最新高考数学专题总结立体几何重点题型空间距离空间角(生)

最新高考数学专题总结立体几何重点题型空间距离空间角(生)
最新高考数学专题总结立体几何重点题型空间距离空间角(生)

立体几何重点题型

【考点透视】

(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版.

①理解空间向量的概念,掌握空间向量的加法、减法和数乘.

②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图.

空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.

不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.

求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

【例题解析】

考点1 点到平面的距离

求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,

当然别忘了转化法与等体积法的应用. 典型例题

例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:

1AB ⊥

平面

1A BD

(Ⅱ)求二面角

1A A D B

--的大小;

(Ⅲ)求点C 到平面1A BD 的距离.

例2.如图,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4.

A B

C D

1

A 1

C

1

B

(Ⅰ)证明PQ ⊥平面ABCD ;

(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离. 考点2 异面直线的距离

此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题

例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.

考点3 直线到平面的距离

此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.

典型例题

例4.如图,在棱长为2的正方体1AC 中,G 是1AA 的中点, 求BD 到平面11D GB 的距离.

考点4 异面直线所成的角

此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题

例5如图,在Rt AOB △中,

π

6OAB ∠=

,斜边4AB =.Rt AOC △可以通

过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.

(I )求证:平面COD ⊥平面AOB ; (II )求异面直线AO 与CD 所成角的大小.

例6.如图所示,AF 、DE 分别是⊙O 、⊙O1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE//AD.

(Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.

B

A

C

D

O

G

H 1A

1C

1D 1B

1O O

C

A

D

B

E

考点5 直线和平面所成的角

此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题

例7. 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知

45ABC =∠,2AB =,22BC =,3SA SB ==.

(Ⅰ)证明SA BC ⊥;

(Ⅱ)求直线SD 与平面SAB 所成角的大小. 考点6 二面角

此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题

例8.如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,

45BAP ∠=,直线CA 和平面α所成的角为30.

(I )证明BC PQ ⊥; (II )求二面角B AC P --的大小.

例9.如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD,∠DAB 为直角,AB ‖CD ,AD=CD=2AB, E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;

(Ⅱ)设PA =k ·AB,且二面角E-BD-C 的平面角大于?30,求k 的取值范围.

考点7 利用空间向量求空间距离和角

众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题

例10. 如图,已知1111

ABCD A B C D -是棱长为3的正方体,

点E 在

1

AA 上,点F 在

1

CC 上,且

11

AE FC ==.

(1)求证:

1

E B

F D ,,,四点共面;

(2)若点G 在BC 上,

2

3BG =

,点M 在1

BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥

A

B

C

Q

α

β P

D

C

S

C

B

A

H

M

D

E

F

1

B

1

A

1

D

1

C

平面

11

BCC B ;

(3)用θ表示截面1

EBFD 和侧面

11

BCC B 所成的锐二面角的大小,

求tan θ.

例11.如图,l1、l2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l1上,C 在l2上,AM=MB=MN (I )证明AC ⊥NB ;

(II )若?

=∠60ACB ,求NB 与平面ABC 所成角的余弦值. 考点8 简单多面体的有关概念及应用

主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题

例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿

虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.

例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的

度数为( )

A 、90°

B 、60°

C 、45°

D 、0° 例14.长方体ABCD -A1B1C1D1中,

设对角线D1B 与自D1出发的三条棱分别成α、β、γ角 求证:cos2α+cos2β+cos2γ=1

设D1B 与自D1出发的三个面成α、β、γ角,求证: cos2α+cos2β+cos2γ=2

考点9.简单多面体的侧面积及体积和球的计算

棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积.

N

C

B

A C

D

E

F G H

I

J

(A 、B 、C)

D

E F G

H

I

J A

B

C

A

D A1 B1

C1 D1

棱锥体积V 等于31

Sh 其中S 是底面积,h 是棱锥的高.

典型例题

例15. 如图,在三棱柱ABC -A1B1C1中,AB =2a ,BC =CA =AA1=a , A1在底面△ABC 上的射影O 在AC 上 求AB 与侧面AC1所成角;

若O 恰好是AC 的中点,求此三棱柱的侧面积.

例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )

A 、23

B 、23

C 、3

D 、3

例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又PA ⊥AB ,PA

=4,∠PAD =60° 求四棱锥的体积;

求二面角P -BC -D 的大小.

例18 .已知圆O1是半径为R 的球O 的一个小圆,且圆O1的面积与球O 的表面积的比值

为92

,则线段OO1与R 的比值为 .

A

B1

C1

A

B C

D

O

P

A

H E D

B

C

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,PA⊥平面ABCD,PA=2c,Q 是PA的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. 。 P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角 (3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. < 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必 须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (2 2 a ,0,0),C (0, 2 2 a ,0),D (0,0, 22a ),E (0,-4 2a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧?CD所在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1, 故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ;

(Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=o ,AC = O

立体几何及解题技巧以及空间距离专题复习

立体几何及解题技巧以及空间距离专题复习

知识点整理 (一)平行与垂直的判断 ⑴平行:设,的法向量分别为U,V ,贝U 直线l,m 的方向向量分 别为a,b ,平面 线线平行i // m a 〃 b a 诂;线面平行i // a u a u 0 ; 面面平行// u // v u J. ⑵ 垂直:设直线l ,m 的方向向量分别为a,b ,平面,的法向量 分别为u,v ,则 线线垂直I 丄m a 丄b ab 0 ;线面垂直I 丄 a // u a ku 「; 面面垂直丄 u 丄v u v 0. (二)夹角与距离的计算 注意:以下公式可以可以在非正交 基底下用,也可以在正交基底下用坐标运算 (1)夹角:设直线l ,m 的方向向量分别为,平面,的法向量 分别为u ,v ,则 ①两直线I ,m 所成的角为 (2)空间距离 ②直线I 与平面 ③二面角一I 的大小为(0< < ),cos cos (0< =2),sin 所成的角为

