关于大学物理复习题及答案.doc

合集下载

大学物理期末试题及答案(很详细)

大学物理期末试题及答案(很详细)

大学物理期末试题及答案(很详细)一、大学物理期末选择题复习1.一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变答案B2.静电场中高斯面上各点的电场强度是由:( )(A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的(C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的答案C3.静电场中高斯面上各点的电场强度是由:( )(A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的(C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的答案C4.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: ( )(A) 00,4QE U rπε== (B) 00,4Q E U Rπε== (C) 200,44QQ E U r r πεπε==(D)200,44QQ E U r R πεπε==答案B5.一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2答案D6. 一个质点在做圆周运动时,则有( )(A )切向加速度一定改变,法向加速度也改变(B )切向加速度可能不变,法向加速度一定改变(C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变 答案 B7. 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( )(A gR μ (B gR μ (C gR μ (D )还应由汽车的质量m 决定答案 C8. 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L 以及圆盘的角速度ω则有( )(A )L 不变,ω增大 (B )两者均不变(C )L 不变,ω减小 (D )两者均不确定答案 C9. 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的() (A )角动量守恒,动能守恒 (B )角动量守恒,机械能守恒(C )角动量不守恒,机械能守恒 (D )角动量不守恒,动量也不守恒(E )角动量守恒,动量也守恒答案 B10. 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

大学物理试题及答案 13篇

大学物理试题及答案 13篇

大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。

答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。

答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。

答案:两倍9. 加速度是速度的_____,速度是位移的_____。

答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。

答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。

12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。

求该飞船的向心加速度。

解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。

惠州学院考试-大学物理复习题(1)(附答案)

惠州学院考试-大学物理复习题(1)(附答案)

大学物理复习题11(2)一、填空题1、单位质量的质点,其运动学方程为k t j t i t r 3452++= m ,则质点对坐标原点的力矩=M40t k - 24t i ,轨道方程 x 2/25 = y/4 =z 2/9 ,受力大小 8j F=ma ,速度矢量 5i +8t j +3k ,质点对坐标原点的角动量 r*v=12t 2i -20t 2k2、热力学第二定律的开尔文表述是 不可能制成一种循环动作的热机,它只从一个单一温度的热源吸收热量,并使其全部变为有用功,从而不引起其他变化。

3、高斯面上各点的场强E ,是所有在场的 电荷 共同产生。

4、任何两条电力线 不相交 .说明静电场中每一点的场强是惟一的。

(电力线既是电场线)5、导体静电平衡时,导体内部任一点的场强为 零 。

6、对同一薄膜而言,在同一处,透射光干涉若为 增强 ,则反射光干涉为削弱。

二、选择题1、在静电场中,没有电力线的区域内( B )。

A. 电场强度E 不为0,电势U 不同B. 电场强度E 为0,电势U 相同C. 电场强度E 为0,电势U 为0D. 电场强度E不为0,电势U相同2、一带电粒子垂直射入磁场后,运动轨迹是半径R的圆周,若要使轨道半径变为2R,则磁感应强度应变为(A)A. /2B.C.D.3、一瓶氦气和一瓶氧气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(C)。

A温度相同、压强相同 B 温度相同,但氦气的压强小于氧气的压强C温度相同,但氦气的压强大于氧气的压强D温度、压强都不同4、在常温下有1mol的氦气和1mol的二氧化碳各一瓶,若将它们升高相同的温度,则(D)。

A 氦气和二氧化碳的内能增量相同B 不能确定C 氦气比二氧化碳的内能增量大D 二氧化碳比氦气的内能增量大5、关于静电场,下列说法正确的是(C)。

A 电场和检验电荷同时存在、同时消失;B 由E=F/q知道:电场强度与检验电荷成反比;C 电场的存在与检验电荷无关;D 电场是检验电荷和源电荷共同产生的。

大学物理期末复习题及答案

大学物理期末复习题及答案

j i r )()(t y t x +=大学物理期末复习题力学局部一、填空题:,则质点的速度为,加速度为。

2.一质点作直线运动,其运动方程为221)s m 1()s m 2(m 2t t x --⋅-⋅+=,则从0=t 到s 4=t 时间间隔内质点的位移大小质点的路程。

