2018版浙江《学业水平考试》数学-知识清单与冲A训练8直线、平面平行的判定及性质
专题8-5 直线、平面垂直的判定与性质讲-2018年高考数学一轮复习讲练测浙江版 含解析 精品

2018年高考数学讲练测【浙江版】【讲】第八章 立体几何第05节 直线、平面垂直的判定与性质【考纲解读】【知识清单】1.直线与平面垂直的判定与性质定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直. 定理:⎭⎪⎬⎪⎫a αb αl ⊥a l ⊥ba ∩b =A ⇒l ⊥α对点练习:【2017课标3,文10】在正方体错误!未找到引用源。
中,E 为棱CD 的中点,则( ) A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
【答案】C2. 平面与平面垂直的判定与性质定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直. 定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MN AB βAB ⊥MN⇒AB⊥α【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】错误!未找到引用源。
3.线面、面面垂直的综合应用1.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.③推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一直线的两平面平行.2.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.3.平面与平面垂直(1)平面与平面垂直的判定方法①定义法②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.对点练习:【2017课标1,文18】如图,在四棱锥P-ABCD中,AB//CD,且错误!未找到引用源。
2018年高考数学(浙江专用)总复习教师用书:第8章 第5讲 直线、平面垂直的判定及其性质

第5讲 直线、平面垂直的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知 识 梳 理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l 与平面α内的任意直线都垂直,就说直线l 与平面α互相垂直.(2)判定定理与性质定理两直线垂直于同一个平面,(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理1.判断正误(在括号内打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误. (4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.答案(1)×(2)×(3)×(4)×2.(必修2P56A组7T改编)下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项易知均是正确的. 答案 D3.(2016·浙江卷)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l,故选C.答案 C4.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β解析由线线平行性质的传递性和线面垂直的判定定理,可知C正确.答案 C5.(2017·浙江名校协作体联考)已知矩形ABCD,AB=1,BC= 2.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若AB⊥CD,BC⊥CD,则可得CD⊥平面ACB,因此有CD⊥AC.因为AB =1,BC=AD=2,CD=1,所以AC=1,所以存在某个位置,使得AB⊥CD. 答案 B6.(必修2P67练习2改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.图1图2(2)如图2,∵PC⊥P A,PB⊥PC,P A∩PB=P,∴PC⊥平面P AB,AB⊂平面P AB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心. 答案(1)外(2)垂考点一线面垂直的判定与性质【例1】如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵P A⊥底面ABCD,CD⊂平面ABCD,∴P A⊥CD,又∵AC⊥CD,且P A∩AC=A,∴CD⊥平面P AC.而AE⊂平面P AC,∴CD⊥AE.(2)由P A=AB=BC,∠ABC=60°,可得AC=P A.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵P A⊥底面ABCD,AB⊂平面ABCD,∴P A⊥AB.又∵AB⊥AD,且P A∩AD=A,∴AB⊥平面P AD,而PD⊂平面P AD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.规律方法 (1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质(α⊥β,α∩β=a ,l ⊥a ,l ⊂β⇒l ⊥α).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】 如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且AD =13DB ,点C 为圆O 上一点,且BC =3AC ,PD ⊥平面ABC ,PD =DB .求证:P A ⊥CD .证明 因为AB 为圆O 的直径,所以AC ⊥CB .在Rt △ABC 中,由3AC =BC 得,∠ABC =30°.设AD =1,由3AD =DB 得,DB =3,BC =2 3.由余弦定理得CD 2=DB 2+BC 2-2DB ·BC cos 30°=3,所以CD 2+DB 2=BC 2,即CD ⊥AB .因为PD ⊥平面ABC ,CD ⊂平面ABC ,所以PD ⊥CD ,由PD ∩AB =D 得,CD ⊥平面P AB ,又P A ⊂平面P AB ,所以P A ⊥CD .考点二 面面垂直的判定与性质【例2】 (2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .证明 (1)连接DG ,CD ,设CD ∩GF =M ,连接MH .在三棱台DEF -ABC 中,AB =2DE ,G 为AC 中点,可得DF ∥GC ,且DF =GC ,则四边形DFCG 为平行四边形.从而M 为CD 的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,故BD∥平面FGH.(2)连接HE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】如图,在三棱锥P-ABC中,平面P AB⊥平面ABC,P A⊥PB,M,N分别为AB,P A的中点.(1)求证:PB∥平面MNC;(2)若AC=BC,求证:P A⊥平面MNC.证明(1)因为M,N分别为AB,P A的中点,所以MN∥PB.又因为MN⊂平面MNC,PB⊄平面MNC,所以PB∥平面MNC.(2)因为P A⊥PB,MN∥PB,所以P A⊥MN.因为AC=BC,AM=BM,所以CM⊥AB.因为平面P AB⊥平面ABC,CM⊂平面ABC,平面P AB∩平面ABC=AB.所以CM⊥平面P AB.因为P A⊂平面P AB,所以CM⊥P A.又MN∩CM=M,所以P A⊥平面MNC.考点三平行与垂直的综合问题(多维探究)命题角度一多面体中平行与垂直关系的证明【例3-1】(2016·江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.规律方法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用. 命题角度二平行垂直中探索性问题【例3-2】如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.(1)证明:AE∥平面BDF.(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由. (1)证明连接AC交BD于O,连接OF,如图①.∵四边形ABCD是矩形,∴O为AC的中点,又F为EC的中点,∴OF为△ACE的中位线,∴OF∥AE,又OF⊂平面BDF,AE⊄平面BDF,∴AE∥平面BDF.(2)解当P为AE中点时,有PM⊥BE,证明如下:取BE中点H,连接DP,PH,CH,∵P为AE的中点,H为BE的中点,∴PH∥AB,又AB∥CD,∴PH∥CD,∴P,H,C,D四点共面.∵平面ABCD⊥平面BCE,平面ABCD∩平面BCE=BC,CD⊂平面ABCD,CD ⊥BC.∴CD⊥平面BCE,又BE⊂平面BCE,∴CD⊥BE,∵BC=CE,H为BE的中点,∴CH⊥BE,又CD∩CH=C,∴BE⊥平面DPHC,又PM⊂平面DPHC,∴BE⊥PM,即PM⊥BE.规律方法(1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】 (2017·嘉兴七校联考)在如图所示的几何体中,面CDEF 为正方形,面ABCD 为等腰梯形,AB ∥CD ,AC =3,AB =2BC =2,AC ⊥FB .(1)求证:AC ⊥平面FBC .(2)求四面体FBCD 的体积.(3)线段AC 上是否存在点M ,使EA ∥平面FDM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明 在△ABC 中,因为AC =3,AB =2,BC =1,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为AC ⊥FB ,BC ∩FB =B ,所以AC ⊥平面FBC .(2)解 因为AC ⊥平面FBC ,FC ⊂平面FBC ,所以AC ⊥FC .因为CD ⊥FC ,AC ∩CD =C ,所以FC ⊥平面ABCD .在等腰梯形ABCD 中可得CB =DC =1,所以FC =1.所以△BCD 的面积为S =34.所以四面体FBCD 的体积为V F -BCD =13S ·FC =312.