正多边形,多边形的内外角和.6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.43【答案】A【解析】原式()2222222a ba b ab a a a ba ab a a b-+--=⋅=⋅=--,∵23a b-=,∴原式3=.【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系2y ax bx c=++(0a≠).下图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A.10m B.15m C.20m D.22.5m【答案】B【解析】设对称轴为x h=,由(0,54.0)和(40,46.2)可知,040202h+<=,由(0,54.0)和(20,57.9)可知,020102h+>=,∴1020h<<,故选B.【考点】抛物线的对称轴.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-)时,表示-,3左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-)时,表-,6示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-)时,表-,5示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-).-)时,表示左安门的点的坐标为(16.5,16.5-,7.5上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,-)”的基础上,将所有点向右平9-)时,表示左安门的点的坐标为(15,18移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移ED CBA二、填空题(本题共16分,每小题2分)9.右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,AFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠. 另:此题也可直接测量得到结果.【考点】等腰直角三角形10.若x 在实数范围内有意义,则实数x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O e 上,»»CBCD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵»»CBCD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒, ∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,3AD=,则CF的长为________.【答案】103【解析】∵四边形ABCD是矩形,∴4AB CD==,AB CD∥,90ADC∠=︒,在Rt ADC△中,90ADC∠=︒,∴225AC AD CD=+=,∵E是AB中点,∴1122AE AB CD==,∵AB CD∥,∴12AF AECF CD==,∴21033CF AC==.【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500用时不超过45分钟”的可能性最大.【答案】C【解析】样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C.【考点】用频率估计概率15.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150低为________元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin45(π2)18|1|︒+---.【解析】解:原式24132122=+-+=【考点】实数的运算19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x>-,由②得,3x<,∴不等式的解集为23x-<<.【考点】一元一次不等式组的解法20.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【解析】(1)解:由题意:0a≠.∵()22242440b a a a a∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒. ∴222OA AB OB =-=. ∵CE AB ⊥, ∴90AEC ∠=︒.在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB是Oe的直径,过Oe外一点P作Oe的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.【解析】(1)证明:∵PC、PD与O⊙相切于C、D.∴PC PD=,OP平分CPD∠.在等腰PCD△中,PC PD=,PQ平分CPD∠.∴PQ CD⊥于Q,即OP CD⊥.(2)解:连接OC、OD.∵OA OD=∴50OAD ODA∠=∠=︒∴18080AOD OAD ODA∠=︒-∠-∠=︒同理:40BOC∠=︒∴18060COD AOD BOC∠=︒-∠-∠=︒.在等腰COD△中,OC OD=.OQ CD⊥∴1302DOQ COD∠=∠=︒.∵PD与O⊙相切于D.∴OD DP⊥.∴90ODP∠=︒.在Rt ODP△中,90ODP∠=︒,30POD∠=︒∴43cos cos3033OD OAOPPOD====∠︒【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,QPDCOBAOC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是»AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交»AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;/cm x0 1 2 3 4 5 6 1/cm y 5.62 4.67 3.76 2.65 3.18 4.37 2/cm y5.625.595.535.425.194.734.11(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm . 