数值分析思考题答案

数值分析思考题答案
数值分析思考题答案

数值分析课程思考题

1.叙述拉格朗日插值法的设计思想。

Lagrange插值是把函数y=f(x)用代数多项式pn(x)代替,构造出一组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定函数,从而求出插值多项式。

2.函数插值问题的提出以及插值法发展的脉络。

问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂而不便于计算希望用一个简单的函数描述它。

发展脉络:在工程中用的多的是多项式插值和分段多项式插值。在多项式插值中,首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数的问题,但是其高次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至更高阶的导数值,这就提出了Hermite插值,它是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。为了提高精度,加密节点时把节点分成若干段,分段用低次多项式近似函数,由此提出了分段多项式插值。最后,由于许多工程中对插值函数的光滑性有较高的要求,就产生了样条插值。

3.描述数值积分算法发展和完善的脉络。

数值积分主要采用插值多项式来代替函数构造插值型求积公式。通常采用Lagrange插值。如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。由于高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公式;

其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成为复化Simpson公式,用Cotes公式求和的称为Cotes公式。但由于步长的选取是个问题,所以,导出逐次分半法来计算。而由于有些函数在x=0的值无法求出,为

了求出很快收敛于f(0)的数列,就导出了Richardson 外推法,根据此思想,利用变步长的复化梯形公式推导出Romberg 积分法。后来,人们希望能选择求积节点,确定求积系数,使代数精度有所提高,就得到Gauss 型求积公式,常用的有Gauss-Legendre 求积公式(权函数为1)Gauss-Chebyshev 求积公式(带权),Gauss-Laguerre 求积公式,Gauss-Hermite 求积公式(广义)。

4.什么是简单迭代法?对某个非线性方程,构造一个迭代格式进行计算,

发现迭代不收敛,应该从哪些方面找原因。

简单迭代法又称逐次迭代法,基本思想是构造不动点方程,以求得近似根。即由方程f(x)=0变换为x=?(x), 然后建立迭代格式:

当给定处值x 0 后, 由迭代格式可求得数列{x k }。如果{x k }收敛于x *,则它就是方

程的根。用直接的方法从原方程中隐含的求出x ,从而确定迭代函数?(x),这种迭代法收敛速度较慢。

应该看迭代函数的构造是否收敛,因为收敛性取决于迭代函数在根邻近的性态,还有初值的选取是否合理,要尽量接近精确值。

5.什么是截断误差和舍入误差?他们分别对应算法的哪种性质?

计算机只能完成有限次算术运算和逻辑运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这就带来误差;若将前若干项的部分和作为函数值的近似公式,由于以后各项都舍弃了,自然产生了误差。

在数值计算过程中还会遇到无穷小数,因计算机受到机器字长的限制,它所能表示的数据只能有一定的有限位数,如按四舍五入规则取有限位数,由此引起的误差 它们分别对应算法的近似性和有限性。

6.牛顿迭代在什么情况下能达到平方收敛。

函数在其零点附近二阶连续可微,且其零点处的一阶导函数值不为零,则在其零点的邻近是平方收敛的。

7.非线性方程迭代法的收敛阶怎样定义?怎样确定一个算法的收敛阶。

收敛阶定义:

)

(1k k x x ?=+*x x e k k -=记满足和若存在实数01>≥c p p k k k e e 1lim +∞→c =,设*lim x x k k =∞

确定一个算法的收敛阶:

8.什么是解线性方程组的直接法。哪些方法属于这种类型,他们能完成的

条件是什么?常用的解线性方程组的迭代法有哪些?收敛条件是什么?描述SOR 算法的设计思想,该算法有哪些优点?

直接法:是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法。

直接法:高斯消去法:要求主元素均不为零,当出现小主元素时会严重影响计算结果的精度;列主元素法;全主元素法;直接三角分解法:矩阵需为方阵,其顺序主子式均不为零;追赶法:严格对角占优的三对角矩阵,其非零元素集中分布在主对角线及其相邻的两条次对角线上,称为三对角矩阵;平方根法:矩阵为对称正定矩阵;改进的平方根法。