(3)解 线段AC 上存在点M ,且点M 为AC 中点时,有EA ∥平面FDM .证明如下:连接CE ,与DF 交于点N ,取AC 的中点M ,连接MN .因为四边形CDEF 是正方形,所以点N 为CE 的中点.所以EA ∥MN .因为MN ⊂平面FDM ,EA ⊄平面FDM ,所以EA ∥平面FDM .所以线段AC 上存在点M ,且M 为AC 的中点,使得EA ∥平面FDM 成立.[思想方法]1.证明线面垂直的方法:(1)线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α;(2)判定定理1:⎭⎬⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; (3)判定定理2:a ∥b ,a ⊥α⇒b ⊥α;(4)面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β;2.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a ⊂α,a ⊥β⇒α⊥β.3.转化思想:垂直关系的转化[易错防范]1.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·浙江卷)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m ⊂β( )A.若l ⊥β,则α⊥βB.若α⊥β,则l ⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析由面面垂直的判定定理,可知A选项正确;B选项中,l与m可能平行;C选项中,α与β可能相交;D选项中,l与m可能异面.答案 A2.(2017·深圳四校联考)若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,因此也平行于平面β,因此A正确.过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B不正确.根据面面垂直的性质定理知,选项C,D正确.答案 B3.如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC解析因为BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,故选项A正确.在正四面体中,AE⊥BC,PE⊥BC,AE∩PE=E,∴BC⊥平面P AE,DF∥BC,则DF⊥平面P AE,又DF⊂平面PDF,从而平面PDF⊥平面P AE.因此选项B,C均正确.答案 D4.(2017·丽水调研)设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β解析A中,α∥β或α与β相交,不正确.B中,过直线l作平面γ,设α∩γ=l′,则l′∥l,由l⊥β,知l′⊥β,从而α⊥β,B正确.C中,l∥β或l⊂β,C不正确.D中,l与β的位置关系不确定.答案 B5.(2017·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD 为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是()A.①②④B.①②③C.②③④D.①③④解析由题意知,BD⊥平面ADC,且AC⊂平面ADC,故BD⊥AC,①正确;AD 为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.答案 B二、填空题6.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.解析∵P A⊥平面ABC,AB,AC,BC⊂平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC,因此△ABC,△PBC也是直角三角形.答案 47.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,有PC⊥平面MBD.又PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC等)8.(2016·全国Ⅱ卷改编)α,β是两个平面,m,n是两条直线.(1)如果m⊥α,n∥α,那么m,n的位置关系是________;(2)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角的大小关系是________.解析(1)由线面平行的性质定理知存在直线l⊂α,n∥l,m⊥α,所以m⊥l,所以m⊥n.(2)因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等.答案(1)垂直(2)相等三、解答题9.(2017·青岛质检)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.(1)证明由已知得△ABC≌△DBC,因此AC=DC.又G为AD的中点,所以CG ⊥AD .同理BG ⊥AD ,又BG ∩CG =G ,因此AD ⊥平面BCG .又EF ∥AD ,所以EF ⊥平面BCG .(2)解 在平面ABC 内,作AO ⊥BC ,交CB 的延长线于O ,如图由平面ABC ⊥平面BCD ,平面ABC ∩平面BDC =BC ,AO ⊂平面ABC ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半.在△AOB 中,AO =AB ·sin 60°=3,所以V D -BCG =V G -BCD =13S △DBC ·h =13×12BD ·BC ·sin 120°·32=12.10.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 因为PC ⊥平面ABCD ,所以PC ⊥DC .又因为AC ⊥DC ,且PC ∩AC =C ,所以DC ⊥平面P AC .(2)证明 因为AB ∥DC ,DC ⊥AC ,所以AB ⊥AC .因为PC ⊥平面ABCD ,所以PC ⊥AB .又因为PC ∩AC =C ,所以AB ⊥平面P AC .又AB ⊂平面P AB ,所以平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .理由如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点,所以EF ∥P A .又因为P A ⊄平面CEF ,且EF ⊂平面CEF ,所以P A ∥平面CEF . 能力提升题组(建议用时:25分钟)11.设m,n是两条不同的直线,α,β是两个不同的平面.则下列说法正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n ⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.答案 C12.(2017·诸暨调研)如图,在正方形ABCD中,E,F分别是BC,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在△AEF内的射影为O,则下列说法正确的是()A.O是△AEF的垂心B.O是△AEF的内心C.O是△AEF的外心D.O是△AEF的重心解析由题意可知P A,PE,PF两两垂直,所以P A⊥平面PEF,从而P A⊥EF,而PO⊥平面AEF,则PO⊥EF,因为PO∩P A=P,所以EF⊥平面P AO,∴EF⊥AO,同理可知AE⊥FO,AF⊥EO,∴O为△AEF的垂心.答案 A13.如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE ⊥AB ,P A ∩AB =A ,得AE ⊥平面P AB ,又PB ⊂平面P AB ,∴AE ⊥PB ,①正确;又平面P AD ⊥平面ABC ,∴平面ABC ⊥平面PBC 不成立,②错;由正六边形的性质得BC ∥AD ,又AD ⊂平面P AD ,BC ⊄平面P AD ,∴BC ∥平面P AD ,∴直线BC ∥平面P AE 也不成立,③错;在Rt △P AD 中,P A =AD =2AB ,∴∠PDA =45°,∴④正确.答案 ①④14.(2016·四川卷)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由.(2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD .所以BC ∥AM ,且BC =AM .所以四边形AMCB 是平行四边形,从而CM ∥AB .又AB ⊂平面P AB .CM ⊄平面P AB .所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明 由已知,P A ⊥AB ,P A ⊥CD .因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD .又BD ⊂平面ABCD ,从而P A ⊥BD .因为AD ∥BC ,BC =12AD ,M 为AD 的中点,连接BM ,所以BC ∥MD ,且BC =MD .所以四边形BCDM是平行四边形,所以BM=CD=12AD,所以BD⊥AB.又AB∩AP=A,所以BD⊥平面P AB.又BD⊂平面PBD,所以平面P AB⊥平面PBD.15.(2016·浙江卷)如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示,因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解由(1)知BF⊥平面ACFD,所以BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=3,DF=32,得cos ∠BDF=217.所以,直线BD与平面ACFD所成角的余弦值为21 7.。
高考数学(理)创新大一轮浙江专版课件:第八章第4节 直线、平面平行的判定及其性质

考点一 与线、面平行相关命题的判定
答案 (1)A
【训练 1】(2)(2016· 全国Ⅱ卷)α,β 是两个平面,m,n 是两条直线,有下列四个命
题:①如果 m⊥n,m⊥α,n∥β,那么 α⊥β. ②如果 m⊥α,n∥α,那么 m⊥n. ③如果 α∥β,m⊂α,那么 m∥β. ④如果 m∥n,α∥β,那么 m 与 α 所成的角和 n 与 β 所成的角相等. 其中正确的命题有________(填写所有正确命题的编号).