【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤);b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5 c .A ,B 两门课程成绩的平均数、中位数、众数如下:课程 平均数 中位数 众数 A 75.8 m84.5B72.270 83(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______; (3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy中,直线44y x=+与x轴、y轴分别交于点A,B,抛物线23y ax bx a=+-经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.【解析】(1)解:∵直线44y x=+与x轴、y轴交于A、B.∴A(1-,0),B(0,4)∴C(5,4)(2)解:抛物线23y ax bx a=+-过A(1-,0)∴30a b a--=.2b a=-∴223y ax ax a=--∴对称轴为212axa-=-=.(3)解:①当抛物线过点C时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a<-或13a≥或1a=-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.【解析】(1)证明:连接DF.∵A,F关于DE对称.∴AD FD=.AE FE=.在ADE△和FDE△中.AD FDAE FEDE DE=⎧⎪=⎨⎪=⎩∴ADE FDE△≌△∴DAE DFE∠=∠.∵四边形ABCD是正方形∴90A C∠=∠=︒.AD CD=∴90DFE A∠=∠=︒∴18090DFG DFE∠=︒-∠=︒∴DFG C∠=∠A BCDEF HG∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △. DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =.(2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒. ∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ ∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中 DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME =∴BH =.MGHF EDCBA【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ). 已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC △)1=,直接写出k 的取值范围;(3)T e 的圆心为T (,0),半径为1.若d (T e ,ABC △)1=,直接写出的取值范围.【解析】(1)如下图所示:∵B (2-,2-),C (6,2-)∴D (0,2-)∴d (O ,ABC △)2OD == (2)10k -<≤或01k <≤(3)4t =-或0422t -≤≤或422t =+.【考点】点到直线的距离,圆的切线。

2018北京市中考数学试卷答案解析(Word版本)0001

2018北京市中考数学试卷答案解析(Word版本)0001

2018年北京市中考数学试卷答案解析(Word版本)、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有个.1. (2.00分)下列几何体中,是圆柱的为()2. (2.00分)实数a, b, c在数轴上的对应点的位置如图所示,则正确的结论是()a b c-4 *-3■2 -l0 1T*3~4~r*4. (2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m i,则FAST的反射面总面积约为()A. 7.14 X 10祁B. 7.14 X 104m iC. 2.5 X 105吊D. 2.5 X 106甫5. (2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A. 360°B. 540°C. 720°D. 900°2 26. (2.00分)如果a- b=2二那么代数式(一-b)?^^的值为()2a a-bA. :B. 2•: C . 3 ; D . 4 :;7. (2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m)与水平距离x (单位:m)近似满A. |a| >4B. c - b> 0C. ac> 0D. a+c> 03. (2.00分)方程组卜专' 的解为()l L3x-8y=14f K=-lA. Blv=2x-1v=-2C. D.y=-l足函数关系y=ax2+bx+c (a工0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()屮曲157.9 54.0 46220 40 ImA. 10mB. 15mC. 20mD. 22.5m& ( 2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为 x轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:① 当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(- 6, - 3)时,表示左安门的点的坐标为(5,- 6);② 当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(-12,- 6)时,表示左 安门的点的坐标为(10,- 12);③ 当表示天安门的点的坐标为(1 , 1),表示广安门的点的坐标为(-11,- 5)时,表示左 安门的点的坐标为(11,- 11);④ 当表示天安门的点的坐标为 (1.5 , 1.5 ),表示广安门的点的坐标为 (-16.5 , - 7.5 )时, 表示左安门的点的坐标为(16.5 , - 16.5 ). 上述结论中,所有正确结论的序号是()|g ; I ■ I i j ;;; 盂; :;;:: 益*: ■; - 址忙仃: F j 1 皑于』 «■.