滤波扼流圈设计方法

滤波扼流圈设计方法
滤波扼流圈设计方法

滤波扼流圈设计方法

在电子设备中,将交流电经整流后得到脉动直流电,为了获得平滑的直流电流,必须采用电容滤波或电感滤波,以减少整流后的纹波电压,虽然许多小功率的整流电路,只需在整流后并联上一只大容量的电解电容器,即可满足要求。但对直流负载功率达几百瓦的整流电路,单靠电容器滤波是不够的,因为加大电容器的容量,它的体积也要增大,另外,当负载电流变化时,直流电压的波动也会增大,输出特性变差。如果在整流后采用一个滤波扼流圈,与电容器配合接成π形滤波电路,或者接成倒L形滤波电路,那么,滤波效果要好得多了,见图1所示。

如何确定滤波扼流圈的电感量 L?在图1中,先计算负载电阻的阻值:

(Ω)

那么,滤波扼流圈的电感量L可以根据负载电阻的大小,按下式计算电感量L:

(亨)

当电源频率f=50Hz时,则

(亨)

例如: 经整流、滤波后的负载电压为24V,直流电流I为5A。此时负载电阻=4.8Ω。那么要求滤波扼流圈的电感量L:

即电感量为5毫亨,直流电流为5A。

由于在滤波扼流圈中通过的是脉动直流电流,其中主要的是直流成分,也有少量的交流成分,即在交直流同时磁化下工作的。因此在铁芯中产生很强的直流磁通,甚至使铁芯中的磁通达到饱和状态。制造这样的扼流圈,在铁芯的磁路中都留有一定的空气隙lg以防止直流磁通的饱和。滤波扼流圈的铁芯体积V、线圈匝数N和空气隙lg,是由三个有相互关系的电气参数,即:电感量L、直流磁化电流I和线圈两端的交流的电压U~而决定的。

滤波扼流圈的匝数、和通过的直流电流,因而在铁芯中产生直流磁通,同时在直流电流中还含有纹波电压,因此在铁芯中也含有一部分交变的磁通,它叠加

在直流磁通上,见图2所示。

滤波扼流圈的磁路是由铁芯的磁路长度和空气隙lg两部分组成。虽然磁

路长度极大于空气隙lg,但这两部分是不能直接相加的。因为这两部分的导磁率μ是不同的,在空气隙中的导磁率是1,而在铁芯中的导磁率视铁芯的饱和程度而定。磁路中有空气隙的,其有效导磁率μe一般在100~ 1000。

在铁芯中的导磁率与空气隙中的导磁率两者比值极大,而空气隙对磁通的阻力很大。所以某个滤波扼流圈,当通过的直流磁化电流变动时,而电感量的变化很小,那么这种扼流圈称为线性扼流圈。

假如磁路中的空气隙lg很小,当直流磁化电流变动时,使电感量也引起变动,如通过的直流电流变小时,电感量L增大,当通过直流电流增大时,电感量L减小,(如音频乙类功率放大电路)。这种扼流圈则称为非线性扼流圈,又叫做摇摆扼流圈。

滤波扼流圈铁芯体积V的大小,与 的乘积成正比例,所以设计时,先要

按表一选定某一型号的铁芯,并求出的比值,再从图3的曲线上求得的对应值,此时即可计算绕组匝数N:

(匝)

导线直径d也根据表一提供的电流密度J进行计算:

(mm)

现举例设计一个10mH、5Ad.c.的滤波扼流圈,用于50Hz整流电路上,电压降不大于1.5V。

计算步序:

1.计算, =0.01x 5*5 =0.25

在图3的中部区间内。

2.按表1选择铁芯,并计算. 选择EI26×28,铁芯体积V=108代入下式:

然后在图3的纵座标上,找到23×,并找到对应的H值为40。

3.计算线圈匝数

因为H==40

所以N==125圈

4.计算导线直径d

=1.35 mm

按线规表选择 QE-1.32 漆包线。

5.表一中所列的铁芯系列,是变压器厂常用的规格,一般都配有塑料骨架,本例中QE-1.32漆包线绕125圈,正好能绕在EI-26×28的骨架上,线圈厚度为10mm。