【训练 1】(1)设 m,n 是不同的直线,α,β 是不同的平面,且 m,n⊂α,则“α∥β”
是“m∥β 且 n∥β”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
解析 (1)若m,n⊂α,α∥β,
则m∥β且n∥β; 反之若m,n⊂α,m∥β且n∥β, 则α与β相交或平行, 即“α∥β”是“m∥β且n∥β”的充分不必要条件.
考点一 与线、面平行相关命题的判定
解析 (1)①若α∥β,则m∥n或m,n异面,不正确; ②若α∥β,根据平面与平面平行的性质,可得m∥β,正确; ③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确; ④若α∩β=l,且m⊥l,m⊥n,l与n不一定相交,不能推出α⊥β,不正确.
答案 (1)B
[例 1] (1)(2018· 成都诊断)已知 m,n 是空间中两条不同的直线,α,β 是两个不同 的平面,且 m⊂α,n⊂β.有下列命题:①若 α∥β,则 m∥n; ②若 α∥β,则 m∥β;③若 α∩β=l,且 m⊥l,n⊥l,则 α⊥β; 判断与平行关系相关命题的 ④若 α∩β=l,且 m⊥l,m⊥n,则 α⊥β. 真假,必须熟悉线、面平行 关系的各个定义、定理 其中真命题的个数是( ) A.0 B.1 C.2 D.3
2018高考数学(浙江省专用)复习专题测试:第八章 立体几何 §8-4 直线、平面垂直的判定和性质

考点
A.A1E⊥DC1
答案
垂直的判定和性质
)
1.(2017课标全国Ⅲ文,10,5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则 (
B.A1E⊥BD
C.A1E⊥BC1
D.A1E⊥AC
C ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴
5.(2017课标全国Ⅲ文,19,12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD. (1)证明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE的体积比.
解析
(1)取AC的中点O,连接DO,BO.
A.l1⊥l4
B.l1∥l4
D.l1与l4的位置关系不确定
C.l1与l4既不垂直也不平行 答案
D 由l1⊥l2,l2⊥l3可知l1与l3的位置不确定,
若l1∥l3,则结合l3⊥l4,得l1⊥l4,所以排除选项B、C, 若l1⊥l3,则结合l3⊥l4,知l1与l4可能不垂直,所以排除选项A.故选D.
评析 本题考查了空间直线之间的位置关系,考查学生的空间想象能力、思维的严密性.
8 3 ,求该四棱锥的侧面积 .
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为
解析
本题考查立体几何中面面垂直的证明和几何体侧面积的计算.
(1)证明:由已知∠BAP=∠CDP=90°, 得AB⊥AP,CD⊥PD. 由于AB∥CD,故AB⊥PD, 从而AB⊥平面PAD.
(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE, 所以PA∥DE.