■A.①②③ B .②③④ C.①④D .①②③④■ ■ _________ -■n M 'f -・unir:、填空题(本题共16分,每小题2分)9.2.00分)如图所示的网格是正方形网格,/ BAC /DAE(填“〉”,“=”或“V”)1> X1 [|L.:r1 __ _L =. J ______ :_______汕二;…匚乂…丄hcpTj-||亠亠儿亠亠」10. (2.00分)若在实数范围内有意义,则实数x的取值范围是 ________ .11. (2.00分)用一组a, b, c的值说明命题“若av b,贝U ac V be”是错误的,这组值可以是a= _____ , b= ______ , e= _______ .12. (2.00 分)如图,点A, B, C, D在O O上,—i,Z CAD=30,/ ACD=50,则/13. (2.00分)如图,在矩形ABCD中, E是边AB的中点,连接DE交对角线AC于点F,若集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时30W t w 3535v t w 4040v t w 4545V t w 50合计公交车用时的频数线路A59151166124500B505012227850014. (2.00分)从甲地到乙地有A, B, C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况, 在每条线路上随机选取了500个班次的公交车,收早高峰期间,乘坐 _______ (填“ A ”,“ B ”或“C')线路上的公交车,从甲地到乙地“用 时不超过45分钟”的可能性最大.15. (2.00分)某公园划船项目收费标准如下:船型两人船(限乘两四人船(限乘四六人船(限乘六八人船(限乘八人)人) 人) 人) 每船租金(元/小90100130150时)某班18名同学一起去该公园划船,若每人划船的时间均为 1小时,则租船的总费用最低为元.16. (2.00分)2017年,部分国家及经济体在全球的创新综合排名、 创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第 ________ .i出排宕L 创諦数30—30■4*25202D**15 ■■41510 L y * • ■ ■mt■ ■■ « - •*U5■ + e **•申呻 1 1 1 1 1 1 1k 1 1 1 Id 1. 1 1 1 1 Jj"(| | ii i i || i I i ii 1 i i 1 1 | 1 1 1 1 II 1 1 ii | | .o5 10 15 2C 25 30创霧合排名O5 10 1520 25为创新产三、 解答题(本题共68分,第 17-22 题, 每小题 5 分,第 23-26 题,每小题5分,第28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17. ( 5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程. 已知:直线I 及直线I 外一点P. 求作:直线 PQ 使得PQ// I .45265 167 23 500作法:如图,① 在直线I 上取一点A,作射线PA 以点A 为圆心,AP 长为半径画弧,交 PA 的延长线于点 B ;② 在直线I 上取一点C (不与点A 重合),作射线BC,以点C 为圆心,CB 长为半径画弧,交 BC 的延长线于点 Q;③ 作直线PQ 所以直线PQ 就是所求作的直线. 根据小东设计的尺规作图过程,(1 )使用直尺和圆规,补全图形; (保留作图痕迹) (2)完成下面的证明.证明:T AB= ______ , CB= ______ , ••• PQ// I ( ______ )(填推理的依据)• 18. (5.00 分)计算 4sin45 ° + (n- 2). >| - 1|3(时1)19.( 5.00分)解不等式组: 说 jI 220. (5.00分)关于x 的一元二次方程 ax+bx+1=0. (1 )当 b=a+2时,利用根的判别式判断方程根的情况; (2)若方程有两个相等的实数根,写出一组满足条件的21. (5.00分)如图,在四边形 ABCD 中, AB// DC AB=AD 对角线 AC, BD 交于点 O, AC 平 分/ BAD 过点C 作CEL AB 交AB 的延长线于点 E ,连接OE (1) 求证:四边形 ABCD 是菱形; (2) 若 AB=二 BD=2,求 0E 的长.22. ( 5.00分)如图,AB 是O O 的直径,过O O 外一点P 作O O 的两条切线PC, PD,切点分a ,b 的值,并求此时方程的根.别为C, D,连接op CD (1) 求证:OPL CD(2) 连接 AD, BC,若/ DAB=50,/ CBA=70 , OA=2 求 OP 的长.23. (6.00分)在平面直角坐标系 xOy 中,函数y 土 (x >0)的图象G 经过点A (4, 1), 直线I : y^v+b 与图象G 交于点B,与y 轴交于点C. (1 )求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象 G 在点A , B 之间的部分与线段 OA OC BC 围成的区域(不含边界)为 w.① 当b=- 1时,直接写出区域 W 内的整点个数;② 若区域W 内恰有4个整点,结合函数图象,求 b 的取值范围. 24. (6.00分)如图,Q 是「匸与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交爲于点C ,连接AC 已知AB=6cm 设A , P 两点间的距离为xcm , P, C 两 点间的距离为y 1cm, A , C 两点间的距离为 y 2cm. 小腾根据学习函数的经验,分别对函数y 1, y 2随自变量x 的变化而变化的规律进行了探究.F面是小腾的探究过程,请补充完整:值;x/cm0 1 23 4 5 6 ydcm5.624.673.762.653.184.37y^cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点 (x , yj , (x ,y 2),并画出函数y 1, y 2的图象;(1)按照下表中自变量 x 的值进行取点、画图、测量,分别得到了y 1, y 2与x 的几组对应APC为等腰三角形时,AP的长度约为cm 25. (6.00分)某年级共有300名学生.