3.设质点沿x 轴作直线运动,加速度t a )s m 2(3-⋅=,在0=t 时刻,质点的位置坐标0=x 且00=v ,则在时刻t ,质点的速度,和位置。

4.一物体在外力作用下由静止沿直线开场运动。

第一阶段中速度从零增至v,第二阶段中速度从v 增至2v ,在这两个阶段中外力做功之比为。

5.一质点作斜上抛运动〔忽略空气阻力〕。

质点在运动过程中,切向加速度是,法向加速度是 ,合加速度是。

〔填变化的或不变的〕6.质量m =40 kg 的箱子放在卡车的车厢底板上,箱子与底板之间的静摩擦系数为s =,滑动摩擦系数为k =,试分别写出在以下情况下,作用在箱子上的摩擦力的大小和方向.(1)卡车以a = 2 m/s 2的加速度行驶,f =_________,方向_________.(2)卡车以a = -5 m/s 2的加速度急刹车,f =________,方向________.7.有一单摆,在小球摆动过程中,小球的动量;小球与地球组成的系统机械能;小球对细绳悬点的角动量〔不计空气阻力〕.〔填守恒或不守恒〕二、单项选择题:1.以下说法中哪一个是正确的〔〕〔A 〕加速度恒定不变时,质点运动方向也不变 〔B 〕平均速率等于平均速度的大小 〔C 〕当物体的速度为零时,其加速度必为零 〔D 〕质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。

2.质点沿Ox 轴运动方程是m 5)s m 4()s m 1(122+⋅-⋅=--t t x ,则前s 3内它的〔〕 〔A 〕位移和路程都是m 3 〔B 〕位移和路程都是-m 3 〔C 〕位移为-m 3,路程为m 3〔D 〕位移为-m 3,路程为m 53. 以下哪一种说法是正确的〔〕〔A 〕运动物体加速度越大,速度越快〔B 〕作直线运动的物体,加速度越来越小,速度也越来越小〔C 〕切向加速度为正值时,质点运动加快〔D 〕法向加速度越大,质点运动的法向速度变化越快4.一质点在平面上运动,质点的位置矢量的表示式为j i r 22bt at +=〔其中a 、b 为常量〕,则该质点作〔〕〔A 〕匀速直线运动 〔B 〕变速直线运动〔C 〕抛物线运动〔D 〕一般曲线运动5. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它〔 〕 〔A 〕将受到重力,绳的拉力和向心力的作用〔B 〕将受到重力,绳的拉力和离心力的作用〔C 〕绳子的拉力可能为零〔D 〕小球可能处于受力平衡状态6.功的概念有以下几种说法〔1〕保守力作功时,系统内相应的势能增加〔2〕质点运动经一闭合路径,保守力对质点作的功为零〔3〕作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零以上论述中,哪些是正确的〔〕〔A 〕〔1〕〔2〕〔B 〕〔2〕〔3〕〔C 〕只有〔2〕〔D 〕只有〔3〕7.质量为m 的宇宙飞船返回地球时,将发动机关闭,可以认为它仅在地球引力场中运动,当它从与地球中心距离为1R 下降到距离地球中心2R 时,它的动能的增量为〔〕〔A 〕2E R mm G ⋅〔B 〕2121E R R R R m Gm -〔C 〕2121E R R R m Gm -〔D 〕222121E R R R R m Gm --8.以下说法中哪个或哪些是正确的〔〕〔1〕作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。

大学物理《近代篇·相对论》复习题及答案

大学物理《近代篇·相对论》复习题及答案

[
]
7.质子在加速器中被加速,当其动能为静 止能量的 4 倍时,其质量为静止质量的 ( A ) 5倍.
( C ) 4倍.
( B ) 6倍.
( D ) 8倍.
[ ]
• 相对论选择题答案: ABBCACCDCBDDA
8.在惯性系 K 中,有两个事件同时发生 在 x 轴上相距 1000m 的两点,而在另一惯 性系 K’ (沿轴方向相对于 K 系运动 ) 中测 得这两个事件发生的地点相距 2000m . 求在 K’ 系中测得这两个事件的时间间隔.
[
]
10.一个电子运动速 v=0.99c ,它的动能是: (电子的静止能量为0.51MeV) ( A ) 3.5MeV. ( B ) 4.0MeV. ( C ) 3.1MeV. ( D ) 2.5MeV.
[ ]
(5)某惯性系中观察者将发现,相对他 静止的时钟比相对他匀速运动的时钟走的 快。 正确的说法是: (A) (1).(3).(4).(5) (B) (1).(2).(3) (C) (2).(5) (D) (1).(3)
而且在一切物理现象中,所有惯性系都是 等价的。
ቤተ መጻሕፍቲ ባይዱ
12.在惯性系 S 中的某一地点发生了两事 件A、B,B 比 A 晚发生 Dt = 2.0 s , 在 惯性系 S’ 中测得 B 比 A 晚发生 Dt’ = 3.0s 。试问在 S 中观测发生 A、B 的两 地点之间的距离为多少?
解:设S' 相对S的速度为u
t vx / c t' , 2 1 (v / c )
2
x vt x' 2 1 (v / c )
(1)
t1 vx1 / c t1' 2 1 (v / c ) 2 t2 vx2 / c t2' 2 1 (v / c )

