概率论与数理统计复习笔记】
自考 概率论与数理统计 重难点笔记资料

高等教育自学考试《概率论与数理统计》重难点笔记资料 课程代码:04183第一章 随机事件与概率一.随机事件关系与运算1!0,)!(!!!,)!(!0===-==-=C C C A A n n n r n nn rn r n r n :,n r n n 组合排列二.概率P(A) 1.P(A)概率特征)()31)(,0)()21)(0)111∑∞=∞===Ω=≤≤K KK kA A P ,P(P P A P 事件互不相容时φ2. 古典概型3.概率加法公式P(A+B)=P(A)+P(B)- P(AB)当A 、B 互斥时, P(A+B)=P(A)+P(B) 事件的独立性:定义:P(AB)=P(A)P(B)性质:.P(A)>0,,则P(B)=P(B/A); P(B)>0则P(A)=P(A/B) P(B —A)=P(B)--P(AB)P (A--B )==P (AB )=P (A--AB )=P (A )--P (AB )基本事件总数所包含的基本事件数A A P =)(P(A+B+C)=1--P(A+B+C)=1--P(A)P(B)P(C) P(AB)=P(AUB)=1-P(AUB)=1-(P(A)+P(B)) P(A)=1-P(A4.条件概率公式5.概率的乘法公式6.全概率公式:从原因计算结果7.Bayes 公式:从结果找原因)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|()()()|(A P AB P A B P =)/()/()()(AB C P A B P A P ABC P =第二章随机变量及其概率分布4/ 13分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:“一般正态分布函数F(x)”转换为“标准正态分布函数)(x Φ”的关系 设X~N (δμ2,)则1.2.3.连续型随机变量函数的概率分布定理:记x=h(y)为y=g(x)的反函数,则Y=g(X)的概率密度:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<'=其他y y h y h y f f X Y ,0),())(()(βα1) 设X~U(-2,2ππ),令Y=tanX,求Y 的概率密度柯西分布:+∞<<-∞+='=y y h y h y y f f X Y ,111)())(()(2π 2)设X~N(σμ2,),求eX的概率密度对数正态分布:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤>-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤>•=-0,00,2)(ln 210,0,0,1)(ln )(,22y y y y y y y y y e f fX Yσμσπ ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=x dtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()()()('x f x F =3直接变换法:[])()(21)()(y y yy y ff F fXXY Y-+='=e e yx x 的的反函数为y y 的反函数为反y 2ln 2,,,,,ln -=-===第三章多维随机变量及其概率分布 二元随机变量及其边缘分布 分布规律的描述方法联合密度函数联合分布函数离散联合分布函数的概率:{}0),(),(),(),(,112112222121≥+--=≤<≤<y x y x y x y x y y x x F F F F Y X P性质1),(,0),(),(),(=+∞+∞=-∞-∞=-∞=-∞F F x F y F 离散边缘分布律:{}{}∑∑===⋅===⋅ijji pijY P j p pij X P pi y x1...2,1,,0,0=⋅=⋅=≥⋅≥⋅∑∑jij p pi j i j p pi联合密度二维边缘密度二维连续随机变量的分布 1.均匀分布(X,Y)~U D1)设D 为平面上的有界区域,S 表面积⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤+−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤--−−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈=其他,其他o d x c b x a c d a b 其他D y x S y x f R yx R 圆形矩形,01,,,))((1,0),(,1),(2222π),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=+∞<<∞-=⎰+∞∞-x ,,dy y x f x f ),()(+∞<<-∞=⎰+∞∞-y dx y x f y f Y ,,),()(}{}{},{j Y P i X P j Y i X P =====2.正态分布),,,,(~),(222121ρσσμμN Y Xey y x f y x x ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+--------=σμσσσρρσπσμμρμ222212121212)2(121),())((2)()1(21221离散型随机变量的独立性)()(),(y FY x Fx y x F =连续型随机变量的独立性第四章 随机变量的数字特征数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义期望性质:● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数 , ● E(CX)=CE(X),其中C 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 ● E(XY)=E(X)E(Y),X,Y 相互独立 方差的性质D(a)=0,其中a 为常数D(a+bX)=b 2(X),其中a 、b 为常数D(X+Y)=D(X)+D(Y) 当X 、Y 相互独立时随机变量g(X)的数学期望常用公式:二维随机变量的期望 离散)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k kkP xX E )(⎰+∞∞-⋅=dxx f x X E )()(⎰∑+∞∞-=⇔=dx x fx x g X g E p x g X g E k k k )()()]([)())((ijji Jii i j ij i i i py j p y Y E p x pi x X E ∑∑∑∑∑∑=⋅==⋅=)()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )()()()(,Y E X E XY E Y X =独立时与当连续 g(X)∑⎰⎰∑=⇔=jij jiidxdy y x f y x g Y X G E p yx g Y X g E ,),(),()],([),()],([方差 定义式 离散:⋅-=∑=Pi X E xX D ni i21))(()(连续常用计算式常用公式协方差与相关系数⎰⎰--=dxdy y x f Y E Y X E x Y X Cov ),())())(((),(协方差Cov(X,Y)的性质当X 与Y 相互独立时,则Cov(X,Y)=0相关系数XY ρ的性质⎰⎰⎰⎰==dxdyy x yf Y E dxdy y x xf X E ),()(),()(dxdyy x xyf XY E ⎰⎰=),()(()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()()(),(Y E X E XY E Y X Cov -=)()(),(Y D X D Y X Cov XY=ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+独立与相关独立必定不相关 相关必定不独立 不相关不一定独立标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章 大数定律及中心极限定理1.