为了解该年级学生A, B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制)描述和分析•下面给出了部分信息. ,并对数据(成绩)进行整理、a. A课程成绩的频数分布直方图如下(数据分成6组:40W x v 50, 50< x v 60, 60< x v 70 , 70W x v 80, 80W x v90, 90<x< 100):b.A课程成绩在70 < x v 80 这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 7979 79 79.5c. A, B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1 )写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________ (填“ A “或“ B “),理由是______ ,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26. (6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A, B,抛物线y=ax2+bx- 3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27. ( 7.00分)如图,在正方形ABCD中, E是边AB上的一动点(不与点A B重合),连接DE点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG过点E作EH丄DE交DG的延长线于点H,连接BH(1)求证:GF=GC(2)用等式表示线段BH与AE的数量关系,并证明.28. (7.00分)对于平面直角坐标系xOy中的图形M N,给出如下定义:P为图形M上任意一点,Q 为图形N上任意一点,如果P, Q两点间的距离有最小值,那么称这个最小值为图形M N间的“闭距离“,记作 d ( M N).已知点 A (- 2, 6), B (- 2,- 2) , C (6,—2).(1 )求 d (点O, △ ABC ;(2)记函数y=kx (- 1 < x < 1, k丰0)的图象为图形G.若d (G, △ ABC) =1,直接写出k 的取值范围;(3)0 T的圆心为T (t , 0),半径为1.若d (O「△ ABC =1,直接写出t的取值范围.参考答案与试题解析、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有个.1. (2.00分)下列几何体中,是圆柱的为()【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B此几何体是圆锥体;C此几何体是正方体;D此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,女口:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等•能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2. (2.00分)实数a, b, c在数轴上的对应点的位置如图所示,则正确的结论是()【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:•••- 4v a v- 3「.|a| v 4二A不正确;又T a v 0 c > 0 ••• ac v 0 /. C不正确;又T a v - 3 c v 3 • a+c v 0 •• D不正确;又T c>0 b v 0• c- b> 0「. B 正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.① X 3 -②得:5y= - 5,即卩y=- 1, 将 y - 1代入①得:x=2.故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4. ( 2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜 FAST 的反射面总2面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为 7140m ,则FAST 的反射面总面积约为( )A. 7.14 X 103mB. 7.14 X 104mC. 2.5 X 105mD. 2.5 X 106m【分析】先计算FAST 的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形 式为a X 10n ,其中 K |a| v 10, n 为整数.确定 n 的值是易错点,由于 249900沁250000有 6位,所以可以确定 n=6-仁5.【解答】 解:根据题意得:7140X 35=249900~ 2.5 X 10 ( m ) 故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.5 ( 2.00分)若正多边形的一个外角是 60°,则该正多边形的内角和为( )A. 360°B . 540°C. 720°D. 900°【分析】根据多边形的边数与多边形的外角的个数相等, 可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】 解:该正多边形的边数为:360°* 60° =6,该正多边形的内角和为: (6 -2)X 180° =720°. 故选:C.3. (2.00分)方程组』L 3x-8y=14的解为()A.K=-l y=2【分析】方程组利用加减消元法求出解即可; ① 3x-8y=14 ②'【解答】解:B .D.泸2y=-l则方程组的解为x=2 y=-l【点评】本题考查了多边形的内角与外角, 熟练掌握多边形的外角和与内角和公式是解答本 题的关键.6. ( 2.00分)如果a -b=2 :-;,那么代数式(I" - b )?^^的值为()2a a-bA.「; B. 2 :C . 3 :; D . 