大学物理电磁学复习题含答案

大学物理电磁学复习题含答案

题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ= ∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερr E PO=,3ερr E O P '-=' ,∴ 0003'3)(3ερερερd OO r r E E E OP PO P=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R q Rq0π41ε=O U )3(R q R q -R q0π6ε-=∴ Rqq U U qA o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d RRx x xxU ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 rE 0π2ελ=电子受力大小 re eE F e0π2ελ==∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4x R qU +=ε∴ ()ix R qxi xUE 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U Erεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同. 证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即222204321=---εσεσεσεσ 又∵ +2σ3=σ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d21===ACAB AB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S qσCC10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R q rr q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力. 解: 由题意知 02π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π43232F r q q F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+65432154326543002101σσσσσσσσσσεσσσσεσσd U S qSq d U U C S S q B A解得 Sq 261==σσSq dU2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E00422εεσ+==)2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内303π4,π4r rQ E r Qr D ε ==外(2)介质外)(2R r >电势rQ E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r q rεεε+-=)11(π420R r Q r r-+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdr R R Rr r Qdr rQ εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则rlDSD S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQ D π2= (1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w Wεευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V8-32 1C 和2C 两电容器分别标明“200 pF 、500 V”和“300 pF、900 V”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0。

大学物理试题库(含答案)

大学物理试题库(含答案)一 卷1、(本题12分)1mol 单原子理想气体经历如图所示的过程,其中ab 是等温线,bc 为等压线,ca 为等容线, 求循环效率2、(本题10分) 一平面简谐波沿 x 方向传播,振幅为20cm ,周期为4s ,t=0时波源在 y 轴上的位移为10cm ,且向y 正方向运动。

(1)画出相量图,求出波源的初位相并写出其振动方程; (2)若波的传播速度为u ,写出波函数。

3、(本题10分)一束光强为I 0的自然光相继通过由2个偏振片,第二个偏振片的偏振化方向相对前一个偏振片沿顺时针方向转了300 角,问透射光的光强是多少?如果入射光是光强为I 0的偏振光,透射光的光强在什么情况下最大?最大的光强是多少?4、(本题10分)有一光栅,每厘米有500条刻痕,缝宽a = 4×10-4cm ,光栅距屏幕1m , 用波长为6300A 的平行单色光垂直照射在光栅上,试问:(1)(2) 第一级主极大和第二级主极大之间的距离为多少?5、(本题10分)用单色光λ=6000A 做杨氏实验,在光屏P处产生第五级亮纹,现将折射率n=1.5的玻璃片放在其中 一条光路上,此时P 处变成中央亮纹的位置,则此玻璃片 厚度h 是多少?6、(本题10分)一束波长为λ的单色光,从空气垂直入射到折射率为n 的透明薄膜上,在膜的上下表面,反射光有没有位相突变?要使折射光得到加强,膜的厚度至少是多少?7、(本题10分) 宽度为0~a 的一维无限深势阱波函数的解为)sin(2x an a n π=ψ 求:(1)写出波函数ψ1和ψ2 的几率密度的表达式 (2)求这两个波函数几率密度最大的位置8、(本题10分)实验发现基态氢原子可吸收能量为12.75eV 的光子。

试问:(1)氢原子吸收该光子后会跃迁到哪个能级?P 2P a(2)受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性画出这些能级和跃迁。