6.平均匝长lo

lo=2×(29+31)+10π=151 mm

7.导线总长L

L=Nlo=125×0.151=18.9m

8.直流电阻R20℃

9.电压降Ur

Ur=I=5×0.242=1.21V

此电压降Ur接近并小于预定值1.5V,比较合适。如果计算Ur值大于预定值。则应重选大一号的铁芯。减少圈数,增大导线直径。如果客户对Ur未提出要求。也应以表一提供的电流密度J计算导线直径,若设计时J取得偏高,则导线偏细,线包温升就会偏高。

10.空气隙lg

在图3的曲线上,本例计算正好在两个点0.004~0.005之间,可取0.0045=lg,由于EI型铁芯磁路中要遇到两个空气隙,所以计算空气隙时应除以

2lg==0.35mm

即在装配铁芯时,在EI型铁芯之间垫以0.35mm厚的绝缘纸板,由于铁芯材质不同,导磁率也有高低,在测试时,可调整空气隙的大小,以达到需要的电感量。

现将EI16×24铁芯滤波扼流圈参数列于表二、EI26×28铁芯滤波扼流圈参数列于表三中,供设计时参考。

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

基于matlab的FIR数字滤波器设计(多通带,窗函数法)

数字信号处理 课程设计报告 设计名称:基于matlab的FIR数字滤波器设计 彪

一、课程设计的目的 1、通过课程设计把自己在大学中所学的知识应用到实践当中。 2、深入了解利用Matlab设计FIR数字滤波器的基本方法。 3、在课程设计的过程中掌握程序编译及软件设计的基本方法。 4、提高自己对于新知识的学习能力及进行实际操作的能力。 5、锻炼自己通过网络及各种资料解决实际问题的能力。 二、主要设计内容 利用窗函数法设计FIR滤波器,绘制出滤波器的特性图。利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图,验证滤波器的效果。 三、设计原理 FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。 目前 FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。常用的是窗函数法和切比雪夫等波纹逼近的最优化设计方法。本实验中的窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的。 如果 FIR 滤波器的 h(n)为实数, 而且满足以下任意条件,滤波器就具有准确的线性相位: 第一种:偶对称,h(n)=h(N-1-n),φ (ω)=-(N-1)ω/2 第二种:奇对称,h(n)=-h(N-1-n), φ(ω)=-(N-1)ω/2+pi/2 对称中心在n=(N-1)/2处 四、设计步骤 1.设计滤波器 2.所设计的滤波器对多个频带叠加的正弦信号进行处理 3.比较滤波前后信号的波形及频谱 五、用窗函数设FIR 滤波器的基本方法 基本思路:从时域出发设计 h(n)逼近理想 hd(n)。设理想滤波器的单位响应在时域表达为hd(n),则Hd(n) 一般是无限长的,且是非因果的,不能

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数() ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数() ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

直流滤波扼流圈的设计

直流滤波扼流圈的设计 直流滤波扼流圈安装在开关电源的输出侧,以进一步抑制开关电源输出的电压和电流纹波。它也可以应用在总线型输入的开关电源,如电池和分布式电源系统中,用作开关电源的EMI滤波器。 流过直流滤波电感的电流是在一个直流电流上叠加了小的交流分量的电流。由于流过的直流电流比较大,因而需要加气隙。通常选择MPP磁环作磁心。这种磁心的材料中分布着气隙,因而有各种各样的磁导率。经验方法表明:通过电感的直流电流越大,所选的磁心磁导率要越低。 其实,直流EMI滤波器电感的设计比较简单。磁心制造厂商会为MPP磁心提供一张类似图22所示的“标准磁化曲线”。这里推荐使用磁导率低于60的磁心。 第一步确定所需的导线规格。这只要知道流过电感的平均直流电流就可以确定了,然后参考导线规格表,找出能够满足这个电流的导线规格。在这种情况下,没有必要使用绞合线,因为流过的交流量可以忽略。 下一步参考标准磁化曲线,选择一个合适的H值[磁场强度,厘米-克-秒制,奥斯特(Oe)]。这个值要低于磁化曲线上磁心材料的转折点,该转折点是由于磁饱和而使磁导率下降的点。从图22中可以看到,这个值取200e是比较好的。选择磁导率为60就可以得到合适的磁通密度。