高考数学(浙江专用)总复习教师用书:第8章 第4讲 直线、平面平行的判定及其性质 Word版含解析

第4讲 直线、平面平行的判定及其性质最新考纲 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.知 识 梳 理1.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面. (2)判定定理与性质定理(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β.诊断自测1.判断正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.() 解析(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.答案(1)×(2)×(3)×(4)√2.下列命题中,正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.若直线a,b和平面α满足a∥α,b∥α,那么a∥bD.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析根据线面平行的判定与性质定理知,选D.答案D3.(2015·北京卷)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析当m∥β时,可能α∥β,也可能α与β相交.当α∥β时,由m⊂α可知,m∥β.∴“m∥β”是“α∥β”的必要不充分条件.答案B4.(必修2P56练习2改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E 为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案平行5.(2017·金华检测)设α,β,γ为三个不同的平面,a,b为直线.(1)若α∥γ,β∥γ,则α与β的关系是________;(2)若a⊥α,b⊥β,a∥b,则α与β的关系是________.解析(1)由α∥γ,β∥γ⇒α∥β.(2)a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β.答案(1)平行(2)平行6.用一个截面去截正三棱柱ABC-A1B1C1,交A1C1,B1C1,BC,AC分别于E,F,G,H四点,已知A1A>A1C1,则截面的形状可以是________(把你认为可能的结果都填上).解析由题意知,当截面平行于侧棱时所得截面为矩形,当截面与侧棱不平行时,所得的截面是梯形.答案矩形或梯形考点一线面、面面平行的相关命题的真假判断【例1】(2015·安徽卷)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案D规律方法(1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.(2)①结合题意构造或绘制图形,结合图形作出判断.②特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】(2017·台州调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案②考点二 直线与平面平行的判定与性质(多维探究) 命题角度一 直线与平面平行的判定【例2-1】(2016·全国Ⅲ卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明:MN ∥平面P AB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为12P A .如图,取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2=5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 命题角度二 直线与平面平行性质定理的应用【例2-2】 如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面ABCD 内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , PO ⊂平面PBD .所以PO ∥GK ,且GK ⊥底面ABCD , 又EF ⊂平面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.规律方法(1)判断或证明线面平行的常用方法有: ①利用反证法(线面平行的定义);②利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); ③利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); ④利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【训练2】 在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .证明 (1)连接EC ,∵AD ∥BC ,BC =12AD , E 为AD 的中点,∴BC 綉AE , ∴四边形ABCE 是平行四边形, ∴O 为AC 的中点,又∵F 是PC 的中点,∴FO ∥AP ,又FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,又PD ⊂平面P AD ,FH ⊄平面P AD , ∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点,∴OH ∥AD ,又∵AD ⊂平面P AD ,OH ⊄平面P AD ,∴OH∥平面P AD.又FH∩OH=H,∴平面OHF∥平面P AD.又∵GH⊂平面OHF,∴GH∥平面P AD.考点三面面平行的判定与性质(典例迁移)【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【迁移探究1】如图,在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接A1B.∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD ⊄平面A 1B 1BA , A 1B ⊂平面A 1B 1BA , ∴HD ∥平面A 1B 1BA .【迁移探究2】 在本例中,若将条件“E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC 的值.解连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1.又由题设A 1D 1D 1C 1=DCAD ,∴DC AD =1,即ADDC =1.规律方法(1)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行.提醒 利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.【训练3】(2016·山东卷)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB =BC ,AE =EC .求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 证明 (1)因为EF ∥DB ,所以EF 与DB 确定平面BDEF ,图①如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.图②在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC. 又HI∩GI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.[思想方法]1.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.(2017·保定模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1B.2C.3D.4解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③a可以在平面α内,不正确;命题④正确.答案 A2.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.答案 A3.(2017·绍兴一中检测)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB. 答案 B4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①③B.①④C.②③D.②④解析①中,易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B,可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.在②③中不能判定AB∥平面MNP.答案 B5.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α解析若m∥α,n∥α,则m,n平行、相交或异面,A错;若m⊥α,n⊂α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n⊂α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n⊂α,D错.答案 B二、填空题6.(2017·台州月考)在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则MN与平面ABD的位置关系是________;与平面ABC的位置关系是________. 解析如图,取CD的中点E.连接AE,BE,由于M,N分别是△ACD,△BCD的重心,所以AE,BE分别过M,N,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案平行平行7.(2017·宁波调研)如图,四棱锥P-ABCD的底面是一直角梯形,AB ∥CD ,BA ⊥AD ,CD =2AB ,P A ⊥底面ABCD ,E 为PC 的中点,则BE 与平面P AD 的位置关系为________.解析取PD 的中点F ,连接EF ,AF ,在△PCD 中,EF 綉12CD .又∵AB ∥CD 且CD =2AB ,∴EF 綉AB ,∴四边形ABEF 是平行四边形,∴EB ∥AF .又∵EB ⊄平面P AD ,AF ⊂平面P AD ,∴BE ∥平面P AD .答案 平行8.(2017·乐清模拟)如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件________时,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析 连接HN ,FH ,FN ,则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1. 答案 点M 在线段FH 上(或点M 与点H 重合)三、解答题9.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.解 (1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH ,证明如下:因为ABCD -EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是四边形BCHE 为平行四边形,所以BE ∥CH .又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH .同理BG ∥平面ACH .又BE ∩BG =B ,所以平面BEG ∥平面ACH .10.(2014·全国Ⅱ卷)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P -ABD 的体积V =34,求A 到平面PBC 的距离.(1)证明 设BD 与AC 的交点为O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解 V =16P A ·AB ·AD =36AB .由V =34,可得AB =32.作AH ⊥PB 交PB 于H .由题设知AB ⊥BC ,P A ⊥BC ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又AH ⊂平面P AB ,所以BC ⊥AH ,又PB ∩BC =B ,故AH ⊥平面PBC .∵PB ⊂平面PBC ,∴AH ⊥PB ,在Rt △P AB 中,由勾股定理可得PB =132,所以AH =P A ·AB PB =31313.所以A 到平面PBC 的距离为31313.能力提升题组(建议用时:25分钟)11.给出下列关于互不相同的直线l ,m ,n 和平面α,β,γ的三个命题:①若l与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( )A.3B.2C.1D.0解析①中当α与β不平行时,也可能存在符合题意的l ,m ;②中l 与m 也可能异面;③中 ⎭⎪⎬⎪⎫ l ∥γl ⊂αα∩γ=n ⇒l ∥n ,同理,l ∥m ,则m ∥n ,正确.答案C12.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A.AC ⊥BDB.AC ∥截面PQMNC.AC =BDD.异面直线PM 与BD 所成的角为45°解析 因为截面PQMN 是正方形,所以MN ∥QP ,又PQ ⊂平面ABC ,MN ⊄平面ABC ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,又MN ⊂平面PQMN ,AC ⊄平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.答案 C13.如图所示,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形,设D 是A 1C 1上的点且A 1B ∥平面B 1CD ,则A 1D ∶DC 1的值为________.解析设BC1∩B1C=O,连接OD.∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1=1.答案 114.(2015·江苏卷)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC. 又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC 1⊥平面B 1AC .又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.15.(2017·杭州七校联考)如图,在四棱台ABCD -A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD=A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .证明 (1)因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD . 又AB =2AD ,∠BAD =60°,在△ABD 中,由余弦定理,得BD =3AD , 所以AD 2+BD 2=AB 2,即AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .(2)如图,连接AC ,A 1C 1.设AC ∩BD =E ,连接EA 1.因为四边形ABCD 为平行四边形,所以EC =12AC .由棱台定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形,因此CC 1∥EA 1.又EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD .。
浙江专用2018版高考数学大一轮复习第八章立体几何8.5直线平面垂直的判定与性质课件

如图1,连接OA,OB,OC,OP,
在 Rt△POA 、 Rt△POB 和 Rt△POC 中, PA = PC = PB ,
所以OA=OB=OC,即O为△ABC的外心.