9、(本题 10分)请写出n=2的8个量子态(n , l , m l , m s )。

大学物理力学考试题及答案

大学物理力学考试题及答案一、选择题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是多少?A. 5 m/s²B. 10 m/s²C. 15 m/s²D. 20 m/s²答案:B2. 根据牛顿第二定律,力F、质量m和加速度a之间的关系是:A. F = m * aB. F = m / aC. F = a * mD. F = a + m答案:A3. 一个物体从静止开始自由下落,忽略空气阻力,其下落的加速度为:A. 9.8 m/s²B. 19.6 m/s²C. 0 m/s²D. 1 g答案:A4. 一个物体在水平面上以10 m/s的速度做匀速直线运动,它的动量大小为:A. 10 kg·m/sB. 20 kg·m/sC. 无法确定,因为物体的质量未知D. 5 kg·m/s答案:C5. 根据能量守恒定律,一个物体的动能和势能之和:A. 随时间增加而增加B. 随时间减少而减少C. 在没有外力作用下保持不变D. 总是大于物体的动能答案:C6. 一个弹簧的劲度系数为1000 N/m,如果挂上一个1kg的物体,弹簧伸长的长度是多少?A. 0.1 mB. 1 mC. 10 mD. 无法确定,因为缺少物体的加速度答案:A7. 两个物体之间的万有引力与它们的质量乘积成正比,与它们之间的距离的平方成反比。

这个定律是由哪位科学家提出的?A. 牛顿B. 爱因斯坦C. 伽利略D. 库仑答案:A8. 一个物体在斜面上下滑,斜面倾角为30°,物体与斜面之间的摩擦系数为0.1,那么物体受到的摩擦力大小为:A. mg sin(30°)B. mg cos(30°)C. μ(mg cos(30°))D. μ(mg sin(30°))答案:D9. 一个物体在水平面上以恒定的加速度加速运动,已知它的初速度为3 m/s,末速度为15 m/s,经过的时间为4秒,那么它的加速度是多少?A. 2.25 m/s²B. 4 m/s²C. 5 m/s²D. 10 m/s²答案:B10. 一个物体在竖直上抛运动中,达到最高点时,它的加速度为:A. 0 m/s²B. g (重力加速度)C. -g (重力加速度)D. 2g (重力加速度)答案:C二、填空题(每题4分,共20分)11. 牛顿第三定律指出,作用力和反作用力大小________,方向________,作用在________的物体上。

大学物理《力学4·动量》复习题及答案


( )选坐标系如图:有动量守恒定律 1
x方向:mu 5m v2 cosq
y方向: mv1 5mv2 sinq 0
解(1)、 )式得: (2 v2 u / 5 cosq(1) Nhomakorabea( 2)
B
y
u
u u / 5 1 sin2q 4
q
v2
x
A
v1 3u / 4
v1
(2).A球碰前后动能变化:
9.体重相同的甲乙两人,分别用双手握住 跨过无摩擦滑轮的绳子两端,当他们由同 一高度向上爬时,相对于绳子,甲的速度 是乙的两倍,则到达顶点情况是
(A)甲先到达。 (B)乙先到达。 (C)同时到达。 (D)谁先到达不能确定。
[ ]
• 动量选择题答案:CCCDADACC
10.质量为 M=2.0 kg 的物体(不考虑体 积),用一根长 l =1.0 m 为的细绳悬挂在天 花板上,今有一质量为 m=20 g 的子弹以 v0=600 m/s 的水平速度射穿物体,刚射出物 体时子弹的速度大小 v0 = 30 m/s, 设穿透 时间极短,求:
14. 光滑斜面与水平面的夹角为,轻质弹簧 上端固定,今在弹簧的另一端轻轻地挂上质 量为 M=1.0kg 的木块,则木块沿斜面向下 滑动。当木块向下滑 x =30 cm 时,恰好有 一质量 m = 0.01 kg 的子弹,沿水平方向以 速度 v = 200 m/s 射中木块并陷在其中,设 弹簧的倔强系数 k=25 N/m 为,求子弹打入 木块后它们的共同速度。 k M m 解:( )木块下滑中,以 1 x 木块、弹簧、 地球为系统。
v2 M v1 mv cos / M m
0.89(m/s)
方向向上。