图22 接下来是一个反复设计的过程。选择50%左右的绕组因数是比较合适的。假设磁心上要绕10圈左右,把导线的横截面积乘以10作为绕线面积,然后参考磁心的数据手册,找到窗口面积比这个绕线面积大两倍以上的磁心。 对于初选磁心,用式(35)来计算要绕的匝数。 (35) 式中 H——选择的磁场强度,单位为Oe; l ——磁心的磁路长度,单位为cm或m; Iav——流过电感的平均电流,单位为A。 检查绕组因数,核对磁心窗口面积的比例是否低于50%,如果比50%大,就要选用大一号的磁心。在这种情况下,没有必要使用编织线,因为通过绕组的交流电流很小。 基极和栅极的驱动变压器

带阻滤波器设计原理计算

带阻滤波器设计原理计算 时间:2009-07-08 20:38:37 来源:资料室作者: 滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍

数AVP、通带截止频率fP及阻尼系数Q等。

带阻滤波器(BEF) 如图1(a)所示,这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。 在双T网络后加一级同相比例运算电路就构成了基本的二阶有源BEF。 (a) 电路 图 (b) 频率特性 图1二阶带阻滤波器 电路性能参数: 通带增益 中心频率 带阻宽度B=2(2-Aup)f0 选择性

FIR带阻滤波器的设计

FIR带阻滤波器的设计 武汉理工大学《数字信号处理》课程设计说明书 1 前言 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。与IIR滤波器相比,FIR 的实现是非递归的,总是稳定的;更重要的是,FIR滤波器在满足幅频响应要求的同时,可以获得严格的线性相位特性。因此,它在高保真的信号处理,如数字音频、图像处理、数据传输、生物医学等领域得到广泛应用。 有限长单位冲激响应(FIR) 数字滤波器具有严格的线性相位,又具有任意的幅频特性。同时FIR 系统只有零点,系统是稳定的,因而容易实现线性相位和允许实现多通道滤波器。只要经过一定的时延,任何非因果有限长序列都能变成因果的有限长序列,因而总能用因果系统来实现。FIR 滤波器由于单位冲激响应是有限长的,可以用快速傅立叶变换(FFT) 算法来实现过滤信号,从而大大提高运算效率。由于FIR 滤波器具有以上优点,在信号处理和数据传输中得到了广泛的应用。 Matlab 语言是一种用于科学计算的高效率语言。随着Matlab信号处理工具箱(Signal Processing Toolbox) 的不断完善,使数字滤波器的计算机辅助设计得以实现。 1 武汉理工大学《数字信号处理》课程设计说明书 2 设计原理 2.1 带阻滤波器的设计 理想带阻的频响:

其单位抽样响应: 带阻滤波器(W1,W2)=高通滤波器(W2)+低通滤波器(W1) 2.2 滤波器频率特性根据h(n),hd(n)W(n)时域中两序列相乘。 在频域中:为hd(n)与W(n)的卷积 (且为两序列频谱的周期卷积) ,1jw,jj(w,,),?H(e),H(e)W(edd,,,2, jw 以低通H(e)为例,说明频率特性d jwjw(1)H(e),H(e)发生了什么变化,d (2)研究什么窗函数使 jwjwH(e),H(e)变化最小。d jwjw最佳即使H(e),,,,逼近H(e)d 2.3 窗口法原理 用一个有限长度的窗口函数序列W(n)来截取hd(n):(即进行砍头截尾), h(n)=W(n)hd(n)使h(n)满足因果,有限长,实序列,并具有奇、偶对称性,则可设计出具有线性相位的FIR滤波器。 窗口法应用广泛,利用窗函数法可以设计四种线性相位FIR DF,即低通、高通、带通、带阻。 2