迭代法:Jacobi 迭代法;Gauss-Seidel 迭代法;松弛法(低松弛和SOR 法) 收敛条件:①Jacobi 迭代法收敛的充分必要条件是迭代矩阵谱半径小于1.②Gauss-Seidel 迭代法收敛的充分必要条件是迭代矩阵的谱半径小于1(谱半径小于所有范数)③Jacobi 迭代法和Gauss-Seidel 迭代法收敛的充分条件是系数矩阵为严格对角占优。④Gauss-Seidel 迭代法和SOR 迭代法收敛的充分条件是系数矩阵为对称正定矩阵。

SOR :为了加速迭代过程的收敛,引入参数,在Gauss-Seidel 迭代法的基础上得到,将△x 乘上参数因子作为修正项而得到的公式,可看成是Gauss-Seidel 迭代法的加速。优点:收敛速度加快。

9.舍入误差扩散的一般规律?总结四则运算以及开方、乘方运算误差扩散

规律。

计算机参与运算的数据往往是近似数,都带有误差。这些误差通过多次运算会

时称为平方收敛

时称为超线性收敛时称为线性收敛当阶收敛则称迭代法2,1,1,

=>=p p p p 附近满足:

在根如果迭代法迭代函数*)(x x ?阶导数均连续;

存在p x )()1(?,0*)()1(==-x p ? =''='*)(*)()2(x x ??0

*)()(≠x p ?而p

x x k k 的收敛阶是则迭代法)(1?=+

进行传播,使计算结果产生一定的误差,这称为误差传播问题。舍入误差传播与数字取有效数字位数有关,有效数字位数越少,舍入误差越大。

P4。

10. 什么是常微分方程数值解?求常微分方程数值解得一般思路。龙格

—库塔方法的设计思想。

定义和一般思路P231;R-K 方法的设计思想P237-238

11. 实际中怎样控制迭代次数,其理论基础是什么?

非线性方程组得迭代:事前控制和事后控制。

(1) 事前控制:e x x L

L k

<--011解的k 值。 (2) 事后控制:e x x k k <-+1的是否满足条件。

线性方程组得迭代:理论上通过精度控制,即e x x k k <-+1。

在实际中,可通过迭代精度和迭代误差两个角度控制。

理论基础:大范围收敛定理/迭代法的收敛条件。

12. 描述两种样条插值法的计算步骤。

三弯矩法P124;三转角法P126。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析思考题1

% 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有 ,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 ' 答:在实际计算时,由于真值常常是未知的,当较小时, r e x x e x x *****-==

通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(3322-,(2)(2752-,(3)()31 322+,(4)()61 21,(5) 99702-答:(1)( 332-==; (2)(2752-==; , (3) ()31322+=; (4)()6121=; (5)99702-=; 由上面的计算可以看出,方法(3)最好,因为计算的误差最小。 2141.≈)6 21

数值分析-第一章-学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 方法的构造 研究对象 求解过程的理论分析 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析第一章思考题

《数值分析》第一章思考题 1.算法这一概念,数学上是如何描述的? 答:算法的概念:算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。 算法在数学上的主要描述方式有:自然语言、结构化流程图、伪代码和PAD图 2.数值分析中计算误差有哪些?举列说明截断误差来源。 答:在数值分析中的计算误差主要有: (1)模型误差(2)观测误差(3)截断误差(4)舍入误差 求解数学模型所用的数值方法通常是一种近似方法,因近似方法产生的误差称为截断误差或者方法误差。例如在函数的泰勒展开式,我们在实际的计算时只能截取有限项代数和计算。 3.浮点数由哪两部分组成?指出各部分重点。 答:浮点数主要由:尾数+阶数两部分组成的。 在机器中表示一个浮点数时,一是要给出尾数,用定点小数形式表示,尾数部分给出有效数字的位数,决定了浮点数的表示精度。二是要给出阶码,用整数形式表示,阶码指明小数点在数据中的位置,决定了浮点数的表示范围。 4.有效数字的概念是如何抽象而来的,简单给予叙述。 答:有效数字是一个数据在保证最小误差的情况下,取的一个能够在计算中发挥其有效作用的近似值。有效数字的作用在于,最大精度地去发挥这个数值在计算中的作用,而又不会对计算结果造成太大影响,使计算过程简化。 5.何谓秦九韶算法,秦九韶算法有何优点? 答:秦九韶算法是一种多项式简化算法,将一元n次多项式的求值问题转化为n 个一次式的算法,大大简化了计算过程,对于一个n次多项式,至多做n次乘法和n次加法。。 6.在数值计算中,会发生大数吃小数现象,试对这一现象做解释 答:一个绝对值很大的数和一个绝对值很小的数直接相加时,很可能发生所谓“大数吃小数”的现象,从而影响计算结果的可靠性,这主要是计算机表示的数的位数是有限的这一客观事实引起的。 例如在12位浮点数计算机中进行浮点数相加,系统只保留前12位作为有效数字,小的那个数化成浮点数中的有效数字被舍去,出现大数吃小数的现象,对计算结果造成了影响。