垂 心. 答案 (2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的___
如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
π (2)范围:[0,2].
3.平面与平面垂直
(1)二面角的有概念
①二面角:从一条直线出发的 两个半平面 所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两
个半平面内分别作 垂直于棱 的两条射线,这两条射线所构成的角叫
做二面角的平面角.
(2)平面和平面垂直的定义
必在 答案
解析
A.直线AB上 √
C.直线AC上
B.直线BC上
D.△ABC内部
由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1. 又∵AC⊂平面ABC,∴平面ABC1⊥平面ABC. ∴C1在平面ABC上的射影H必在两平面交线AB上.
1
2
3
4
5
6
7
8
9
10 11 12 13
4.(2016· 包头模拟 ) 如图,三棱柱 ABC - A1B1C1 中,侧棱 AA1 垂直底面 A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确 的是
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × ) (2)垂直于同一个平面的两平面平行.( × ) (3)直线a⊥α,直线b⊥α,则a∥b.( √ ) (4)若α⊥β,a⊥β⇒a∥α.( × ) (5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )
高中数学第二章点、直线、平面之间的位置关系2.22.2.3直线与平面平行的性质2.2.4平面与平面
(浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.2 2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质学案新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.2 2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质学案新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.2 2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质学案新人教A版必修2的全部内容。
2.2.3 直线与平面平行的性质2。
2.4 平面与平面平行的性质目标定位1。
证明并掌握直线与平面平行、平面与平面平行的性质定理.2.能应用文字语言、符号语言、图形语言准确描述直线与平面平行,两平面平行的性质定理。
3。
能用两个性质定理,证明一些空间线面平行关系的简单问题.自主预习线面平行的性质定理面面平行的性质定理文字一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号错误!⇒a∥b错误!⇒a∥b图形作用线面平行⇒线线平行面面平行⇒线线平行1.判断题(1)一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行。
(√)(2)如果直线a∥平面α,直线b⊂α,则a与b平行。
(×)(3)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(√)(4)过直线外一点,有且只有一个平面和已知直线平行.(×)提示(2)a与b平行或异面。
2018届人教A版 直线、平面平行的判定与性质 单元测试
直线、平面平行的判定与性质一、选择题1.已知两条不同直线l1和l2及平面α,则直线l1∥l2的一个充分条件是()A.l1∥α且l2∥αB.l1⊥α且l2⊥αC.l1∥α且l2⊄αD.l1∥α且l2⊂α解析:l1⊥α且l2⊥α⇒l1∥l2.答案:B2.已知α∥β,a⊂α,B∈β,则在β内过点B的所有直线中() A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:因为a与点B确定一个平面,该平面与β的交线即为符合条件的直线.答案:D3.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,过AB的中点E且平行于BD,AC的截面四边形的周长为() A.10 B.20C.8 D.4解析:设截面四边形为EFGH,F,G,H分别是BC,CD,DA 的中点,∴EF=GH=4,FG=HE=6.∴周长为2×(4+6)=20.答案:B4.(2016·浙江余姚月考)如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行 D .MN 与A 1B 1平行解析:如图,连接C 1D ,BD ,AC ,在△C 1DB 中,易知MN ∥BD ,故C 正确;∵CC 1⊥平面ABCD ,∴CC 1⊥BD ,∴MN 与CC 1垂直,故A 正确;∵AC ⊥BD ,MN ∥BD ,∴MN 与AC 垂直,故B 正确;∵A 1B 1与BD 异面,MN ∥BD ,∴MN 与A 1B 1不可能平行,故D 错误.选D.答案:D5.在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B和AC 上的点,若A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:连接CD 1,在CD 1上取点P ,使D 1P =2a 3,∴MP ∥BC ,PN ∥AD 1.∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D .∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .答案:B6.(2016·河北保定模拟)有下列命题①若直线l 平行于平面α内的无数条直线,则直线l ∥α;②若直线a 在平面α外,则a ∥α;③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( )A .1B .2C .3D .4解析:命题①l 可以在平面α内,不正确;命题②直线a 与平面α可以是相交关系,不正确;命题③a 可以在平面α内,不正确;命题④正确.答案:A7.(2016·安徽阜阳一中模拟)过平行六面体ABCD —A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有( )A .4条B .6条C .8条D .12条解析:如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,M ,N ,P ,Q 分别为相应棱的中点,容易证明平面EFGH ,平面MNPQ 均与平面BDD 1B 1平行.平面EFGH 和平面MNPQ 中分别有6条直线(相应四边形的四条边和两条对角线)满足要求,故共有12条直线符合要求.答案:D8.在三棱锥P —ABC 中,点D 在P A 上,且PD =12DA ,过点D作平行于底面ABC 的平面,交PB ,PC 于点E ,F ,若△ABC 的面积为9,则△DEF 的面积是( )A .1B .2C .4 D.94解析:由于平面DEF ∥底面ABC ,因此DE ∥AB ,DF ∥AC ,EF∥BC ,所以DE AB =DF AC =EF BC ,所以△DEF ∽△ABC ,所以S △DEF S △ABC =⎝ ⎛⎭⎪⎫132,而S △ABC =9,所以S △DEF =1,故选A.答案:A9.如图,在三棱柱ABC —A ′B ′C ′中,点E ,F , H ,K 分别为AC ′,CB ′,A ′B ,B ′C ′的中点,G 为△ABC 的重心.