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

滤波扼流圈设计方法

滤波扼流圈设计方法 在电子设备中,将交流电经整流后得到脉动直流电, 为了获得平滑的直流电流, 必须采用电容 滤波或电感滤波,以减少整流后的纹波电压, 虽然许多小功率的整流电路, 只需在整流后并联 上一只大容量的电解电容器, 即可满足要求。但对直流负载功率达几百瓦的整流电路, 单靠电 容器滤波是不够的,因为加大电容器的容量,它的体积也要增大,另外,当负载电流变化时, 直流电压 的波动也会增大,输出特性变差。如果在整流后采用一个滤波扼流圈, 接成n 形滤波电路,或者接成倒 L 形滤波电路,那么,滤波效果要好得多了,见图 当电源频率f=50Hz 时,则 R L R 二肛二纽 例如:经整流、滤波后的负载电压为 24V ,直流电流I 为5A 。此时负载电阻 L I 5 =4.8 Q 。那么要求滤波扼流圈的电感量 L: 即电感量为5毫亨,直流电流为 5A 。 由于在滤波扼流圈中通过的是脉动直流电流,其中主要的是直流成分,也有少量的交流成分, 即在交直流同时磁化下工作的。 因此在铁芯中产生很强的直流磁通, 甚至使铁芯中的磁通达到 与电容器配合 1所示。 c" 脸1血 4 1 C L 1 如何确定滤波扼流圈的电感量 L ?在图 1中,先计算负载电阻R L 的阻值: 那么,滤波扼流圈的电感量 L 可以根据负载电阻 R L 的大小,按下式计算电感量 L: R L T _ R L ________ ( 亨) h 倒L 形滤波电路

饱和状态。制造这样的扼流圈,在铁芯的磁路中都留有一定的空气隙 Ig 以防止直流磁通的饱 和。滤波扼流圈的铁芯体积 V 、线圈匝数N 和空气隙Ig ,是由三个有相互关系的电气参数, 即:电感量L 、直流磁化电流I 和线圈两端的交流的电压 U~而决定的。 滤波扼流圈的匝数、 和通过的直流电流, 因而在铁芯中产生直流磁通, 同时在直流电流中还含 有纹波电压,因此在铁芯中也含有一部分交变的磁通,它叠加在直流磁通上,见图 2所示。 滤波扼流圈的磁路是由铁芯的磁路长度 ic 和空气隙Ig 两部分组成。虽然磁路长度 ic 极大于空 气隙Ig ,但这两部分是不能直接相加的。因为这两部分的导磁率 卩是不同的,在空气隙中的 导磁率是1,而在铁芯中的导磁率视铁芯的饱和程度而定。磁路中有空气隙的,其有效导磁率 □ e —般在 100~ 1000。 在铁芯中的导磁率与空气隙中的导磁率两者比值极大, 而空气隙对磁通的阻力很大。 所以某个 滤波扼流圈,当通过的直流磁化电流变动时, 而电感量的变化很小, 那么这种扼流圈称为线性 扼流圈。 假如磁路中的空气隙Ig 很小,当直流磁化电流变动时,使电感量也引起变动,如通过的直流电 流变小时,电感量 L 增大,当通过直流电流增大时,电感量 路)。这种扼流圈则称为非线性扼流圈,又叫做摇摆扼流圈。 件(匝) 导线直径d 也根据表一提供的电流密度 J 进行计算: 现举例设计一个10mH 、5Adc 的滤波扼流圈,用于 50Hz 整流电路上,电压降不大于 计算步序: L 减小,(如音频乙类功率放大电 滤波扼流圈铁芯体积 V 的大小,与 LIE 的乘积成正比例, 型号的铁芯,并求出 组匝数N: 所以设计时,先要按表一选定某一 V 的比值,再从图 3的曲线上求得 If 的对应值,此时即可计算绕 1.5V 。