4 :■;【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继 而代入计算可得.2a ? a-b_P T :: 丁,当 a - b_2 「时, 原式_比_ 一:;, 故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算 法则.7. ( 2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是 抛物线的一部分,运动员起跳后的竖直高度y (单位:m 与水平距离x (单位:m 近似满足函数关系y_ax 2+bx+c (a 工0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()【解答】 解:原式=(2a2L-i.)5A954.046.240 rmA. 10mB. 15mC. 20mD. 22.5m【分析】将点(0, 54.0 )、(40, 46.2 )、(20, 57.9 )分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c (0)经过点(0, 54.0 )、(40, 46.2 )、(20 , 57.9 ),1600a+40Uc=46. Z400a+20b+cP57. 9[a=-0. 019Eb* 585 ,c=54.0所以x==——卜亚§一=15(m.2a 2X(7”故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.& (2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(- 6, - 3)时,表示左安门的点的坐标为(5,- 6);②当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(-12,- 6)时,表示左安门的点的坐标为(10,- 12);③当表示天安门的点的坐标为(1 , 1),表示广安门的点的坐标为(-11,- 5)时,表示左安门的点的坐标为(11,- 11);④当表示天安门的点的坐标为(1.5 , 1.5 ),表示广安门的点的坐标为(-16.5 , - 7.5 )时,表示左安门的点的坐标为(16.5 , - 16.5 ).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(-6, - 3)时,表示左安门的点的坐标为(5, - 6),此结论正确;②当表示天安门的点的坐标为(0, 0),表示广安门的点的坐标为(-12,- 6)时,表示左安门的点的坐标为(10, - 12),此结论正确;③当表示天安门的点的坐标为(1 , 1),表示广安门的点的坐标为(- 5, - 2)时,表示左安门的点的坐标为(11, - 11),此结论正确;④当表示天安门的点的坐标为(1.5 , 1.5 ),表示广安门的点的坐标为(-16.5 , - 7.5 )时,表示左安门的点的坐标为(16.5 , - 16.5 ),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.、填空题(本题共16分,每小题2分)9. (2.00分)如图所示的网格是正方形网格,/ BAC > / DAE(填“〉”,“=”或“V”)/ DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH BG过N作NPL AD于P,PNPN=—Vs•••正弦值随着角度的增大而增大,•••Z BAG>Z DAE【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断, 熟练掌握锐角三角函数的增减性是关键.10. (2.00分)若卜■」.在实数范围内有意义,则实数x的取值范围是X》0【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x > 0.故答案为:x > 0.故答案为:〉.【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线BAG S^ AN=2 X 2 —■X 1 X 1^-AH?N?Rt △ ANP 中,sinRt △ ABG中,sin/NAP#:Z BAC=J= 2AE 2/2 2>0.6 ,T■p J=0.6,【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11. (2.00分)用一组a, b, c的值说明命题"若a v b,贝U ac v be”是错误的,这组值可以是a= 1 , b= 2 , e= - 1 .【分析】根据题意选择a、b、e的值即可.【解答】解:当a=1, b=2, e=- 2 时,1v 2,而1X( - 1)> 2X( - 1),命题"若a v b,则ae v be”是错误的,故答案为:1; 2;- 1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12. (2.00 分)如图,点A, B, C, D在O O上「三=i,Z CAD=30,/ ACD=50,则/【分析】直接利用圆周角定理以及结合三角形内角和定理得出/ ACB=/ADB=180 -/ CAB-Z ABC进而得出答案.【解答】解:••• l.= H,Z CAD=30 ,•Z CAD Z CAB=30 ,•Z DBC Z DAC=30 ,•••Z ACD=50 ,•Z ABD=50 ,•Z ACB=/ ADB=180 -Z CAB-Z ABC=180 - 50°- 30°- 30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出Z ABD度数是解题关键.13. (2.00分)如图,在矩形 ABCD 中,E 是边AB 的中点,连接 DE 交对角线 AC 于点F ,若 【分析】 根据矩形的性质可得出 AB// CD 进而可得出/ FAE=Z FCD 结合/ AFE=Z CFD (对 顶角相等)可得出△ AF0A CFD 利用相似三角形的性质可得出 丄丄 =2,利用勾股定理AF AE可求出AC 的长度,再结合 CF= ' ?AC 即可求出CF 的长.CF+AF【解答】 解:•••四边形 ABCD 为矩形, ••• AB=CD AD=BC AB// CD•••/ FAE=Z FCD又•••/ AFE=/ CFD• △ AFE^^ CFDDtry\diB的性质找出CF=2AF 是解题的关键.CF —?AC=^- 2+1X 5』3【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理, 利用相似三角形AB=4, AD=3贝U CF 的长为 丄。

北京中考数学试题(含答案及解析版)

北京中考数学试题(含答案及解析版)