从K ,H ,G ,B ′中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为( )A .KB .HC .GD .B ′解析:假如平面PEF 与侧棱BB ′平行,则和三条侧棱都平行,不满足题意,而FK ∥BB ′,排除A ;假如P 为点B ′,则平面PEF 即平面A ′B ′C ,此平面只与一条棱AB 平行,排除D ;若P 为点H ,则HF 为△BA ′C ′的中位线,∴HF ∥A ′C ′,EF 为△ABC ′的中位线,∴EF ∥AB ,HE 为△AB ′C ′的中位线,∴HE ∥B ′C ′,显然不合题意,排除B.答案:C10.(2016·北京海淀区模拟)如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤52,2 D.[]2,3 解析:取B 1C 1的中点M ,BB 1的中点N ,连接A 1M ,A 1N ,MN ,可以证明平面A 1MN ∥平面AEF ,所以点P 位于线段MN 上,因为A 1M =A 1N =1+⎝ ⎛⎭⎪⎫122=52, MN =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 所以当点P 位于M ,N 处时,A 1P 最大,当P 位于MN 的中点O 时,A 1P 最小,此时A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324, 所以A 1O ≤A 1P ≤A 1M ,即324≤A 1P ≤52,所以线段A 1P 长度的取值范围是⎣⎢⎡⎦⎥⎤324,52,故选B. 答案:B二、填空题11.(2016·陕西师大附中模拟)如图所示,在长方体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.解析:连接FH ,HN ,FN ,由题意知HN ∥平面B 1BDD 1,FH ∥平面B 1BDD 1,且FH ∩HN =H ,∴平面NHF ∥平面B 1BDD 1,∴当M 在线段HF 上运动时,有MN ∥平面B 1BDD 1.答案:M ∈线段FH12.(2016·河南周口一模)已知平面α∥平面β,P 是α、β外一点,过P 点的两条直线AC 、BD 分别交α于A 、B ,交β于C 、D ,且P A =6,AC =9,AB =8,则CD 的长为________.解析:若P 在α、β的同侧,由于平面α∥平面β,故AB ∥CD ,则P A PC =AB CD ,可求得CD =20;若P 在α、β之间,则同理可求得CD =4.答案:20或413.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.解析:∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ ,∵M ,N 分别为A 1B 1,B 1C 1的中点,AP =a 3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a . 答案:223a14.(2016·河北唐山统考)在三棱锥P —ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:过点G 作EF ∥AC ,分别交P A 、PC 于点E 、F ,过E 、F 分别作EN ∥PB 、FM ∥PB ,分别交AB 、BC 于点N 、M ,连接MN ,则四边形EFMN 是平行四边形(面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:8三、解答题15.(2016·安徽联合考试)如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD,E为AD的中点,M是棱PC的中点,P A=PD=AD=2BC=2,CD=3.(1)求证:PE∥平面BDM;(2)求三棱锥P—MBD的体积.解:(1)证明:连接BE,因为BC∥AD,DE=BC,所以四边形BCDE为平行四边形.连接EC交BD于O,连接MO,则MO∥PE,又MO⊂平面BDM,PE⊄平面BDM,所以PE∥平面BDM.(2)V P—DMB=V P—DBC-V M—DBC.由于平面P AD⊥底面ABCD,PE⊥AD,所以PE⊥底面ABCD,所以PE是三棱锥P—DBC的高,且PE= 3.由(1)知MO是三棱锥M—DBC的高,MO=32,S△BDC=32,所以V P—DBC=12,V M—DBC=14,则V P—DMB=14.16.(2016·辽宁大连测试)如图,已知三棱柱ABC—A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F =2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.解:(1)证明:取BC的中点O,连接AO,因为三角形ABC是等边三角形,所以AO⊥BC.因为平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,所以AO⊥平面BCC′B′,又BB′⊂平面BCC′B′,所以AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,所以BB′⊥底面ABC.(2)显然点M不是点A′,B′,若棱A′B′上存在一点M,使得C′M∥平面BEF,过点M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥C′F,即C′M和FN共面,所以C′M∥FN,所以四边形C′MNF为平行四边形,所以MN=2,所以MN是梯形A′B′BE的中位线,M为A′B′的中点.故当M为A′B′的中点时,C′M∥平面BEF.。
高考数学(浙江版,理)课件:7.4 直线、平面平行的判定与性质
2
2
平面与平面平行的判定与性质 典例2 (2015浙江杭州模拟,18,15分)如图所示,棱柱ABCD-A1B1C1D1的底 面ABCD为菱形,平面AA1C1C⊥平面ABCD. (1)求证:平面AB1C∥平面DA1C1; (2)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位 置;若不存在,说明理由.
对;只有当m与n相交时,才有α∥β,③c 错;根据面面垂直的性质定理知④对,
故选C.
4.在空间中,有如下命题: ①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条 直线; ②若平面α∥平面β,则平面α内任意一条直线m∥平面β; ③若平面α与平面β的交线为m,平面α内的直线n⊥直线m,则直线n⊥平面 β; ④若平面α内的三点A,B,C到平面β的距离相等,则α∥β. 其中正确命题的个数为 ( ) A.1 B.2 C.3 D.4
1.(2015浙江五校第一次联考)设m、n表示两条不同的直线,α、β表示两 个不同的平面,则下列结论中正确的是 ( ) A.若m∥α,m∥n,则n∥α B.若m⊂α,n⊂β,m∥β,n∥α,则α∥β C.若α∥β,m∥α,m∥n,则n∥β D.若α∥β,m∥α,n∥m,n⊄β,则n∥β 答案 D A选项不正确,n还有可能在平面α内;B选项不正确,还有可能
证明面面平行的方法 (1)面面平行的定义; (2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一 个平面,那么这两个平面平行; (3)垂直于同一条直线的两个平面平行; (4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”“线面平行”“面面平行”的相互转化. 面面平行的性质的应用有两个:一是转化为线线平行,一般是找到(或作 出)第三个平面,使它与两已知平面相交,从而转化为线线平行;二是转化 为线面平行.