带阻滤波器设计范文

模拟电路课程设计报告设计课题:二阶带阻滤波器的设计 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目二阶带阻滤波器的设计 一、设计任务与要求 1.截止频率f H=2000Hz,f L=200Hz; 2.电压增益A V=1----2; 3.阻带衰减速率为-40dB/10倍频程; 4.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以得到带阻滤波器,其中低通滤波器的截止频率fp1应小于高通滤波器的截止频率fp2,因此电路的阻带为(fp2-fp2).实用电路常利用无源LPF和HPF 并联构成带阻滤波器电路,然后接同向比例运算电路,从而得到有源带阻滤波器,由于两个无源滤波电路均由三个元件构成英文字母T,故称之为双T网络。 根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程组。根据课设要求,我们选择巴特沃斯(butterworth)滤波电路。巴特沃斯滤波器的幅频响应在通带中具有最平幅度特性,但是通带到阻带衰减较慢。由于要求为-40dB/十倍频程,选择二阶有源低通滤波器电路,即n=2。 方案一、压控电压源二阶带阻滤波器 这种电路的性能和带通滤波器相反,即在规定的频带内,信号不能通过(或受到很大衰减或抑制),而在其余频率范围,信号则能顺利通过。在双T网络后加一级同相比例运算电路就构成了基本的二阶有源BEF。电路图如下: 方案二、无限增益多路负反馈二阶带阻滤波器 该电路由二阶带通滤波器和一个加法器组成

三、单元电路设计与参数计算 (1)直流电源部分 直流电源由电源变压器,整流电路,滤波电路,稳压电路四部分构成。 1、稳压电源的组成框图 2、电路图 3、整流、滤波电路 用四个整流二极管组成单相桥式整流电路,将交流电压U2变成脉动的直流 变 压 整 流 滤 波 稳 压 负 载

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

共模扼流圈在开关电源中的应用

共模扼流圈在开关电源中的应用 摘要: 本文阐述了对共模扼流圈的工作原理及使用方法,及其在开关电源中的应用与实现。 我们经常采用共模扼流的方法可以抑制外界的噪声干扰,但是目前现有的共模扼流圈(这里指的是开关电源中所用的共模扼流圈,不考虑经过调制解调的)多数都是采用同轴电缆在变压器的铁心上绕制而成,为了获得较大的电感值,就要尽量多绕制才能取得足够的电感值。本文则介绍共模扼流圈在开关电源中的应用。 关键词:开关电源;电磁干扰;共模扼流圈;合成扼流圈;共模电感 引言: 由于功率开关管的高速开关动作,开关电源会产生较强的电磁干扰( EMI) 信号。为了抑制开关电源对外电磁噪声和外界对内电磁干扰,使得产品能够满足相关EMC 标准,有必要在开关电源输入线上添加额外的EMI 滤波器。尤其对于车用DC/ DC 变换器的控制器来说,周围电磁环境相当恶劣,所应遵循的整车及零部件EMC 标准也很严格,因此必须在控制器电源输入线上添加EMI 滤波器,使其满足相关EMC 标准。传统的EMI 滤波器一般由共模电感、差模电感和电容等分立元件组成,元件数量多,体积大。分立元件较长的引线造成的分布电感和分布电容对滤波特性有很大的影响。而共差模合成扼流圈利用两个不同特性的磁芯将共模电感和差模电感集成在一起,替代分立的共模电感与差模电感,可以使滤波器尺寸和性能上得到进一步的改善。 正文: 1、共模扼流圈的简介: 共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面

带阻滤波器设计

信息科学与技术学院电路分析大作业 题目 专业(班级) 姓名 学号 指导教师

17级“电路分析”课程大作业:滤波器的设计 一、要求: 1、完成所要求的各性能指标的滤波器的设计; 2、完成滤波电路的仿真; 3、根据所做的工作完成相关的论文(纸质及电子文档)。 二、论文要求: 1、了解相关应用的背景资料,了解滤波器的工程应用; 2、滤波电路的工作原理的理论分析; 3、电路参数选择的依据; 4、设计过程的记录; 5、仿真结果的记录、计算、分析; 6、心得和体会。 三、时间安排: 1、12月18日(第15周之前)完成仿真调试及验收;