2018年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。

1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。

已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o 60,则该正多边形的内角和为(A )o 360 (B )o 540 (C )o 720 (D )o 9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。

下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。

在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市2018年中考数学试卷第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是c b a 1032 14234A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x y x y -=⎧⎨-=⎩的解为A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .21x y =-⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D 选项同时满足两个方程,故选D . 【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m ,则FAST 的反射面积总面积约为 A .327.1410m ⨯ B .427.1410m ⨯ C .522.510m ⨯D .622.510m ⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m ),故选C . 【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A .360︒B .540︒C .720︒D .900︒【答案】C【解析】由题意,正多边形的边数为360660n ︒==︒,其内角和为()2180720n -⋅︒=︒. 【考点】正多边形,多边形的内外角和.6.如果a b -=,那么代数式22()2a b ab a a b+-⋅-的值为A B . C . D .【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵a b -=,∴原式=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-)时,表示左安门-,6的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-)时,表示左安门-,5的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-,9-)时,表示左安门的点的坐标为(15,18-)”的基础上,将所有点向右平移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移ED CBA二、填空题(本题共16分,每小题2分)9.右图所示的网格是正方形网格,BAC ∠________DAE ∠.(填“>”,“=”或“<”) 【答案】>【解析】如下图所示,AFG △是等腰直角三角形,∴45FAG BAC ∠=∠=︒,∴BAC DAE ∠>∠. 另:此题也可直接测量得到结果.【考点】等腰直角三角形10x 的取值范围是_______.【答案】0x ≥【解析】被开方数为非负数,故0x ≥. 【考点】二次根式有意义的条件.11.用一组a ,b ,c 的值说明命题“若a b <,则ac bc <”是错误的,这组值可以是a =_____,b =______,c =_______.【答案】答案不唯一,满足a b <,0c ≤即可,例如:,2,1- 【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变. 【考点】不等式的基本性质12.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB ∠=________.【答案】70【解析】∵CB CD =,∴30CAB CAD ∠=∠=︒,∴60BAD ∠=︒,∵50ABD ACD ∠=∠=︒,∴18070ADB BAD ABD ∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为________.【答案】103【解析】∵四边形ABCD 是矩形,∴4AB CD ==,AB CD ∥,90ADC ∠=︒,在Rt ADC △中,90ADC ∠=︒,∴5AC ==, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:________元. 【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元) 【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l ∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA ,CQ ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin 45(π2)|1|︒+--.【解析】解:原式4112=+-=. 【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD∥∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB CD∥∴四边形ABCD是平行四边形又∵AB AD=∴ABCDY是菱形(2)解:∵四边形ABCD是菱形,对角线AC、BD交于点O.∴AC BD⊥.12OA OC AC==,12OB OD BD==,∴112OB BD==.在Rt AOB△中,90AOB∠=︒.∴2OA==.∵CE AB⊥,∴90AEC∠=︒.在Rt AEC△中,90AEC∠=︒.O为AC中点.∴122OE AC OA===.【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB是O的直径,过O外一点P作O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP CD⊥;(2)连接AD,BC,若50DAB∠=︒,70CBA∠=︒,2OA=,求OP的长.