切比雪夫不等式:设随机变量X 的期望E(X)及方差D (X )存在,则对任意小正数a>0,{}{}22)(1)()()(aX D a X E X P a X D a X E X P -≥<-↔≤≥- 2.独立同分布序列的中心极限定理{})(21)(212lim lim lim x dt x n n X P x Y P x xt n i i n n n n n eF Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=≤=⎰∑∞---∞→∞→∞→πσμ3.棣莫费-拉普拉斯中心极限定理)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P)(2122lim x dt x mpq np Z p e t x n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞-∞→⎰ 第六章 统计量及其抽样分布 样本方差,)(11212∑=--=ni i x x n s样本标准差2s s = 统计量样本K样本K卡方分布t 分布F 分布正态总体条件下样本均值的分布:样本方差的分布:两个正态总体的方差之比)(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2n N X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ则若),(~),1,0(~2n Y N X χ)(~/n t nY X第七章 参数估计点估计:参数的估计值为一个常数最大似然估计P147似然函数单个正态总体参数的置信区间第八章 假设检验假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。
在山东省考研的数学科目中,概率论与数理统计是必考内容之一。
为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。
一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。
概率论与数理统计笔记

概率论与数理统计笔记第一章概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =,称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。
为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ?,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。
若A B ?且B A ?,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的. ,{,{,,AA S AA S A A AB AA AB ===?=?的逆事件记为若则称互逆,互斥.6.,A B A B AB AB 当且仅当同时发生时,事件发生.也记作.,A B AB AB AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件“A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率反映了事件A 发生的频繁程度. 2.频率的性质:10()12()1n n kkf A f S ≤≤=。
(完整版)概率论与数理统计复习提纲

1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。
概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。
-频率和概率的关系,概率的基本性质。
-古典概型和几何概型的概念。
-条件概率和乘法定理。
-全概率公式和贝叶斯公式。
-随机变量和概率分布函数的概念。
-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。
2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。
-协方差、相关系数和线性变换的数学期望和方差公式。
-两个随机变量的和、差、积的数学期望和方差公式。
3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。
-中心极限定理的概念和中心极限定理的两种形式。
4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。
-样本统计量和抽样分布的概念。
-点估计和区间估计的概念。
-假设检验的基本思想和步骤。
-正态总体的参数的假设检验和区间估计。
5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。
-矩估计的原理和方法。
-最小二乘估计的原理和方法。
-一般参数的假设检验和区间估计。
6.相关分析和回归分析-相关系数和线性相关的概念和性质。
-回归分析的一般原理。
-简单线性回归的估计和检验。
7.非参数统计方法-秩和检验和符号检验的基本思想和应用。
-秩相关系数的计算和检验。
8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。
-正态总体参数的拟合优度检验。
-贝叶斯估计的基本思想和方法。
9.时间序列分析和质量控制-时间序列的基本性质和分析方法。
-时间序列预测的方法和模型。
-质量控制的基本概念和控制图的应用。
以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。
概率论与数理统计复习资料要点总结

《概率论与数理统计》复习资料一、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之用。
考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,了解(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数 )、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
概率论和数理统计知识点总结[超详细版]
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
(完整版)概率论与数理统计知识点总结(详细)
《概率论与数理统计》第一章概率论的基本概念 (2)§2.样本空间、随机事件 (2)§4等可能概型(古典概型) (3)§5.条件概率 (4)§6.独立性 (4)第二章随机变量及其分布 (5)§1随机变量 (5)§2离散性随机变量及其分布律 (5)§3随机变量的分布函数 (6)§4连续性随机变量及其概率密度 (6)§5随机变量的函数的分布 (7)第三章多维随机变量 (7)§1二维随机变量 (7)§2边缘分布 (8)§3条件分布 (8)§4相互独立的随机变量 (9)§5两个随机变量的函数的分布 (9)第四章随机变量的数字特征 (10)§1.数学期望 (10)§2方差 (11)§3协方差及相关系数 (11)第五章 大数定律与中心极限定理 (12)§1. 大数定律 ...................................................................................... 12 §2中心极限定理 . (13)第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