2、12月25日(第16周之前)提交论文。 四、滤波器指标要求: 请设计一带阻滤波电路,上、下限截止频率分别为1500Hz、5000Hz。 目录 一、滤波器的背景资料和工程应用; 二、滤波电路的工作原理的理论分析; 三、电路参数选择的依据; 四、设计过程的记录; 五、仿真结果的记录、计算、分析; 六、心得和体会;

一、滤波器的背景资料和工程应用 定义: 电源滤波器是由电容、电感和电阻组成的滤波电路。滤波器可以对电源线中特定频率的频点或该频点以外的频率进行有效滤除,得到一个特定频率的电源信号,或消除一个特定频率后的电源信号。 主要作用: 分类:

⑴ 按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶ 按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 二、 滤波电路的工作原理的理论分析 1.工作原理 滤波器是一种选择装置,它对输入信号进行加工和处理,从中选出某些特定的信号作为输出。电滤波器的任务是对输入信号进行选频加权传输。 电滤波器是Campbell 和wagner 在第一次世界大战期间各自独立发明的,当时直接应用于长途载波电话等通信系统。电滤波器主要由无源元件R 、L 、C 构成,称为无源滤波器。 滤波器的输出与输入关系通常用电压转移函数H(S)来描述,电压转移函数又称为电压增益函数,它的定义如下 ) () ()(0S U S U S H i = 式中U O (S)、U i (S)分别为输出、输入电压的拉氏变换。在正弦稳态情况下,S=j ω,电压转移函数可写成 )(0)() ()()(ωφωωωωj i e j H j U j U j H == ? ? 式中H j ()ω表示输出与输入的幅值比,称为幅值函数或增益函数,它与频率的关系称为幅频特性;Φ(ω)表示输出与输入的相位差,称为相位函数,它与频率的关系称为相频特性。幅频特性与相频特性统称滤波器的频率响应。滤波器的幅频特性很容易用实验方法测定。 本实验仅研究一些基本的二阶滤波电路。滤波器按幅频特性的不同,可分为低通、高通、带通和带阻和全通滤波电路等几种,图附录1—1给出了低通、高通、带通和带阻滤波电的典型幅频特性。 低通滤波电路,其幅频响应如图1(a)所示,图中|H(j ωC)|为增益的幅值,K 为增益常

二阶有源带阻滤波器课程设计汇总

二阶有源带阻滤波器 设计报告 目录 1、设计要求………………………..P1 2、设计作用及目的………………..P1 3、设计的具体实现 ⑴系统概述……………………...P1-P8 ⑵单元电路设计及仿真分析…...P9-P22 ⑶PCB版电路制作……………..P 4、心得体会及建议………………...P 5、附录……………………………...P 6、参考文献………………………...P

一、设计要求 ⑴、设计一个二阶有源带阻滤波器电路,要求中心频率0f=50Hz,Q=10; ⑵、设计时要综合考虑实用、经济并满足性能要求指标; ⑶、合理选用元器件。 二、设计的作用、目的 ⑴、掌握二阶有源带阻滤波器电路的设计方法 ⑵、了解二阶有源带阻滤波器的性能特点 ⑶、掌握二阶有源带阻滤波器的安装与调试方法 ⑷、掌握滤波器有关参数的测量、计算方法 ⑸、理论应用于实践,增强动手能力 三、设计的具体实现 1、系统概述 ⑴、相关知识了解 由有源器件(晶体管或集成运放)和电阻、电容构成的滤波器称为RC有源滤波器。滤波器分为一阶、二阶和高阶滤波器。阶数越高,其幅频特性越接近于理想特性,滤波器的性能就越好。滤波器的功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信号处理、数据传输、抑制干扰等方面。这类滤波器主要优点是:小型,价廉;不需要阻抗匹配且可具有一定的增益;抗干扰能力强;截止频率低(可低至10-3Hz)。因受运算放大器的频带限制,主要用在超低频至几百千赫的频率范围。根据滤波器所能通过信号的频率范围或阻止信号频率范围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 这里专门对二阶有源带阻滤波器进行研究。常用的二阶有源带阻滤波器电路有两种形式,一种是无限增益多路负反馈(MFA)有源二阶带阻滤波器电路,另一种是电压控制电压源(VcVs)有源二阶带阻滤波器电路。 电压控制电压源电路,它的运放为同相输入,具有高输入阻抗、低输出阻抗