(浙江版)2018年高考数学一轮复习(讲+练+测): 专题8.5 直线、平面垂直的判定与性质(测)
第05节 直线、平面垂直的判定与性质班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.【2017届浙江省杭州市高三4月】设α, β是两个不同的平面, m 是一条直线,给出下列命题:①若m α⊥, m β⊂,则αβ⊥;②若//m α, αβ⊥,则m β⊥.则( ) A. ①②都是假命题 B. ①是真命题,②是假命题 C. ①是假命题,②是真命题 D. ①②都是真命题 【答案】B2.【2017届浙江省湖州、衢州、丽水三市高三4月联考】已知平面α与两条不重合的直线,a b ,则“a α⊥,且b α⊥”是“//a b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A【解析】若,a b αα⊥⊥,则必有//a b ,但//a b 时,直线,a b 与平面α可以平行,可以相交,可以在平面内,不一定垂直,因此“,a b αα⊥⊥”是“//a b ”的充分不必要条件,故选A .3.【2016届浙江省宁波市高三上学期期末】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 【答案】D4.【2016届浙江省宁波市高三上学期期末】已知m,n 是两条不同的直线,是三个不同平面,下列命题中正确的是( ) A. 若,,则B. 若,,则C. 若,,则D.若,,则【答案】D 【解析】不正确,因为垂直于同一条直线的两个平面平行; 不正确,垂直于同一个平面的两个平面平行或相交; 平行于同一条直线的两个平面平行或相交;正确.5.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 【答案】B6.如图,在四面体D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列正确的是( )A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE 【答案】C【解析】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC 在平面ABC 内,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.7.【温州市高三第一次适应性测试】m 是一条直线,α,β是两个不同的平面,以下命题正确的是( )A .若m ∥α,α∥β,则m ∥βB .若m ∥α,m ∥β,则α∥βC .若m ∥α,α⊥β,则m ⊥βD .若m ∥α,m ⊥β,则α⊥β【答案】D【解析】A.若,//,//βααm 则β//m 或β⊂m ;A 错.B.若,//,//βαm m 则βα//或l =βα B 错;C.若,,//βαα⊥m 则β⊥m 或β//m 或β⊂m C 错;D.,//αm 存在直线n ,使n m //,α⊂n ,β⊥m ,β⊥∴n 又βαβ⊥∴⊂n ,故选D.8.【浙江省“六市六校”联盟高考模拟考试】空间中,设m 表示直线,α,β表示不同的平面,则下列命题正确的是( )A.若βα//,α//m ,则β//m B . 若βα//,α⊥m ,则β⊥m C.若βα⊥,α//m ,则β⊥m D. 若βα⊥,α⊥m ,则β//m 【答案】B【解析】若βα//,α//m ,则β//m 或m β⊂,故A 错;若βα⊥,α//m ,则m 和β的位置关系不确定,故C 错;若βα⊥,α⊥m ,则β//m 或m β⊂,故D 错,选B . 9.设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列四个命题中假命题...的是( )A.若,//,ααn m ⊥则n m ⊥B.若,,,//α⊥m n m 则α⊥nC.若,,//βαα⊥l 则β⊥lD.若αγββα⊥m ,//,//,则γ⊥m 【答案】C10.下列四个命题中,正确命题的个数是( )个 ① 若平面//α平面β,直线//m 平面α,则//m β; ② 若平面α⊥平面γ,且平面β⊥平面γ,则//αβ; ③ 平面α⊥平面β,且l αβ=,点A α∈,A l ∉,若直线AB l ⊥,则AB β⊥;④ 直线m n 、为异面直线,且m ⊥平面α,n ⊥平面β,若m n ⊥,则αβ⊥. A.0 B.1 C.2 D. 3 【答案】B【解析】A 答案:如果加入条件m β⊄,则//m β; B 答案:例如墙角的三个面,则αβ⊥; C 答案:如果加入条件AB α⊂,则AB β⊥;D 答案:从向量角度看,m 与n 分别是,αβ的法向量,显然m n ⊥,即αβ⊥. 所以只有D 正确.11.【2017届浙江省温州市二模】已知空间两不同直线、,两不同平面,,下列命题正确的是( ) A. 若且,则 B. 若且,则C. 若且,则D. 若不垂直于,且,则不垂直于【答案】C12.如图,为正方体,下面结论:①平面;②;③平面;④直线与所成的角为45°.其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】D 【解析】由正方体的性质得,,所以,平面,故①正确.由正方体的性质得,而是在底面内的射影,由三垂线定理知,,故②正确.由正方体的性质得,由②知,,所以,,同理可证,故垂直于平面内的两条相交直线,所以,⊥平面,故③正确.异面直线与所成的角就是直线与所成的角,故为异面直线与所成的角,在等腰直角三角形中,,故④正确.二、填空题(本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一直线与平面平行的判定定理知识点二直线与平面平行的性质定理知识点三平面与平面平行的判定定理推论:如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.知识点四 平面与平面平行的性质 1.平面与平面平行的性质定理2.平面与平面平行的性质如果两个平面平行,那么某一个平面内的直线与另一个平面平行.例1 如图,在四面体A -BCD 中,截面PQMN 是正方形,则下列结论错误的是( )A .AC ⊥BDB .AC ∥截面PQMN C .AC =BDD .异面直线PM 与BD 所成的角为45°例2 已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20例3 (2016年10月学考)如图,在四面体ABCD 中,AB =CD =2,AD =BD =3,AC =BC =4,点E ,F ,G ,H 分别在棱AD ,BD ,BC ,AC 上,若直线AB ,CD 都平行于平面EFGH ,则四边形EFGH 面积的最大值是( )A.12B.22C .1D .2 例4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过点P ,M ,N 的平面交上底面于PQ ,点Q 在CD 上,则PQ =________.例5 如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1.一、选择题1.A是平面BCD外一点,E,F,G分别是BD,DC,CA的中点,设过这三点的平面为α,则在直线AB,AC,AD,BC,BD,DC中,与平面α平行的直线有()A.0条B.1条C.2条D.3条2.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α、β都平行于直线a、bB.α内有三个不共线点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a,b是两条异面直线且a∥α,b∥α,a∥β,b∥β3.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FGB.四边形EFGH可能是梯形C.