【解析】(1)证明:∵PC、PD与O⊙相切于C、D.∴PC PD=,OP平分CPD∠.在等腰PCD△中,PC PD=,PQ平分CPD∠.∴PQ CD⊥于Q,即OP CD⊥.(2)解:连接OC、OD.∵OA OD=∴50OAD ODA∠=∠=︒∴18080AOD OAD ODA∠=︒-∠-∠=︒同理:40BOC∠=︒∴18060COD AOD BOC∠=︒-∠-∠=︒.在等腰COD△中,OC OD=.OQ CD⊥∴1302DOQ COD∠=∠=︒.∵PD与O⊙相切于D.∴OD DP⊥.∴90ODP∠=︒.在Rt ODP△中,90ODP∠=︒,30POD∠=︒∴cos cos30OD OAOPPOD====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【解析】(1)解:∵点A(4,1)在kyx=(0x>)的图象上.∴14k=,∴4k=.QPDCOBA(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ 并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究. 下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(21y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC △为等腰三角形时,AP 的长度约为____cm . 【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a .A 课程成绩的频数分布直方图如下(数据分成6组:4050x <≤,5060x <≤,6070x <≤,7080x <≤,8090x <≤,90100x ≤≤);b .A 课程成绩在7080x <≤这一组是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5 c .A ,B 两门课程成绩的平均数、中位数、众数如下:(1)写出表中m 的值;(2)在此次测试中,某学生的A 课程成绩为76分,B 课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A 课程成绩超过75.8分的人数. 【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人.∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C . (1)求点C 的坐标; (2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围. 【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4) ∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=. 2b a =-∴223y ax ax a =-- ∴对称轴为212ax a-=-=.(3)解:①当抛物线过点C时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a<-或13a≥或1a=-.【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH DE⊥交DG的延长线于点H,连接BH.(1)求证:GF GC=;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称. ∴AD FD =.AE FE =. 在ADE △和FDE △中. AD FDAE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△ ∴DAE DFE ∠=∠. ∵四边形ABCD 是正方形 ∴90A C ∠=∠=︒.AD CD = ∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒ ∴DFG C ∠=∠ ∵AD DF =.AD CD = ∴DF CD =在Rt DCG △和Rt DFG △. DC DFDG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △ ∴CG FG =. (2)BH =.证明:在AD 上取点M 使得AM AE =,连接ME . ∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒. ∵DAE △≌DFE △ ∴ADE FDE ∠=∠同理:CDG FDG ∠=∠ ∴EDG EDF GDF ∠=∠+∠ 1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥ABCDEFHG∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒ ∴EHD EDH ∠=∠ ∴DE EH =. ∵90A ∠=︒∴90ADE AED ∠+∠=︒ ∵90DEH ∠=︒∴90AED BEH ∠+∠=︒ ∴ADE BEH ∠=∠∵AD AB =.AM AE = ∴DM EB =在DME △和EBH △中 DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △ ∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME ==∴BH =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (2-,6),B (2-,2-),C (6,2-). (1)求d (点O ,ABC △);(2)记函数y kx =(11x -≤≤,0k ≠)的图象为图形G ,若d (G ,ABC △)1=,直接写出k 的取值范围;(3)T 的圆心为T (,0),半径为1.若d (T ,ABC △)1=,直接写出的取值范围. 【解析】(1)如下图所示:∵B (2-,2-),C (6,2-) ∴D (0,2-)∴d (O ,ABC △)2OD == (2)10k -<≤或01k <≤(3)4t =-或04t -≤≤或4t =+.【考点】点到直线的距离,圆的切线。

相关文档
最新文档