电路设计基础知识——电感线圈

电路设计基础知识——电感线圈电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。用L表示,单位有亨利(H)、毫亨利(mH)、微亨利(uH),1H=10^3mH=10^6uH。 一、电感的分类 按电感形式分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 二、电感线圈的主要特性参数 1、电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。

2、感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 3、品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R 线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。 4、分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。 三、常用线圈 1、单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 2、蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,

带阻滤波器的设计与仿真(DOC)

带阻滤波器的设计与仿真 摘要:本文利用ADS设计了一个带阻滤波器,预期目标是满足中心频率为6GHz,相对带宽为9%,带内波纹小于0.2dB,阻带衰减大于25dB,在频率5.5GHz和6.5GHz处,衰减小于3dB,输入输出阻抗为50Ω。设计完成对其进行优化,结果证明,优化之后,带阻滤波器的的各项参数更加符合预期的要求。 关键字:ADS;带阻滤波器;优化 The Design And Simulation Of Bandstop Filter Abstract: this paper ADS design a band elimination filter, anticipated goal is to meet the center frequency for 6 GHz, relative bandwidth for 9%, less than 0.2 dB with inner ripple, stop-band attenuation more than 25 dB, 5.5 GHz in frequency and 6.5 GHz place, less than 3 dB atten uation, input/output impedance for 50 Ω. Design completed the optimization results show, after optimization, with the parameters of the stop filter more in line with the requirements of the expected. Key Words: ADS;Bandstop filter; optimization 一、引言 带阻滤波器是指能通过大多数频率分量、但将某些范围的频率分量衰减到极低水平的滤波器,与带通滤波器的概念相对。要想得到带阻滤波器,只需将输入电压同时作用于低通滤波器和高通滤波器,再将两个电路的输出电压求和,就可以实现。从这个概念,本文利用理查德变换和科洛达规则的原理进行设计。二、微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高500Mz 时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 1.理查德变换 通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。在传输线理论中,终

实验五IIR数字滤波器设计及软件实现

实验四:IIR数字滤波器设计及软件实现 一、实验内容及步骤 1、调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号 st,三路信号在时域混叠无法在时域分离,但频域是可分离的,所以可以通过滤波的方法在频域分离。 2、要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可 以分离st中三路抑制载波单频调幅信号的三个滤波器(低通、高通、带通)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1db,阻带最小衰减为60db. 3、编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计三个椭圆滤 波器,并绘图显示其损耗函数曲线。 4、调用滤波器实现函数filter,用三个滤波器分别对信号产生函数mstg产生 的信号st进行滤波,分离出st中的三路不同载波频率的调幅信号yn1、yn2、yn3的,并绘图显示其时域波形,观察分离效果。 二、实验结果显示 原信号图形:

高通滤波器 输出波形

带通滤波器输出波形

低通滤波器输出波形

带阻滤波器输出波形

三、实验结论:由上面所绘图形可知,利用数字滤波器完全可以将时域混叠而频域未混叠的波形分开,达到滤波目的。 四、思考题 (1)请阅读信号产生函数mstg,确定三路调幅信号的载波频率和调制信号频率。答:第一路调幅信号的调制信号频率为100HZ,载波频率为1000HZ;第二路调幅信号的调制信号频率为50HZ,载波频率为500HZ;第三路调幅信号的调整信号频率为25HZ,载波频率为250HZ。 (2)信号产生函数mstg中采样点数N=1600,对st进行N点FFT可以得到6根理想谱线。如果取N=1800,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N的值,观察频谱图验证您的判断是否正确? 答: 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。分析可知,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz 的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

相关文档
最新文档