Ω是棱柱D.四边形EFGH是矩形4.如图,下列四个正方体图形中,A,B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是()A.①②B.③④C.②③D.①④5.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③B.①④C.②③D.②④6.如图,四棱锥S-ABCD的所有的棱长都等于2,E是SA的中点,过C,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.2+ 3 B.3+ 3C.3+2 3 D.2+2 37.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,得到无数个AB的中点C,那么所有的动点C()A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面二、填空题8.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN 平行的是________.9.如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.10.如图所示,直线a∥平面α,点A在α另一侧,点B,C,D∈a,线段AB,AC,AD分别交α于点E,F,G.若BD=4,CF=4,AF=5,则EG=________.11.如图,在正方体ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.三、解答题12.如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?答案精析知识条目排查 知识点一平面外 平行 a ⊄α 知识点二过这条直线 平行 a ∥α 知识点三两相交 a ∩b =P b ∥α 知识点四 1.平行 题型分类示例例1 C [由截面PQMN 是正方形, 所以PQ ∥MN ∥AC ,QM ∥PN ∥BD , PQ ⊥QM ,可得AC ⊥BD , 故选项A 正确;由PQ ∥AC ,可得AC ∥截面PQMN , 故选项B 正确;异面直线PM 与BD 所成的角等于PM 与PN 所成的角,故选项D 正确.由排除法选C.] 例2 B [根据题意可有如图所示的两种情况:由面面平行的性质定理,得AB ∥CD , 则P A AC =PB BD, 可求得BD 的长分别为245或24.故选B.] 例3 C 例4223a 解析 如图,连接AC ,易知MN ∥平面ABCD ,∴MN ∥PQ ,∵MN ∥AC ,∴PQ ∥AC . 又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23.∴PQ =23AC =223a .例5证明 (1)如图,连接SB , ∵E 、G 分别是BC 、SC 的中点, ∴EG ∥SB .又∵SB ⊂平面BDD 1B 1, EG ⊄平面BDD 1B 1, ∴直线EG ∥平面BDD 1B 1. (2)连接SD ,∵F 、G 分别是DC 、SC 的中点, ∴FG ∥SD .又∵SD ⊂平面BDD 1B 1, FG ⊄平面BDD 1B 1, ∴FG ∥平面BDD 1B 1, 且EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面BDD 1B 1. 考点专项训练 1.C [取AB的中点H,连接HE、EF、FG、GH,∴平面HEFG为平面α,其中AB、BD、CD、AC都与平面α相交,∵E、F分别是BD、CD的中点,∴EF∥BC,而EF⊂α,BC⊄α,∴BC∥平面α.同理可证AD∥平面α,故选C.]2.D[A错,若a∥b,则不能断定α∥β;B错,若A、B、C三点不在β的同一侧,则不能断定α∥β;C错,若a∥b,则不能断定α∥β,故选D.]3.B[若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,与EH∥B1C1矛盾,所以FG∥EH,故A正确;由EH⊥平面A1ABB1,得到EH⊥EF,可以得到四边形EFGH为矩形,故D正确;将Ω从正面看过去,就知道是一个五棱柱,故C正确;因为EFGH截去几何体EFGHB1C1后,EH綊B1C1綊GF,所以四边形EFGH不可能为梯形,故B错误,故选B.]4.D[对于①,该正方体的对角面ADBC∥平面MNP,得出直线AB∥平面MNP;对于②,直线AB和平面MNP不平行,因此直线AB与平面MNP相交;对于③,易知平面PMN与正方体的侧面AB相交,得出AB与平面MNP相交;对于④,直线AB与平面MNP内的一条直线NP平行,且直线AB ⊄平面MNP , ∴直线AB ∥平面MNP .综上,能得出直线AB ∥平面MNP 的图形的序号是①④,故选D.] 5.A [∵在正方体ABCD -A 1B 1C 1D 1中, E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点, ∴FG ∥BC 1,∵BC 1∥AD 1,∴FG ∥AD 1, ∵FG ⊄平面AA 1D 1D ,AD 1⊂平面AA 1D 1D , ∴FG ∥平面AA 1D 1D ,故①正确; ∵EF ∥A 1C 1,A 1C 1与平面BC 1D 1相交, ∴EF 与平面BC 1D 1相交,故②错误; ∵E ,F ,G 分别是A 1B 1,B 1C 1,BB 1的中点, ∴FG ∥BC 1,∵FG ⊄平面BC 1D 1,BC 1⊂平面BC 1D 1, ∴FG ∥平面BC 1D 1,故③正确; ∵EF 与平面BC 1D 1相交,∴平面EFG 与平面BC 1D 1相交,故④错误. 故选A.]6.C [∵CD ∥AB ,又CD ⊄平面SAB , ∴CD ∥平面SAB ,又平面CDEF ∩平面SAB =EF , ∴CD ∥EF ,又CD ∥AB , ∴AB ∥EF ,∵SE =EA , ∴EF 为△ABS 的中位线, ∴EF =12AB =1,又DE =CF =3,∴四边形DEFC 的周长为3+2 3.] 7.D [如图所示,A ′、B ′分别是A 、B 两点在α、β上运动后的两点,此时AB 中点C 变成A ′B ′中点C ′,连接A ′B ,取A ′B 中点E .连接CE 、C ′E 、AA ′、BB ′、CC ′, 则CE ∥AA ′,∴CE ∥α.又C ′E ∥BB ′,∴C ′E ∥β.又∵α∥β,∴C ′E ∥α.∵C ′E ∩CE =E .∴平面CC ′E ∥平面α.∴CC ′∥α.所以不论A 、B 如何移动,所有的动点C 都在过C 点且与α、β平行的平面上.]8.平面ABD 与平面ABC解析如图,取CD 的中点E ,连接AE ,BE .则EM ∶MA =1∶2,EN ∶BN =1∶2,所以MN ∥AB .所以MN ∥平面ABD ,MN ∥平面ABC . 9. 210.209解析 A ∉a ,则点A 与直线a 确定一个平面,即平面ABD .因为a ∥α,且α∩平面ABD =EG ,所以a ∥EG ,即BD ∥EG ,所以AF AC =AE AB. 又EG BD =AE AB, 所以AF AC =EG BD. 于是EG =AF ·BD AC =5×45+4=209. 11.M ∈线段FH解析 因为HN ∥BD ,HF ∥DD 1,HN ∩HF =H ,BD ∩DD 1=D ,所以平面NHF ∥平面B 1BDD 1,故线段FH 上任意点M 与N 相连,都有MN ∥平面B 1BDD 1.12.解当Q为CC1的中点时,平面D1BQ∥平面P AO.∵Q为CC1的中点,P为DD1的中点,连接PQ,易证四边形PQBA是平行四边形,∴QB∥P A.又∵AP⊂平面APO,QB⊄平面APO,∴QB∥平面APO.∵P、O分别为DD1、DB的中点,∴D1B∥PO.同理可得D1B∥平面P AO,又D1B∩QB=B,∴平面D1BQ∥平面P AO.。