matlab与数值分析作业

数值分析作业(1) 1:思考题(判断是否正确并阐述理由) (a)一个问题的病态性如何,与求解它的算法有关系。 (b)无论问题是否病态,好的算法都会得到它好的近似解。 (c)计算中使用更高的精度,可以改善问题的病态性。 (d)用一个稳定的算法计算一个良态问题,一定会得到他好的近似解。 (e)浮点数在整个数轴上是均匀分布。 (f)浮点数的加法满足结合律。 (g)浮点数的加法满足交换律。 (h)浮点数构成有效集合。 (i)用一个收敛的算法计算一个良态问题,一定得到它好的近似解。√2: 解释下面Matlab程序的输出结果 t=0.1; n=1:10; e=n/10-n*t 3:对二次代数方程的求解问题 20 ++= ax bx c 有两种等价的一元二次方程求解公式

2224b x a c x b ac -±==- 对 a=1,b=-100000000,c=1,应采用哪种算法? 4:函数sin x 的幂级数展开为: 357 sin 3!5!7! x x x x x =-+-+ 利用该公式的Matlab 程序为 function y=powersin(x) % powersin. Power series for sin(x) % powersin(x) tries to compute sin(x)from a power series s=0; t=x; n=1; while s+t~=s; s=s+t; t=-x^2/((n+1)*(n+2))*t n=n+2; end

(a ) 解释上述程序的终止准则; (b ) 对于x=/2π、x=11/2π、x =21/2π,计算的精度是多少?分别需 要计算多少项? 5:指数函数的幂级数展开 2312!3!x x x e x =+++ + 根据该展开式,编写Matlab 程序计算指数函数的值,并分析计算结果(重点分析0x <的计算结果)。

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

第一章复习与思考题

第一章复习与思考题 1. 什么是数值分析?它与数学科学和计算机的关系如何? 答:数值分析也称计算数学,是数学科学的一个分支,主要研究的是用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 数值分析以数学问题为研究对象,但它并不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及其理论. 2. 何谓算法?如何判断数值算法的优劣? 答:一个数值问题的算法是指按规定顺序执行一个或多个完整的进程,通过算法将输入元变换成输出元. 一个面向计算机,有可靠理论分析且计算复杂性好的算法就是一个好算法. 因此判断一个算法的优劣应从算法的可靠性、准确性、时间复杂性和空间复杂性几个方面考虑. 3. 列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别. 答:用计算机解决实际问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的,数学模型与实际问题之间出现的误差叫做模型误差. 在数学模型中往往还有一些根据观测得到的物理量,如温度、长度等,这些参量显然也包含误差,这种由观测产生的误差称为观测误差. 当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解和精确解之间的误差称为截断误差或方法误差.

有了求解数学问题的计算公式以后,用计算机做数值计算时,由于计算机字长有限,原始数据在计算机上表示时会产生误差,计算过程又可能产生新的误差,这种误差称为舍入误差. 截断误差和舍入误差是两个不同的概念,截断误差是由所采用的数值方法而产生的,因而也称方法误差,舍入误差是由数值计算而产生的. 4. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 答:设 为准确值, 为 的一个近似值,称 为近似值 的绝对误差,简称误差. 近似值的误差 与准确值 的比值 称为近似值 的相对误差,记作 . 通常我们无法知道误差的准确值,只能根据测量工具或计算情况估计出误差绝对值的一个上界 ,

数值分析思考题[综合]

1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替? 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、 取 ,计算 ,不用计算而直接判断下列式子中哪 种计算效果最好?为什么? (1)(3 3-,(2)(2 7-,(3) (3 1 3+,(4) ) 6 11 ,(5)99-5. 应用梯形公式 ))()((2b f a f a b T +-= 计算积分1 0x I e dx -=?的近似值,在整个计算过程中按四舍五入规则取五位小数。计算中产生的误差的主要原因是截断误差还是舍入误差?为什么? 6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。 (1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。 7. 下列公式如何计算才比较准确? (1) 212 x e -,1x <<;(2) 12 1 N N dx x ++? ,1>>N ;(3) ,1x >>。 8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗? r e x x e x x ***** -== 141.≈) 6 1