大学物理复习题答案

大学物理复习题答案1. 光的干涉现象说明了什么?答案:光的干涉现象说明了光具有波动性。

2. 根据麦克斯韦方程组,电磁波的传播速度是多少?答案:电磁波的传播速度是光速,即 \(3 \times 10^8\) 米/秒。

3. 描述理想气体状态方程,并解释其物理意义。

答案:理想气体状态方程为 \(PV = nRT\),其中 \(P\) 表示压强,\(V\) 表示体积,\(n\) 表示气体的摩尔数,\(R\) 是理想气体常数,\(T\) 是温度。

该方程表明,在一定温度和摩尔数下,气体的压强和体积成反比,反映了理想气体分子间无相互作用力,且分子运动遵循统计规律。

4. 简述牛顿第三定律的内容。

答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。

5. 何为相对论性质量增加?答案:相对论性质量增加是指当物体的速度接近光速时,其质量会随着速度的增加而增加,这是由狭义相对论中的时间膨胀和长度收缩效应导致的。

6. 描述库仑定律,并给出其数学表达式。

答案:库仑定律描述了真空中两点电荷之间的相互作用力。

其数学表达式为 \(F = k \frac{|q_1 q_2|}{r^2}\),其中 \(F\) 是两点电荷之间的力,\(k\) 是库仑常数,\(q_1\) 和 \(q_2\) 是两点电荷的电荷量,\(r\) 是两点电荷之间的距离。

7. 简述能量守恒定律,并给出其表达式。

答案:能量守恒定律指出,在封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,总能量保持不变。

其表达式为 \(\Delta E = 0\),即系统内能的变化量为零。

8. 什么是波粒二象性?答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念揭示了物质的双重性质,是量子力学的基础之一。

9. 描述胡克定律,并给出其数学表达式。

答案:胡克定律描述了弹性物体在受到外力作用时的形变与力的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习一、力学(一)填空题:1 、质点沿x 轴运动,运动方程x 2 6t22t34s 内位移是v 最初 4s 内路,则其最初-32m i ,程是 48m 。

2、质点的加速度a mx( m 0), t 0 时, x 0, v v0,则质点停下来的位置是xv0 。

m3 、半径为 30cm 的飞轮,从静止开始以s 2匀角加速度转动。

当飞轮边缘上一点转过240o时,切向加速度大小m/s 2 ,法向加速度大小m/s 2 。

4、一小车沿 Ox 轴运动,其运动函数为x 3t 3t2,则t 2s时的速度为-9m/s ,加速度为-6m/s2 , t 2s内的位移为-6m 。

5 、质点在 t1到 t 2 时间内 , 受到变力F x B At 2 的作用 ( A、B为常量 ) ,则其所受冲量为B (t 2 t1 ) 1A(t 23 t13 ) 。

36 、用 F 10 N 的拉力,将m 1k g 的物体沿30 的粗糙斜面向上拉1m,已知0.1,则合外力所做的功 A 为。

7 、银河系中有一天体,由于引力凝聚,体积不断收缩。

设它经一万年后,体积收缩了1%,而质量保持不变,那时它绕自转轴的转动动能将增大; ( 填:增大、减小、不变 ) 。

;8 、 A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器 C 使它们连结。

开始时 B 轮静止, A 轮以角速度 A 转动,设啮合过程中两飞轮不再受其他力矩的作用,当两轮连结在一起后,其相同的角速度为。

若 A 轮的转动惯量为 I A,则B轮的转动惯量I B为I A AI A 。

9 、斜面固定于卡车上,在卡车沿水平方向向左匀速行驶的过程中,斜面上物体 m 与斜面无相对滑动。

则斜面对物体m的静摩擦力的方向为。

沿斜面向上;10 、牛顿第二定律在自然坐标系中的分量表达式为F n ma n; F mavv2 vt 1sv v v vv ;11、质点的运动方程为 r2tit j,则在 时的速度为 v 2i 2 j ,加速度为 a2 j12、 一质点沿半径为的圆周运动,其角位移24t 3 ,则 t 2s 时的法向加速度为s 2 ,切向加速度为s 2。

;13、 F x 30 4t N 的力作用在质量m 10 kg 的物体上,则在开始2s 内此力的冲量为68N s ; 。

14、如图所示,质量为m 的小球系在绳子一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。

先使小球以速度v 0 ,绕管心做半径为 r 0 的圆周运动,然后慢慢向下拉绳,使小球运动轨迹最后成为半径为r 1 的圆,则此时小球的速度大小为v 0 r 0 。

r 1 15、质点的动量矩定理的表达式为t 2L;其守Mdtt 1恒条件是 合外力矩为零16、 如图所示,质量为m 和 2m 的两个质点 A 和 B ,用一长为 l 的轻质细杆相连,系统绕通过杆上O 点且与杆垂直的轴转动。