自考概率论与数理统计复习资料要点总结
《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk k nk k A P A P 11)()( (n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式: ∑==ni i i B A P B P A P 1)|()()((4)Bayes 公式: ∑==ni iik k kB A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用) 第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑ii p =1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b Xa P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号 分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,p q X P -===1)0(ppq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npqPoisson 分布)(λP,2,1,0,!)(===-k k ek X P kλλλ λ几何分布)(p G ,2,1 ,)(1===-k p q k X P kp 12p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b Xa P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii p x F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u XP Φ-==>6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加; (2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计复习资料要点总结--学生
概率论与数理统计复习资料要点总结--学⽣《概率论与数理统计》复习资料⼀、复习提纲注:以下是考试的参考内容,不作为实际考试范围,仅作为复习参考之⽤。
考试内容以教学⼤纲和实施计划为准;注明“了解”的内容⼀般不考。
1、会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应⽤这些性质进⾏概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运⽤全概率公式与贝叶斯公式解题;掌握事件独⽴性的概念及性质。
5、理解随机变量的概念,掌握离散性随机变量分布率的性质及求法,掌握(0—1)分布、⼆项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解并掌握连续型随机变量的概率密度及性质。
7、掌握指数分布(参数λ)、均匀分布、正态分布8、会求特殊的⼀维随机变量函数分布的分布律或概率密度。
9、会求分布中的待定参数。
会求区间的概率.10、会求边缘分布律、边缘密度函数,会判别随机变量的独⽴性。
11、掌握⼆维连续型随机变量未知参数的计算,落在区域概率的计算。
12、理解⼆维随机变量的概念,理解⼆维随机变量的联合分布函数及其性质,掌握⼆维离散型随机变量的联合分布律及其性质,掌握⼆维连续型随机变量的联合概率密度及其性质,并会⽤它们计算有关事件的概率。
13、会求⼆维离散型随机变量函数的分布率.14、掌握数学期望和⽅差的定义及性质,会熟练地求随机变量及其函数的数学期望和⽅差。
会熟练地默写出⼏种重要随机变量的数学期望及⽅差。
15、较熟练地求协⽅差与相关系数.16、会⽤独⽴正态随机变量线性组合性质解题。
17、理解总体、样本、简单随机样本、统计量及抽样分布概念,样本均值与样本⽅差及样本矩概念,掌握χ2分布(及性质)、t 分布、F 分布及其分位点概念。
18、理解正态总体样本均值与样本⽅差的抽样分布定理;会⽤矩估计⽅法来估计未知参数。
19、掌握极⼤似然估计法,⽆偏性与有效性的判断⽅法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . 概率论与数理统计复习
第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E的所有可能结果组成的集合. 样本点(基本事件):E的每个结果. 随机事件(事件):样本空间S的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件():每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.AB(事件B包含事件A )事件A发生必然导致事件B发生. 2.A∪B(和事件)事件A与B至少有一个发生. 3. A∩B=AB(积事件)事件A与B同时发生. 4. A-B(差事件)事件A发生而B不发生. 5. AB= (A与B互不相容或互斥)事件A与B不能同时发生. 6. AB=且A∪B=S (A与B互为逆事件或对立事件)表示一次试验中A与B必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律 BABA BABA 三. 概率的定义与性质 1.定义 对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A1,A2,…(A iAj=φ, i≠j, i,j=1,2,…), P(A1∪A2∪…)=P( A1)+P(A2)+… 2.性质 (1) P() = 0 , 注意: A为不可能事件 P(A)=0 . . . (2)有限可加性 对于n个两两互不相容的事件A1,A2,…,A n , P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n) (有限可加性与可列可加性合称加法定理) (3)若AB, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A∪B)=P(A)+P(B)-P(AB) . 对于任意n个事件A1,A2,…,A n
nkjikjinjijiniinAAAPAAPAPAAAP
11121
…+(-1)n-1P(A1A2…A n) 四.等可能(古典)概型 1.定义 如果试验E满足:(1)样本空间的元素只有有限个,即S={e1,e2,…,e n};(2)每一个基本事件的概率相等,即P(e1)=P(e2)=…= P(e n ).则称试验E所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数. 五.条件概率 1.定义 事件A发生的条件下事件B发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A1A2…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1) (n≥2, P(A1A2…A n-1) > 0) 3. B1,B2,…,B n是样本空间S的一个划分(BiBj=φ,i≠j,i,j=1,2,…,n, B1∪B2∪…∪B n=S) ,则
当P(B i)>0时,有全概率公式 P(A)=iniiBAPBP1
当P(A)>0, P(B i)>0时,有贝叶斯公式P (Bi|A)=niiiiiiBAPBPBAPBPAPABP1 . 六.事件的独立性 1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B为相互独立的事件. . . (1)两个事件A,B相互独立 P(B)= P (B|A) .