1、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区 间多少次? 2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。 3、设0a >,应用牛顿法于方程30x a -= 确定常数,p q 和r 使得迭代法 2 125k k k k qa ra x px x x +=++, 012,, , k = 4、对于不动点方程()x x ?=,()x ?满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ?=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数 1()ln()x x e ?=+在任何区间[],a b 上都是压缩的,但没有不动点。 5、设*x 是方程0()f x =的根,且0*'()f x ≠,''()f x 在*x 的某个邻域上连续。试证明:Newton 迭代序列{}k x 满足 12122**()''() lim () '()k k k k k x x f x x x f x -→∞---=-- 6. 设有方程1 12 sin x x =+。对于迭代法1112 ()sin()k k k x x x ?+==+,试证:对 任何15.b ≥,迭代函数()x ?在闭区间[0.5,b]上满足映内性和压缩性。用所给方

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

数值分析思考题答案

: 数值分析课程思考题 1.叙述拉格朗日插值法的设计思想。 Lagrange插值是把函数y=f(x)用代数多项式pn(x)代替,构造出一组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定函数,从而求出插值多项式。 2.函数插值问题的提出以及插值法发展的脉络。 问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂而不便于计算希望用一个简单的函数描述它。 发展脉络:在工程中用的多的是多项式插值和分段多项式插值。在多项式插值中,首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数的问题,但是其高次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至更高阶的导数值,这就提出了Hermite插值,它是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。为了提高精度,加密节点时把节点分成若干段,分段用低次多项式近似函数,由此提出了分段多项式插值。最后,由于许多工程中对插值函数的光滑性有较高的要求,就产生了样条插值。 3.描述数值积分算法发展和完善的脉络。 数值积分主要采用插值多项式来代替函数构造插值型求积公式。通常采用Lagrange插值。如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。由于高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公式; 其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成为复化Simpson公式,用Cotes公式求和的称为Cotes公式。但由于步长的选取是个问题,所以,导出逐次分半法来计算。而由于有些函数在x=0的值无法求出,为

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

数值分析思考题1

数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x *表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差e ,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x *表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣ k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 答:在实际计算时,由于真值常常是未知的,当较小时,通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 r e x x e x x *****-==

- 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(33-,(2)(27-,(3)()31 3+,(4)()61 1,(5) 99-答:(1)(33-==; (2)(27-==; (3) ()3 13+=; (4)()611+=; (5)99-=; 由上面的计算可以看出,方法(3)最好,因为计算的 误差最小。 , 141.≈)61

数值分析第五章学习小结【计算方法】

第五章最小二乘法与曲线拟合小结 一、本章知识梳理 1、 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差 平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合 中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函 数类中,求,使误差(i=0,1,…,m)的平方和最小,即 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小 的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合 函数的方法称为曲线拟合的最小二乘法。 2、多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即

(3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。 在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛 顿插值多项式。 3、曲线拟合: 曲线拟合,即把一组数据拟合为曲线,需遵循最小二乘法。常用双曲线型和指数型函数。

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4; ()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--= =-+-----= =------==-+-- 则二次拉格朗日插值多项式为 2 20()()k k k L x y l x ==∑ 0223()4() 1 4(1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+-+=+- 6.设,0,1,,j x j n =L 为互异节点,求证: (1)0 ()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2) 0()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0()()n k n j j j L x x l x ==∑。 插值余项为(1)1()()()()()(1)! n n n n f R x f x L x x n ξω++=-=+ 又,k n ≤Q

(1)()0()0 n n f R x ξ+∴=∴= 0 ()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 000(2)()() (())()()(())n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 0()n k i j j j x l x x ==∑ 0()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10101010()() ()x x x x L x f x f x x x x x --=+-- =()()x b x a f a f b a b x a --=+-- 1()()0 ()0 f a f b L x ==∴=Q 又 插值余项为1011()()()()()()2 R x f x L x f x x x x x ''=-=-- 011()()()()2 f x f x x x x x ''∴=--

相关文档
最新文档