已知O 点与 A 点相距 2l ,B 点的线速度为 v ,且与杆3垂直。

则该系统对转轴的角动量大小为2mlv。

;17、两物块 1 和 2 的质量分别为 m 和m,物块 1 以一定的动能 E k0 与静止的物块 22作完全弹性碰撞,碰后两物块的速度 v = 1 2E k 0 +3m4 2E k 0;它们的总动能 E k =E k0。

3m18、一作定轴转动的物体,对转轴的转动惯量I = kg m 2 ,角速度= rad s 1 ,现对物体加一恒定的制动力矩 M = 12N m ,当物体的角速度减慢到=rad s 1 时,物体转过的角度=4rad 。

;19、质点作半径为 R 的圆周运动,运动方程为3 4t 2 (SI 制 ) ,则 t 时刻质点的切向加速度的大R8, ;小为 8;角加速度的大小为。

20、竖直上抛的小球,其质量为m ,假设受空气的阻力为 F kv , v 为小球的速度, k 为常数,若选取铅直向上的x 轴为坐标轴,则小球的运动方程为2ktm2ge mkmg t m 2 g。

k k 2vv v 0 时, v 0 v v21 、质点具有恒定的加速度a 6i 4 j , t 0, r 0 10i ,则其任意时刻的速度v v 2 v 2t 2 v为,位矢为 。

6ti 4tj , (3t 10)i j ;22、质点作半径 R1m 的圆周运动, t 2 1,则 t 1s2 r ad,角加速时质点的角速度s度2rads 2 。

23、一个人用吊桶从井中提水,桶与水共重15 k g ,井深 10 m ,求匀速向上提时,人做的功为1500J;若以 a0.1m/ s 2 匀加速向上提,做的功为1515J24、一竖直悬挂的轻弹簧下系一小球,平衡时弹簧伸长量为d 。

若先用手将小球托住,使弹簧不伸长,然后将其释放,不计一切摩擦,则弹簧的最大伸长量为。

2d ;25、一人坐在转椅上,双手各持一哑铃,哑铃与转轴的距离各为0.6m ,先让人体以 5rad s1的角速度随转椅旋转, 此后,人将哑铃拉回使之与转轴距离为 0.2m。

人体和转椅对轴的转动惯量为5kg m 2 ,并视为不变,每一哑铃的质量为5kg 可视为质点,哑铃被拉回后,人体的角速度=。

215 7.96 rad27s26、 某冲床上飞轮的转动惯量为4.00 103kg m 2 。

当它的转速达到 30r/min 时开始冲,冲一次后,其转速降为 10r/min ,则冲的这一次飞轮对外所做的功为J。

1.75 104 ;27、质点在半径为的圆周上运动,位置为2 4t3 ,则在 t 2.0s 时质点的法向加速度是,切向加速度是。

s 2;s 2;28、质点在 Oxy 平面内的运动方程 x 2t , y 19 2t2v2ti (19 2t 2) j ,,则其任意时刻rv v 4 j ;v 2i4tj , a29、物体在沿x 轴运动过程中,受力 F6x 3 N 作用,则从 x 1m 到 x2 m , F 所做的功为;物体的动能变化了。

22.5J 22.5J ;30、质量为 m 的铁锤,从某一高度自由下落,与桩发生完全非弹性碰撞,设碰撞前锤速为v ,打击时间为t ,锤的质量不能忽略,则锤所受到的平均冲力为mv mg ;。

t31、 一质量为,长为的均匀细棒,支点在棒的上端点,开始时棒自由悬挂,当以100N 的力打击它的下端点,打击时间为时,若打击前棒是静止的,则打击时其角动量的变化为。

2kg m 2 s 132、 一细直杆可绕光滑水平轴 O 转动,则它自水平位置释放时的角加速度为。

3g;2l33、一匀质圆盘由静止开始以恒定角加速度绕过中心且垂直于盘面的轴转动,在某一时刻转速为 10 r s 1 ,再转 60 圈后转速变为 15 r s 1 ,则由静止达到 10 r s 1 时圆盘所转的圈 数。