(2)若A与B,A与B,A与B, ,A与B中有一对相互独立,则另外三对也相互独立. 2.三个事件A,B,C满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C三事件相互独立. 3.n个事件A1,A2,…,A n,如果对任意k (1kkiiiiiiAPAPAPAAAP2121,则称这n个事件A
1,A2,…,A n
相互独立.
第二章 随机变量及其概率分布 一.随机变量及其分布函数 1.在随机试验E的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量. 2.随机变量X的分布函数F(x)=P{X≤x} , x是任意实数. 其性质为: (1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x1(3)F(x)右连续,即F(x+0)=F(x). (4)P{x1二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量) 1.离散型随机变量的分布律 P{X= x k}= p k (k=1,2,…) 也可以列表表示. 其性质为:
(1)非负性 0≤Pk≤1 ; (2)归一性 11kkp .
2.离散型随机变量的分布函数 F(x)=xXkkP为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k=P{X=x k} . 3.三种重要的离散型随机变量的分布 (1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0
(2)X~b(n,p)参数为n,p的二项分布P{X=k}=knkppkn1(k=0,1,2,…,n) (0
(3))X~()参数为的泊松分布 P{X=k}=ekk! (k=0,1,2,…) (>0) 三.连续型随机变量 1.定义 如果随机变量X的分布函数F(x)可以表示成某一非负函数f(x)的积分. . F(x)=dttfx,-∞< x <∞,则称X为连续型随机变量,其中f (x)称为X的概率密度(函数).
2.概率密度的性质 (1)非负性 f(x)≥0 ; (2)归一性
dxxf)(=1 ;
(3) P{x 1
注意:连续型随机变量X取任一指定实数值a的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布
(1)X~U (a,b) 区间(a,b)上的均匀分布 0)(1abxf 其它bxa .
(2)X服从参数为的指数分布.0/1xexf 00xx若若 (>0). (3)X~N (,2 )参数为,的正态分布 2
22)(21)(x
exf -0.
特别, =0, 2 =1时,称X服从标准正态分布,记为X~N (0,1),其概率密度
2221)(xex , 标准正态分布函数 xtdtex2221
)( , (-x)=1-Φ(x) .
若X~N ((,2), 则Z=X~N (0,1), P{x1若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:(z )=1- , z 1- = -z . 四.随机变量X的函数Y= g (X)的分布 1.离散型随机变量的函数 X x 1 x2 … x k … p k p 1 p2 … p k … Y=g(X) g(x1) g(x2) … g(x k) … . . 若g(x k) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.
若g(x k) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数 若X的概率密度为fX(x),则求其函数Y=g(X)的概率密度fY(y)常用两种方法: (1)分布函数法 先求Y的分布函数FY(y)=P{Y≤y}=P{g(X)≤y}=dxxfkyXk
其中Δk(y)是与g(X)≤y对应的X的可能值x所在的区间(可能不只一个),然后对y求导即得fY(y)=FY /(y) . (2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,
其概率密度为 0yhyhfyfXY 其它y 其中h(y)是g(x)的反函数 , = min (g (-),g ()) = max (g (-),g ()) . 如果f (x)在有限区间[a,b]以外等于零,则 = min (g (a),g (b)) = max (g (a),g (b)) . 第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义 若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X≤x,Y≤y}称为(X,Y)的(X和Y的联合)分布函数. 2.分布函数的性质 (1)F(x,y)分别关于x和y单调不减. (2)0≤F(x,y)≤1 , F(x,- )=0, F(-,y)=0, F(-,-)=0, F(,)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1 2
P{x 1
二.二维离散型随机变量及其联合分布律 1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i,y j) (i ,j =1,2,… )称(X,Y)为二