点、直线、平面间的距离有种.点到平面的距离是重点,两异面直线间的距离是难 ①点到平面的距离h:(定理)如图,设n是是平 面的法向量,AP是平面的一条斜线,其中A 则点P到平面的距离 uuu uu ②h 1 Auur n |(实质是AP在法向量n 方向上的投影的绝对值) |n| uuu ur ③异面直线l i,l2间的距离d: d AB JC』1( 11,12的公垂向量为 |n| ' n, C、D分别是h,l2上任一点). 题型一:非正交基底下的夹角、的计算 例1.如图,已知二面角-I - 点 A , B , A C I于点C, 且 AC=CD=DB=1. 求:(1) A、B两点间的距离; (2)求异面直线AB和CD勺所成的角(3) AB与CD勺距 离. 解:设AC a,CD b,DB c,则 |a| |b| |c| 1, a,b b,c 900, a,c 60°, 2 ? ? 2 ?? 2 ■■ 2 |AB | a b c . a b c 2a b 2b c 2c a 2 A、B两点间的距离为2. (2)异面直线AB和CD的所成的角为60°

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

最新高中立体几何题型分类训练(附详细答案)(1)

立体几何题型分类解答 第一节空间简单几何体的结构与三视图、直观图 及其表面积和体积 一、选择题 1.(2009年绵阳月考)下列三视图所对应的直观图是( ) 2.(2010年惠州调研)下列几何体(如下列图)各自的三视图中,有且仅有两个视图相同的是( ) A.①②B.①③C.①④D.②④ 3.如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( ) ①长方体②圆锥③三棱锥④圆柱 A.④③② B.②①③ C.①②③ D.③②④ 4.(2009年常德模拟)用单位立方块搭一个几何体,使它的主视图和俯视图如下图所示,则它的体积的最小值与最大值分别为( ) A.9与13 B.7与10 C.10与16 D.10与15 5.(2009年山东卷)一空间几何体的三视图如图所示,则该几何体的体积为( )

A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+23 3 二、填空题 6.在下列图的几何体中,有________个是柱体. 7.(2009年全国卷)直三棱柱ABC -A 1B 1C 1的各顶点都在同一球面上,若AB =AC =AA 1=2,∠BAC=120°,则此球的表面积等于__________. 8.一个长方体共顶点的三个面的面积分别为2、3、6,这个长方体对角线的长是________. 三、解答题 9.如右图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 10.一几何体的表面展开图如右图,则这个几何体是哪一种几何体?选择适当的角度,画出它水平放置时的直观图与三视图.并计算该几何体的体积. 参考答案 1.C 2.解析:正方体的三视图都相同,而三棱台的三视图各不相同,正确答案为D.

高考数学复习 第十一讲 立体几何之空间距离

第十一讲 立体几何之空间距离 一、空间距离包括: 点与点、点与线、点与面、线与线(异面直线)、线与面(线面平行)、面与面(面面平行)的距离。要理解各个距离的概念。 二、空间距离的求法 重点掌握:线线距离、点面距离、尤其点面距离 (1) 线线距离:找公垂线段 (2) 点面距离 ① 直接法(过点向面作作垂线段,即求公垂线段长度) ② 等体积法(三棱锥) ③ 向量法:设平面α的法向量为n ,P 为平面α外一点,Q 是平面α内任一点,则 点P 到平面α的距离为d 等于PQ 在法向量n 上的投影绝对值。d =三、例题讲解 1、下列命题中: ①ABCD PA 矩形⊥所在的平面,则P 、B 间的距离等于P 到BC 的距离; ②若,,,//αα??b a b a 则a 与b的距离等于a 与α的距离; ③直线a 、b是异面直线,,//,ααb a ?则a 、b 之间的距离等于b 与α的距离 ④直线a 、b是异面直线,,//,,βαβα且??b a 则a 、b 之间的距离等于βα、间的距离 其中正确的命题个数有( C ) A . 1个 B. 2个 C. 3个 D. 4个 2、如图所示,正方形的棱长为1,C、D 为两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是____________。

解析:取AB 、C D中点P、Q ,易证MPQ ?中,PQ 边长的高MH 为所求,423,22== PQ PM 3 2=∴MH 3、在底面是正方形的四棱锥A-B CD E中,BCDE AE 底面⊥且AE=CD =a , G、H是BE 、ED 的中点,则GH 到面ABD 的距离是____________。 解析:连结EC ,交BD 于O,且交GH 于O ',则有平面ABD AEO 面⊥。 过E作AO EK ⊥于K ,则所求距离等于a AO EO AE EK 6 32121=?= 4、如图,在棱长为a 的正方体1111D C B A ABCD -中,E 、F 分别为棱AB 和B C的中点,G为上底面1111D C B A 的中心,则点D 到平面EF B 1的距离___________。 解:方法1:建立如图直角坐标系,

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

高考数学各题型解法:立体几何篇

2019年高考数学各题型解法:立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那 么它们的交线平行“。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

相关文档
最新文档