48;(二)选择题1、下列哪一种说法是正确的(?C )A .运动物体加速度越大,速度越快;B .作直线运动的物体,加速度越来越小,速度也越来越小;C .切向加速度为正值时,质点运动加快;D .法向加速度越大,质点运动的法向速度变化越快。

2、 一质点从静止出发绕半径为 R 的圆周作匀变速圆周运动,角加速度为,当质点走完一圈回到出发点时,所经历的时间是(B ? )A .12R ? B.4C.2? D.不能确定23、质量为 m 的铁锤竖直从高度 h 处自由下落,打在桩上而静止,设打击时间为t ,则铁锤所受的平均冲力的大小为(C )A . mgB. m 2 ghC. m 2ghm 2ghmgtt mg D.t4、一圆形转盘在光滑水平面上绕通过中心O 的固定垂直轴作匀角速度转动。

沿如图所示方向射入两颗质量相同、速度大小相同、运动方向相反的子弹,子弹留在圆盘中,则在子弹射入圆盘的过程中,对于圆盘与子弹所组成的系统,下列说法正确的是(C)A .机械能守恒,对轴的角动量守恒;B .机械能守恒,对轴的角动量不守恒;C .机械能不守恒,对轴的角动量守恒;D .机械能不守恒,对轴的角动量也不守恒。

5、定轴转动刚体的运动学方程为52t 3(SI),则当t1.0s 时,刚体上距轴 0.1m 处一点的加速度大小为 (B )A. 3.6m s 2 B. 3.8m s2C.1.2m s2D.2.4m s 26、一半径为R ,质量为 m 的圆形平面板在粗糙的水平桌面上绕垂直于平板OO ' 轴转动。

若摩擦因数为,摩擦力对OO ' 轴的力矩为( ?A )A. 2? B.mgR C. 1?????mgRmgR237、某物体的运动规律为dv / dtkv 2t ,式中的 k 为大于零的常量。

当 t 0时,初速为v 0,则速度 v 与时间 t的函数关系是(C)A . v1 kt2 v 0 ; B . v= - 1kt 2+ v 0 ; C . 1 kt21 ;2 2v2 v 01kt 2 1D .v 2v 08、长为 l ,质量为 m 的一根柔软细绳挂在固定的水平钉子上,不计摩擦,当绳长一边为b ,另一边为 c 时,钉子所受压力是( D ) A . mg ? B. mg b c C. mg(l b)D.4mgbcll ? 2l9、一质点在平面上运动,已知质点的位置矢量的表示式为rat 2 i bt 2 j (其中 a 、 b 为常量),则该质点作( ) A. 匀速直线运动;B. 变速直线运动;C. 抛物线运动;D.一般曲线运动vdv; D. 10、抛物体运动中,下列各量中不随时间变化的是() A.v ; B. v ; C.dv 。

dtdt11、一个质量为 m 的物体以初速为 v 0 、抛射角30 从地面斜上抛出。

若不计空气阻力,当物体落地时,其动量增量的大小和方向为(? )A .增量为零,动量保持不变;B .增量大小等于mv 0 ,方向竖直向上;C .增量大小等于mv 0 ,方向竖直向下; D .增量大小等于 3mv 0 ,方向竖直向下。

12、如图所示,一质量为m 的小球,沿光滑环形轨道由静止开始下滑,若h 足够高,则小球在最低点时,环对其作用力与小球在最高点时环对其作用力之差,恰好是小球重量的( ? )A . 2 倍B . 4 倍C . 6 倍D. 8 倍13、如图 P 、 Q 、 R 、 S 是附于刚性轻细杆上的 4 个质点,质量分别为4m , 3m , 2m 和 m ,系统对 OO ' 轴的转动惯量为( )A . 50ml 2 B. 14ml 2C.10ml 2D.9ml 214、人造地球卫星绕地球作椭圆轨道运动,地球在椭圆 轨道上的一个焦点上,则卫星()A .动量守恒,动能守恒;B .动量守恒,动能不守恒;C .对地球中心的角动量守恒,动能不守恒;D .对地球中心的角动量不守恒,动能守恒。

15、用细绳系一小球, 使之在竖直平面内作圆周运动, 当小球运动到最高点时,它( )A .将受到重力,绳的拉力和向心力的作用;B .将受到重力,绳的拉力和离心力的作用;C .绳子的拉力可能为零;D .小球可能处于受力平衡状态。

相关文档
最新文档